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The COVID-19 pandemic as the largest global public health crisis is now considered as an emergency at
the World Health Organization (WHO). As there is no specific therapy for SARS-CoV-2 infection at
present and also because of the long time it takes to discover a new drug and the urgent need to respond
urgently to a pandemic infection. Perhaps the best way right now is to find an FDA-approved drug to
treat this infection. Oxidative stress and inflammation play a vital role in the progression of tissue injury
in COVID-19 patients; furthermore, the G6PD activation is related to increased oxidative inflammation in
acute pulmonary injury. In this regard, we propose a new insight that may be a good strategy for this
urgency. Exploiting G6PD through inhibiting G6PD activity by modifying redox balance, metabolic
switching and proteineprotein interactions can be proposed as a new approach to improving patients in
severe stage of COVID 19 through various mechanisms. Polydatin is isolated from many plants such as
Polygonum, peanuts, grapes, red wines and many daily diets that can be used in severe stage of COVID-19
as a G6PD inhibitor. Furthermore, polydatin possesses various biological activities such as anti-
inflammatory, antioxidant, immunoregulatory, nephroprotective, hepatoprotective, anti-arrhythmic
and anti-tumor. Our hypothesis is that the consumption of antioxidants such as Polydatin (a glucoside
of resveratrol) as a complementary therapeutic approach may be effective in reducing oxidative stress
and inflammation in patients with COVID-19.

© 2021 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights
reserved.
1. Introduction

The COVID-19 pandemic as the largest global public health crisis
is now considered as an emergency by the World Health Organi-
zation (WHO). Since there is currently no specific therapy for SARS-
CoV-2 infection and also given the long time it takes to discover a
new drug and the urgent need for an urgent response to pandemic
infection. Perhaps the best way right now is to find an FDA-
approved drug to treat this infection.

It has been confirmed that oxidative stress and inflammation
related with SARS-Cov-2 (COVID-19) increase the severity of the
tissue injury [1,2], also, the activation of G6PD is associated with
increased oxidative inflammation in acute pulmonary injury [3,4].
The consumption of antioxidants such as Polydatin (a glucoside of
resveratrol) [5] as a complementary therapeutic approach may be
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effective in reducing oxidative stress and inflammation in patients
with COVID-19. In this regard, we propose a new insight that may
be a good strategy for this urgency.

2. Oxidative stress and SARS-CoV-2

Oxidative stress has been determined as a disruption in the
prooxidant-antioxidant balance in favor of the prooxidants. Over-
production of prooxidants such as reactive oxygen species (ROS)
and antioxidants depletion such as glutathione (GSH) are crucial for
viral replication and the subsequent virus-associated disease [6]. It
seems that oxidative stress and antioxidant power depletion play a
vital role in the progression and severity of COVID-19-associated
sepsis [1]. Previous animal studies have shown improved ROS
levels and disruption of antioxidant system during SARS-CoV
infection [7]. It also showed that oxidative stress played a crucial
role in severe acute respiratory syndrome coronavirus (SARS-CoV)
infection [8]. Viral pathogens such as SARS-CoV trigger oxidative
stress-nuclear factor kB- toll-like receptor (mainly TL4) signaling
y Elsevier Ltd. All rights reserved.
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Fig. 1. 3,40 ,5-trihydroxystilbene-3-b-D-glucoside.
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pathways, leading to acute lung injury. TLR4-TRIF (Toll/IL-1 recep-
tor domain-containing adaptor inducing IFN-b)-TRAF6 (tumor ne-
crosis factor receptor associated factor 6) signaling was
acknowledged as a pathogenic axis that can manage the severity of
acute lung injury [9]. The theory that oxidative stress and associ-
ated inflammation play a major role in the pathogenesis of various
chronic diseases [10] such as cardiovascular disease, diabetes and
respiratory diseases, identified to increase the risk of severe stages
and death in patients with COVID-19, is supported by increasing
data [11].

3. Oxidative stress and G6PD

Glucose 6-phosphate dehydrogenase (G6PD) as a critical
mediator of redox balance is one of the enzymes of the pentose
phosphate pathway that metabolize glucose in aerobic conditions.
One of the products of the pentose phosphate pathway is NADPH
which is due to the activity of G6PD. NADPH in turn is involved in
the synthesis of fatty acids and steroids, as well as maintaining the
level of reduced GSH for antioxidant activity. Although G6PD
deficiency studies have traditionally focused on erythrocyte disor-
ders but recent researches depicted that G6PD participates in a
variety of cellular processes through redox signaling [12].

Nitric oxide (NO) production, as an important factor in cell
survival, immune response, insulin signaling and vascular and
neural protection, depends on the status of G6PD.Moreover, altered
G6PD activity is related to a myriad of pathological events and
diseases including autophagy, insulin resistance, infection,
inflammation, as well as diabetes and hypertension [13].

Increased G6PD activity is associated with increased lung cell
capacity for proliferation and replacement of damaged cells. This
enzyme causes excessive hypoxia-inducible factor1 (HIF1), Cycline
A, phospho-histone H3 expression which are promote undifferen-
tiated CD133þ cells and self-replication and changes in cellular
settings. The enzyme inhibitor decreases the accumulation of
CD133þ and decreases cell damage [14].

Studies have shown that increasing G6PD expression and acti-
vation plays an important role in the progression of hypoxic pul-
monary vasoconstriction (HPV) and the development of pulmonary
hypertension. The regression analysis of G6PD activity and the ratio
of NADPH to NADPþ to HPV response clearly showed a positive
linear relationship between G6PD and HPV activity. The findings
suggest that G6PD and NADPH redox have played an important role
in the mechanism of HPV and, in turn, in increasing pulmonary
arterial pressure, which plays a role in pulmonary hypertension.
Acute pulmonary injury leads to increased G6PD activity, and data
also show that activation of G6PD is associated with increased
oxidative inflammation in acute pulmonary injury. Therefore, in-
hibition of G6PDmay be a useful strategy in acute pulmonary injury
to limit oxidative damage and improve airway inflammation [3,4].

Excessive G6PD expression also increases the activity of the
inducible nitric oxide synthase (iNOS) to increase the bioavailability
level of NO. G6PD modulation affects ROS mediated by NOX2 in
airway epithelial cells (AEC) during acute lung injury [4,15]. In
diabetes, increased G6PD activity and increased NADPH levels are
associated with endothelial and vascular dysfunction. There is also
a 10-fold increase in myocardial G6PD expression and a 2-fold in-
crease in G6PD activity in pacing-induced heart failure compared to
normal hearts. In addition, inhibition of G6PD improves chronic
hypoxic pulmonary hypertension. Finally, G6PD plays a mediating
role in smooth muscle hypertrophy caused by angiotensin II and in
the progression of atherosclerosis [16,17].
198
4. G6PD and COVID-19

In severe stage of COVID19, patients suffer from acute disorders
in vital organs such as acute lung damage, cardiovascular problems,
high blood sugar due to an imbalance of glucose metabolism, kid-
ney damage as well as inflammatory response known as cytokine
storm [18,19].

On the other hand, many studies have shown the role of G6PD in
acute cell damages and inflammatory response as well as diabetes,
hypertension and smooth muscle hypertrophy [17].

A recent study found that GSH was effective in maintaining
antioxidant balance and reducing oxidative damage caused by
SARS-CoV-2. Another study found that vitamin B3 is very effective
in reducing lung damage, which is a major problem in patients with
severe COVID 19 to prevent lung tissue damage and it has been
suggested as a wise way to improve lung problems in these pa-
tients. Glutathione and vitamin B3 are important factors and
products in the pathway of pentose phosphate that are regulated by
G6PD [20,21]. Both N-acetyl cysteine and alpha lipoic acid are able
to help regenerate GSH levels, and clinical data suggest that -N-
acetyl cysteine and its antioxidant properties may play a role in the
treatment or prevention of acute viral respiratory infections [22].

Therefore, it is recommended that G6PD activity may be eval-
uated as one of the diagnostic markers and its relationship with the
severity of the disease should be statistically analyzed so that, if the
hypothesis is confirmed, it is possible to use methods to modify this
enzyme in the COVID-19 disease process.

Furthermore, exploiting G6PD through inhibiting G6PD activity
by modifying redox balance, metabolic switching and proteine
protein interactions can be proposed as a new approach to
improving of patients with severe stage of COVID 19.
5. Polydatin

Polydatin is also referred to as piceid (3,40,5-trihydroxystilbene-
3-b-D-glucoside) (Fig. 1), is a glycoside form of resveratrol which is
isolated from many plants such as Polygonum, peanuts, grapes, red
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wines, hops, cocoa products, chocolate products and many daily
diets. Polydatin possesses various biological activities including anti-
inflammatory, antioxidant, immunoregulatory, nephroprotective,
hepatoprotective, anti-arrhythmic and anti-tumor [23]. Polydatin
has been demonstrated to directly inhibit G6PD which result in
redox imbalance and causing elevated endoplasmic reticulum stress
[24]. Moreover, Polydatin reduced ROS and attenuated oxidative
stress through the Keap1/Nrf2/ARE pathway in Graves’ orbitopathy
[5]. Polydatin suppressed the inflammatory cytokines secretion, and
restrained the TLR6/MyD88/NF-kB pathway by Mycoplasma galli-
septicum infection (a main cause of chronic respiratory disease)
in vivo and in vitro [25]. Another study showed that Polydatin
weakens cadmium-induced oxidative stress through inducing SOD
activity and regulating mitochondrial function in Musca domestica
larvae [26]. Moreover, Polydatin supplementation reduces hepatic
pathological changes and reduces insulin resistance, as demon-
strated by the improved evaluation of the homeostasis model of
baseline insulin resistance values and glucose tolerance testing [27].
We conclude that Polydatin may lessen oxidative stress and
inflammation via the mentioned pathways in COVID-19 patients.
However, before implementing this type of treatment, more studies
are needed.
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