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Over the past years, coregistered EEG-fMRI has emerged as a powerful tool for neurocognitive research and correlated studies,
mainly because of the possibility of integrating the high temporal resolution of the EEG with the high spatial resolution of fMRI.
However, additional work remains to be done in order to improve the quality of the EEG signal recorded simultaneously with fMRI
data, in particular regarding the occurrence of the gradient artefact. We devised and presented in this paper a novel approach for
gradient artefact correction based upon optimised moving-average filtering (OMA). OMA makes use of the iterative application
of a moving-average filter, which allows estimation and cancellation of the gradient artefact by integration. Additionally, OMA is
capable of performing the attenuation of the periodic artefact activity without accurate information about MRI triggers. By using
our proposed approach, it is possible to achieve a better balance than the slice-average subtraction as performed by the established
AAS method, regarding EEG signal preservation together with effective suppression of the gradient artefact. Since the stochastic
nature of the EEG signal complicates the assessment of EEG preservation after application of the gradient artefact correction, we
also propose a simple and effective method to account for it.

1. Introduction

Integration of functional magnetic resonance imaging
(fMRI) with electroencephalography (EEG) has offered the
possibility of understanding new insights into neuroscientific
studies because of the higher temporal and spatial measure-
ments of brain activity when compared with the use of each
technique separately. Rather than only an additional tool,
coregistered EEG-fMRI has been shown to be a promising
and powerful technique for the mapping of brain activity and
has drawn the attention of several researchers and clinicians
in recent years [1–7]. Meanwhile, consolidation of simultane-
ous EEG-fMRI and enlargement of its range of applications
still depend on enhancing the quality of the EEG signal
acquired simultaneously with the fMRI data.

The MR scanner constitutes a quite hostile environment
for EEG because of the voltages induced by the magnetic
fields used for acquisition of fMRI data. Such voltages

correspond to three different types of artefact and may
corrupt and distort the EEG signal, measured by the scalp
electrodes. The first type of artefact is the movement artefact
associated with motion of the subject head, electrodes, and
wires into the static magnetic field (𝐵

0
) of the MR scanner,

which introduces temporary voltage fluctuations in the mea-
sured scalp potential [8, 9]. A second type of artefact is the
pulse or ballistocardiogram artefact, provoked by the pulsatile
movement of the blood in scalp arteries within 𝐵

0
[10–13].

Finally, the gradient or imaging acquisition artefact is the
voltage induced in the measured scalp potential by the appli-
cation of rapidly varying magnetic field gradients for spatial
encoding of the MR signal and radiofrequency pulses (RF)
for spin excitation [14–16]. The occurrence of the movement
artefact within a scenario of abrupt head motions as well as
the pulse artefact is out of the scope of this work, and further
details about their characteristics and methods to suppress
them can be found in the abovementioned references.
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Regarding the gradient artefact, its amplitudes can be
several orders (up to 104 𝜇V) higher than the neuronal EEG
signal. The gradient fields and RF pulses used in the MR
pulse sequences induce a characteristic and repetitive artefact
waveform in the electrical potential picked up by the scalp
EEG electrodes (scalp potential), which is approximately the
differential waveform of the corresponding gradient pulse
[17]. The onset of the artefact waveform corresponds to the
occurrence of a RF pulse in the MR sequence, such that the
time in-between consecutive RF pulses (termed repetition
time, TR) matches the period of the artefact waveform.
Typical values of TR range from hundreds of milliseconds to
several seconds. The stack of repetitive individual MR slices
within a single TR occurs in the recorded scalp potential as
signal peaks, and the time corresponding to the acquisition
of one slice or slice-time (TR-slice) lies in the range of 50–
150ms. In the frequency-domain, the repetitive feature of the
gradient artefact can be observed as discrete harmonic arte-
fact frequency intervals or “frequency bins.”The fundamental
of each respective frequency bin corresponds to multiples
of the inverse of the slice repetition time (1/TR-slice). For
periodic or interleaved fMRI acquisition, in which delays are
left between MR volumes, harmonics in the frequency range
of 1/TR appear convolved with the frequency bins associated
with the slice repetition frequency, 1/TR-slice [15–19].

In the literature, a number of solutions have been pro-
posed to attenuate the effects of the gradient artefact at the
source. For instance, it is possible to reduce its magnitude by
laying out and immobilising the EEG leads, twisting the leads
or modifying the lead paths, using a bipolar electrode config-
uration, and using a head vacuum cushion [16, 20].The use of
interleaved fMRI acquisition approaches has been shown to
be suitable for certain forms of brain activity, such as slowly
varying rhythms and evoked responses. However, they are
generally less flexible and experimentally efficient than con-
tinuous measurements [9, 21]. According to Mullinger et al.
[22], the amplitudes of the gradient artefact can also be atten-
uated by adjusting the subject position within the fMRI scan-
ner. Chowdhury et al. [23] have proposed the use of an EEG
cap that incorporates electrodes embedded in an external
layer and can record the gradient artefact separately from the
EEG signal. Thus, subtraction between the signals recorded
by internal and corresponding external electrodes allows
the attenuation of the artefact. Although these solutions
permit achieving a considerable attenuation of the gradient
artefact, its effective suppression and satisfactory EEG cor-
rectionmust be performed by using dedicated postprocessing
signal approaches.

The average artefact subtraction (AAS) methodology [14]
is the most established postprocessing technique for gradient
artefact suppression. Such an approach makes use of the
assumption of periodic and stationary nature of the artefact to
calculate an average template fromoccurrences of the artefact
waveform, which is then subtracted from the scalp potential.
It also assumes the artefact and the EEG signal are not corre-
lated, so that the subtraction of the averaged template permits
an estimation of the corrected EEG [24]. The performance
of the AAS method highly depends on the reproducibility
of the artefact waveform from epoch to epoch, which can

be facilitated by utilising a setup that yields more accurate
sampling of the gradient artefact waveform over time. Anami
et al. [17] and Mandelkow et al. [25] have demonstrated that
the use of synchronisation between the fMRI clock and the
EEG sampling frequency allowsmore precise sampling of the
artefact and construction of a more accurate artefact tem-
plate, in consequence. Thus, a cleaner EEG can be obtained
after application of AAS in the recorded scalp potential. The
performance of AAS has also high dependency on changes
in the subject position. Head motions of the subject provoke
alterations in the morphology of the artefact waveform over
the artefact period, in such a way that the average artefact
template cannot characterise individual occurrences of the
artefact waveform. To address this problem, Allen et al. [14]
and Becker et al. [21] proposed the use of a sliding average
window implementation whereby the artefact template may
be individually calculated for a particular occurrence of the
artefact waveform.However, the correct choice of the number
of averaging epochs poses difficulties to implementation of
this approach, since few windows can result in removal of
the neuronal EEG, whereas the use of many windows can
lead to remaining residual artefacts after AAS. Hence, to
effectively suppress the gradient artefact with a satisfactory
preservation of the neuronal EEG, additional approaches like
low-pass filtering with a cut-off frequency around 50–80Hz
and adaptive noise cancelling must be employed to attenuate
residual artefacts [14, 15, 20, 21, 26–29].

Some variants of AAS have been devised in attempt to
improve the accuracy of template calculation by using princi-
pal component analysis [26], independent component analy-
sis [30], and spatial filtering [31]. To correct the jitter between
EEG sampling frequency and fMRI clock, more precise com-
puting of the timing error has been addressed byNegishi et al.
[32], Gonçalves et al. [33], andHuang et al. [27]. Nevertheless,
estimation of an optimal artefact template is still the object of
study. In addition, the study of ultra-high-frequency neuronal
activity as currently performed [34] requires the use of inter-
leaved approaches as well as customised fMRI sequences that
are generally not available to all investigators. Thus, further
improvements of AAS and development of novel correction
methods are still required and highly desirable to enhance
the quality of the EEG signal, mainly regarding EEG signals
with low amplitude andwith frequency activity in the gamma
band (30–100Hz) and high-frequencies oscillations between
100 and 500Hz [20, 34].

Because of the risk of simultaneous removal of neuronal
EEG activity during application of the gradient artefact cor-
rection approach, assessment of the preservation of the EEG
signal should be carried out together with the efficacy of the
artefact suppression. This, however, has seldom been made
systematically or in a consistent way [34–37]. In many EEG-
fMRI studies, a single algorithm is chosenwithout proper jus-
tification, and often the quality of gradient artefact correction
and EEG preservation is assessed by visual inspection only.
The classical (gold standard) way of analyzing EEG signals
relies on visual judgement and recognition of sometimes
very subtle or short duration phenomena such as spike-
wave patterns in epilepsy studies or K-complexes in sleep
research. Nonetheless, those patterns may easily be distorted
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or obscured after application of the artefact correction
approach. A difficulty that arises with regard to the analysis
of spontaneous EEG excerpts is the stochastic and nonsta-
tionary nature of the neuronal EEG. On the other hand,
identification of single events in the corrected EEG is not
suitable for a scenario in which the signal of interest is the
spontaneous EEG and, thus, larger EEG excerpts over time
should be analyzed. In addition, the lack of knowledge of
the true EEG signal makes it difficult to compare the power
spectra of artefact-corrected EEG excerpts with the spectra
of the EEG recorded inside or outside the scanner. Thereby,
a more systematic approach to assess and compare the
performance of the gradient artefact correction methods is
advised in some applications, rather than only relying on the
analysis of single events or the quantification of EEG power
in certain spectral bands. Moreover, to date, generalisation of
the correction results for different types of EEG data has been
poorly made as well [16, 35–37].

This paper presents a novel methodology for gradient
artefact correction based upon optimised moving-averaging
(OMA) filtering [38]. OMA filtering constitutes a modality
of iterative filtering decomposition [39, 40] and has been
exploited in a research project that our group has undertaken
to investigate characteristics and features of the gradient
artefact that might be used to attenuate, correct, and improve
the quality of the corrected EEG signal [38, 41–43].Optimised
moving-average makes use of forward-backward application
of a moving-average (MA) filter as an integration procedure
to suppress the artefact and estimate partial components of
the corrected EEG at the same time. Recursive application
of such a procedure allows estimation of the corrected EEG
as a sum of the calculated partial components. Rather than
estimation of an average template, as performed by the AAS
implementation, the artefact is calculated not for epochs, but
sample-by-sample, as described in Section 2. To assess the
degree of EEG preservation, we have devised a novel and
simple evaluation approach that allows accounting for the
stochastic nature of the neuronal EEG and was used to per-
form a comparative analysis of OMAwith AAS. Comparison
between the performances of OMA and AAS reveals that our
method can provide an improved balance for the suppression
of the artefact together with a satisfactory preservation of the
neuronal EEG signal, as shown in Section 4. In parallel, the
use of low-pass filtering or another correction approach to
suppress residual artefacts after application of OMA can be
avoided, and thus our method potentially better preserves
highly relevant high-frequency EEG features. Furthermore,
the results indicate that our approach is capable of satisfacto-
rily correcting the EEG data even within a scenario of mis-
alignment between EEG sampling interval and the MR slice-
time and without accurate information about MRI triggers.
Analysis of the application of the gradient artefact correction
in EEG data sets recorded by using MR scanners from two
different vendors is also provided in Section 4.

2. Methods

2.1. EEG and fMRI Data. Our devised methodology was
tested in two types of EEG data simultaneously acquired

with fMRI data. The EEG data sets were kindly provided
by Brain Products GmbH, Gilching, Germany, which gave
consent for their publication. Data acquisitionwas conducted
in accordance with the Declaration of Helsinki, approved by
the responsible Ethics Committee, and the subjects gave their
informed written consent before participating in the study.
One of the EEG data sets was recorded within a Philips scan-
ner (hereafter referred to as Philips data), whereas the other
EEG data set was recorded within a GE scanner (hereafter
referred to as GE data). The EEG data in both the Philips
and GE scanner were recorded in two volunteers by using
an MRI-compatible 64-channel EEG system (BrainAmp
MR, Brain Products GmbH, Gilching, Germany). An MR-
compatible EEG cap (BrainCap MR, EASYCAP GmbH,
Herrsching, Germany) containing sintered Ag/AgCl elec-
trodes was used to pick up the scalp potential. The EEG cap
was arranged in accordancewith the standard 10-5 electrodes’
positioning, with the FCz position used as reference and the
ground electrode located at the AFz position.The impedance
of all electrodes was set below 30 kΩ, and one additional
electrode was placed on the subject back to record the ECG
signal.TheEEG amplifiers were positioned inside the scanner
bore near the middle axis and connected via fiber optic to
a PC interface located outside the scanner room. SyncBox
(Brain Products GmbH, Gilching, Germany) was used to
synchronise the internal sampling clock of the EEG amplifier
and the MRI scanner 10MHz master clock. The signal
acquisition was performed using a sampling rate at 5000Hz
and measurement resolution at 0.5 𝜇V. Hardware-filtering in
the frequency band between 0.016Hz and 250Hzwas applied
before data digitalisation in order to prevent saturation and
reduce the gradient artefact amplitude. During acquisition,
the volunteers were instructed to perform a simple open-
ing/closing eyesmanoeuvre at regular time intervals. Regard-
ing acquisition of fMRI data, the following setups were used.

(A) Philips Data. Acquisition of the Philips data set was car-
ried out using a 3 TAchieva Scanner (Philips, Eindhoven,The
Netherlands). One volunteer was scanned using a functional
echo-planar imaging (EPI) sequence with 40 transversal
slices and volume repetition time (TR) equal to 2000ms.The
fMRI clock and the EEG sampling frequency have been syn-
chronised, so that TR was set as a multiple of the EEG sam-
pling interval. fMRI data acquisition was continuously per-
formed, and TR was adjusted as a multiple of the slice-time
(TR-slice). Hence, TR-slice was equal to 2000ms/40 slices =
50ms. Acquisition of the Philips data was approximately per-
formed during 4 minutes.

(B) GE Data. Acquisition of the GE data set was carried out
using a 3 TDiscoveryMR750 Scanner (GE,Waukesha, USA).
A second volunteer was scanned using an EPI sequence with
28 transversal slices and volume repetition time (TR) equal to
2000ms. fMRI data acquisition was continuously performed,
and the fMRI clock and the EEG sampling frequency have
been synchronised for a period equal to 500ms, correspond-
ing to seven times of TR-slice. Thereby, although TR was
approximately adjusted as a multiple of the slice-time (TR-
slice), TR-slice was not aligned and did not match a multiple
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Figure 1: Scalp potential excerpt recorded during continuous
acquisition of fMRI data. Assuming that the artefact waveform is
stationary, any moving-average window of length 𝑀 (= TR-slice)
along the signal contains the artefact waveform corresponding to
one slice, but with onset other than of those samples localised in the
signal peaks.

of the EEG sampling interval. Acquisition of the GE data was
approximately performed during 10 minutes.

2.2. Proposed Methodology for Gradient Artefact Correction.
Our proposed methodology for gradient artefact correction
was implemented in two steps: (i) peak detection and TR-
slice estimation and (ii) optimised moving-average filtering.
The recorded scalp potential, 𝑠

𝑛
, in one specific EEG channel

was mathematically modelled as a linear superposition of the
neuronal EEG, 𝑒true,𝑛, and the induced voltage associatedwith
the gradient artefact interference, 𝑔artf ,𝑛:

𝑠
𝑛
= 𝑒true,𝑛 + 𝑔artf ,𝑛, (1)

where 𝑛 is the time sample.

2.3. Peak Detection and TR-Slice Estimation. An initial detec-
tion of the peaks corresponding to the onset of the MR slices
observed in the recorded scalp potential must be performed
according to our proposed methodology. Such detection
permits estimation of the slice-time (TR-slice) according
to the time basis of the EEG sampling system, which is
utilised during implementation of the optimised moving-
average filtering. Within a scenario of alignment between the
MR slice-time and the EEG system sampling interval, the
estimated TR-slice precisely corresponds to a multiple of the
EEG sampling interval [25, 28, 29]. However, when there is
misalignment between the MR slice-time and the EEG sam-
pling interval, the value estimated for TR-slicemay notmatch
a multiple of the sampling interval and, thereby, vary. This
variation can be accounted for by application of optimised
moving-average filtering, as described in Section 2.4.

2.4. Optimised Moving-Average Filtering (OMA). Figure 1
shows an excerpt of the scalp potential picked up from the
Philips data, in which TR is a multiple of TR-slice. The
time measured between two consecutive peaks in the signal
matches the slice-time or TR-slice. Assuming that the artefact
waveform is stationary, any moving-average window𝑀 with

length equal to TR-slice along the signal contains the artefact
waveform period, but with a different onset of those samples
localised in the signal peaks. Thereby, assuming that the
gradient artefact waveform is stationary and has zero mean,
integration of (1) over the period 𝑀 results in cancellation
of the artefact waveform. Also assuming that the terms of
(1) are uncorrelated, the resulting value of the integral along
the scalp potential, s, corresponds to a mean estimate of the
neuronal EEG, 𝑒̂

𝑛
.This integral can be described as amoving-

average filter with order𝑀:

1
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∑
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(3)

Because of the phase distortion provoked by the moving-
average filter [44–46], the mean value 𝑒̂

𝑛
is not in phase with

the neuronal EEG, 𝑒true,𝑛−𝑘. In order to make them in phase,
the moving-average must be backward applied in (3):
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(𝑀 − |𝑘|) 𝑠𝑛+𝑘 = 𝑒comp,1,𝑛. (5)

Thereby, according to (4) and (5), forward-backward appli-
cation of the moving-average filter in the recorded scalp
potential results in the signal ecomp,1 that is in phase and
constitutes a mean approximation of the neuronal EEG [38]:

ecomp,1 ≈ êtrue. (6)

Equation (5) acts as a smoothing filter, in such a way that
the signal ecomp,1 contains low-frequency activity associated
with êtrue. In turn, the frequency activity associated with the
gradient artefact is contained in the signal, ehigh,1, resulting
from the subtraction of ecomp,1 from s:

ehigh,1 = s − ecomp,1. (7)

Since high-frequency components associated with êtrue
remain in ehigh,1, it is possible to obtain an estimate of such
components by the iterative application of (5) in ehigh,1. The
second component, 𝑒comp,2,𝑛, results from the application of
(5) in ehigh,1:

𝑒comp,2,𝑛 =
1

(𝑀)
2

𝑀−1

∑

𝑘=−𝑀+1

(𝑀 − |𝑘|) 𝑒high,1,𝑛+𝑘, (8)
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Figure 3: Frequency response of the OMA filter for some values of𝑀: (a) magnitude response; (b) phase response.The phase response is the
same for any values of𝑀.

and the signal ehigh,2 can be obtained afterwards:

ehigh,2 = ehigh,1 − ecomp,2. (9)

This procedure was repeated so forth, for a number 𝑗 of
iterations, allowing estimation of the component ecomp,𝑗:

𝑒comp,𝑗,𝑛 =
1

(𝑀)
2

𝑀−1

∑

𝑘=−𝑀+1

(𝑀 − |𝑘|) 𝑒high,𝑗−1,𝑛+𝑘. (10)

This procedure also constitutes amodality of iterative filtering
decomposition (IFD) in which (5) is termed double average
filter [39, 40].The convergence of IFDhas been demonstrated
in Lin et al. [39] and is ensured by the coefficients (masks) of
the double average filter having value between 0 and 1.

Finally, the estimate êtrue of the corrected EEG can be
calculated by the sum of 𝐽 estimated components:

êtrue =
𝐽

∑

𝑗=1

ecomp,𝑗. (11)

Implementation of (11) can be visualised in the scheme of
Figure 2.

Application of the 𝑧-transform in the OMA filter,𝐻OMA,
described in (10), permits finding its transfer function:

𝐻OMA (𝑧) =
1

(𝑀)
2

(1 − 𝑧
−𝑀

) (1 − 𝑧
𝑀
)

(1 − 𝑧−1) (1 − 𝑧)
. (12)

Making use of (12), the frequency response of 𝐻OMA can be
calculated by setting 𝑧 = 𝑒

𝑗𝜔. Figure 3 shows such a frequency
response for some values of𝑀.

The magnitude response reveals the presence of spaced
zeros at the frequency 2𝜋/𝑀. For a hypothetical value𝑀 = 1,
the OMA filter represents an all-pass band filter, as expected
for a moving-average filter. The phase response confirms the
zero-phase characteristic of the OMA filter. From (7), we can
find the transfer function between ehigh,1 and s:

𝐻
1
= 1 − [

1

(𝑀)
2

(1 − 𝑧
−𝑀

) (1 − 𝑧
𝑀
)

(1 − 𝑧−1) (1 − 𝑧)
]

= 1 − 𝐻OMA (𝑧) .

(13)

Hence, ehigh,𝐽 corresponds to

𝐸high,𝐽 (𝑧) = [1 − 𝐻OMA (𝑧)]
𝐽
𝑆 (𝑧) . (14)

Therefore, (12), (13), and (14) allow removing 𝐽 cascade
components shown in Figure 2 and establishing the transfer
function between êtrue and s:

𝐸̂true (𝑧)

𝑆 (𝑧)
= 1 − [1 − 𝐻OMA (𝑧)]

𝐽
= 𝐻
𝐶
(𝑧) . (15)

In Figure 4, the magnitude response of 𝐻
𝐶
(𝑧) in (15) is

depicted, taking into account𝑀 = 16 and𝑀 = 250 and some
values of 𝐽. It can be observed that increasing of 𝐽 is followed
by substantial droop reduction (increasing gain) in the filter
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Figure 4: Magnitude response of (15), taking into account (a)𝑀 = 16, (b)𝑀 = 250, and some values of 𝐽.
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Figure 5: Magnitude response of (16) for (a) 𝐿 = 2 and (b) 𝐿 = 5, taking into account𝑀 = 250 and some values of 𝐽.

pass-bands. On the other hand, increasing of 𝐽 is also fol-
lowed by reduction in the attenuation in the filter stop-bands.

In order to improve the attenuation in the stop-bands,
𝐻
𝐶
(𝑧) might be applied within a cascade implementation as

indicated in

𝐻
𝐿
(𝑧) = [𝐻

𝐶
(𝑧)]
𝐿
, (16)

where 𝐿 is the number of cascades. Thereby, (16) equals (15)
when 𝐿 = 1. Figure 5 depicts the magnitude response of
𝐻
𝐿
(𝑧), for 𝐿 = 2 and 𝐿 = 5, taking into account 𝑀 =

250 and some values of 𝐽. As noticed, (16) can be used
to provide reduced droop in the pass-bands together with
higher attenuation in the stop-bands according to the values
of 𝐽 and 𝐿. In addition, (15) and (16) possess a zero-phase
characteristic as well, similar to that observed in Figure 3(b).

Therefore, (15) and (16) can be used to estimate the
artefact-corrected EEG in 𝑧-domain. On the other hand, in
time-domain, the corrected EEG, êtrue, can be calculated by
using either (11) or (17):

êtrue = s − ehigh,𝐽. (17)

As indicated in (10) and (12), the estimate ecomp,𝑗 is calculated
sample-by-sample, rather than calculation and subtraction of
an average artefact template. Thus, the optimised moving-
average filtering implementation depicted in Figure 2 permits
an individual calculation and subtraction of the artefact for
each signal sample rather than epochs averaging, as per-
formed by AAS. Hence, the inherent uncertainty associated
with averaged samples and the influence of alterations of the
artefact waveform provoked by subject head motions might

be minimised by using our proposed approach. To assess
the performance of the proposed approach in a scenario of
misalignment between the EEG sampling interval and the
slice-length, OMA has been applied by using (16), taking into
consideration some values of 𝐿, as shown in Section 4.

3. Evaluation of the Gradient Artefact
Correction and Comparative Analysis

According to Ritter et al. [35], two measures must be compli-
mentarily used to evaluate the performance of the gradient
artefact correction approach: (i) the effectiveness of gradient
artefact attenuation and (ii) the degree of preservation of the
neuronal EEG after artefact correction.

3.1. Assessment of the Artefact Attenuation. To assess the
gradient artefact attenuation, the RMS and amplitude of the
artefact voltage over time were calculated taking into account
the subtraction between s and the estimation of the corrected
EEG, êtrue. Also we performed calculation of the spectral
power attenuation around the fundamental of the frequency
bins associated with the slice repetition frequency (1/TR-
slice). To this end, we have estimated and took into consider-
ation a bandwidth of ±1 Hz around the fundamental of each
frequency bin. Calculation of the spectral power attenua-
tion was carried out for the frequency bins below 500Hz.
Although a band limiter set at 250Hz was employed during
data acquisition, we would rather evaluate the attenuation in
frequency bins up to 500Hz because of the artefactual energy
that may remain above the band limiter edge frequency
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Figure 6: Proposed scheme for measurement of the EEG signal preservation by linear addition of an artefact-free EEG excerpt, 𝑒ref ,𝑛, in the
recorded scalp potential, 𝑠

𝑛
. Both 𝑒ref ,𝑛 and 𝑠

𝑛
were picked up from the same EEG channel at different times, 𝑡 and 𝜏. The blocks labelled as

gradient artefact correctionmatch one specific gradient artefact correction approach (OMA or AAS).

[47]. Equation (18) was used to compute the spectral power
attenuation in decibel:

Attenuation = −20 × log(𝑃
𝐴

𝑃
𝐵

) dB, (18)

where 𝑃
𝐵
and 𝑃

𝐴
correspond to the spectral power within

the harmonic artefact bins, before and after application of the
gradient artefact correction, respectively.

3.2. Evaluation of the EEGPreservation. The scheme depicted
in Figure 6 was used to perform the quantitative evaluation of
the EEG preservation.

As indicated in Figure 6, a reference EEG signal, 𝑒ref ,𝑛, has
been linearly added to the measured scalp potential, 𝑠

𝑛
, thus

generating the modified signal 𝑠mod,𝑛. As 𝑒ref ,𝑛, we used EEG
excerpts recorded inside the MR scanner during nonscan
periods.Thereby, the letters 𝜏 and 𝑡 indicate that the reference
EEG excerpt has been recorded at a different time than 𝑠

𝑛
.

The gradient artefact correction was then applied to 𝑠mod,𝑛
and 𝑠
𝑛
, resulting in the estimates 𝑒̂true,1,𝑛 + 𝑒̂ref ,𝑛 and 𝑒̂true,2,𝑛,

respectively.Thereby, the subtraction between these estimates
allows obtaining an estimate of the reference signal, 𝑒̂ref ,𝑛,
which was finally compared with 𝑒ref ,𝑛. Equations (19) and
(20) were used to calculate the signal-to-noise ratio (SNR)
and the mean squared error (MSE) as complimentary mea-
sures of temporal and frequency contents of 𝑒̂ref ,𝑛 in compar-
ison with 𝑒ref ,𝑛:

SNR =
cov (eref , êref)
𝜎eref ⋅ 𝜎êref

, (19)

MSE =
1

𝑁

𝑁

∑

𝑛=1

(𝑒ref ,𝑛 − 𝑒̂ref ,𝑛)
2
. (20)

The SNR calculated by (19) corresponds to ameasure of cross-
correlation and allows an evaluation and comparison of fre-
quency characteristics between 𝑒ref ,𝑛 and 𝑒̂ref ,𝑛 [46]. Values of
SNR closer to unity mean higher similarity between 𝑒ref ,𝑛 and
𝑒̂ref ,𝑛. In turn, smaller values of MSE computed according to
(20) indicate higher correspondence between 𝑒ref ,𝑛 and 𝑒̂ref ,𝑛
over time. In addition to being of simple implementation, the
evaluation scheme of Figure 6 has the advantage of allowing

the assessment of longer EEG excerpts by accounting for the
stochastic nature of the neuronal EEG signal and not single
events only.

3.3. Comparative Analysis. The results obtained by applica-
tion of OMA were compared with those obtained by sub-
traction of a mean template, according to the average artefact
subtraction (AAS)methodology [14, 21]. BothOMAandAAS
were applied to the Philips data and GE data set. For imple-
mentation of OMA, we developed and applied our proposed
methodology to the EEG recordings inMATLAB (TheMath-
Works Inc., Natick, USA) environment. In turn, the average
artefact subtraction was carried out by utilising the software
Brain Vision Analyzer 2 (Version 2.1.0.327; Brain Prod-
ucts GmbH, Gilching, Germany). As benchmark, a sliding
moving-average window implementation of 21 epochs was
used for construction of the average artefact template. The
reason for using 21 epochswas based upon the default settings
of the Brain VisionAnalyzer.The epoch length to be averaged
and construct the artefact template was set at 50ms (TR-slice)
for the Philips data and 500 ms for the GE data. Such values
were chosen to match the minimum period in which the
fMRI data were synchronised as a multiple of the EEG sam-
pling interval, so that the influence of head motions in longer
sliding average windows might be prevented.

After application ofOMAandAAS, assessment of artefact
attenuation and evaluation of the EEG preservation, as
described above, were carried out using MATLAB. All 63
EEG channels were used to perform the analysis of the GE
data. For the Philips data, the channel TP8was excluded from
the analysis because the entire recordings were corrupted by
artefacts, whichmade it impossible to pick up a signal excerpt
representative of 𝑒ref ,𝑛.

4. Results

Figure 7(a) depicts an exemplary scalp potential excerpt,
picked up from the Philips data, electrode position Fz. In
Figure 7(b), the power spectrum of the signal of Figure 7(a)
is shown, and the harmonic activity associated with the gra-
dient artefact can be visualised as spectral peaks at multiples
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Figure 7: (a) Scalp potential excerpt picked up from the EEG electrode Fz of the Philips data; (b) power spectrum of the signal (a), showing
up the harmonic artefact activity associated with the gradient artefact at multiples of 1/TR-slice (TR-slice = 250 samples), equal to 20Hz for
the Philips data.
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Figure 8: (a) Scalp potential excerpt of Figure 7(a) after application of OMA, taking into account (15), for 𝐽 = 200 (dark trace), 𝐽 = 2000

(pink trace), and 𝐽 = 200000 (green trace); (b) power spectra corresponding to the signals of (a).

of the fundamental frequency equal to 20Hz, corresponding
to the frequency bins associated with 1/TR-slice.

By performing the peak detection associated with the
gradient artefact in the signal of Figure 7(a), TR-slice was
estimated in even lengths of 250 samples, thus confirming the
alignment between TR-slice and the EEG sampling interval
for the Philips data. Hence, for application of the optimised
moving-average (OMA), we set𝑀 = 250. Figure 8(a) depicts
the artefact-corrected EEG by using (15), for 𝐽 = 200, 𝐽 =

2000, and 𝐽 = 200000. It can be seen in Figure 8(b) that the
harmonic activity associated with the gradient artefact has
been attenuated for the used values of 𝐽. Increasing the value
of 𝐽 is shown to provoke better preservation of the power
activity along the spectrum of the corrected EEG signal,
mainly in high-frequencies. Smaller attenuation in the fre-
quency bins associated with 1/TR-slice is also noticed when
the value of 𝐽 is increased, which agrees with the comb-
filtering response depicted in Figure 4 as well. Therefore, the
choice of the value of 𝐽 should be made in such a way as to
provide adequate attenuation of the artefact activity in the fre-
quency bins and satisfactory preservation of the EEG signal.
However, (15) might not provide enough attenuation of the
artefact, and (16) can be used instead, as shown in the next
example.

An illustrative scalp potential excerpt picked up from
the GE data, EEG electrode position Fp1, is depicted in
Figure 9(a), and its corresponding power spectrum is shown
in Figure 9(b).

For these data, the slice-length has not been aligned with
the EEG sampling interval, in such a way that the value of TR-
slice was estimated at 357 ± 1 samples. To demonstrate the
performance of the proposed method to suppress the gradi-
ent artefact in this scenario, we used (16), taking into account
𝑀 = 357 and 𝐽 = 200000, for 𝐿 = 1 (see (15)), 𝐿 = 30, and 𝐿 =

100. Figure 10(a) depicts the corresponding power spectra of
the corrected EEG. For 𝐿 = 1, OMA was unable to satisfac-
torily attenuate the gradient artefact, so that residual spectral
power artefact remained in most of artefact frequency bins
(dark trace). Figure 10(b) shows a detail of the time-course
corrected EEG signals around 408 s in which the presence
of such residuals can also be noticed (thin dark traces).
Nevertheless, higher values of 𝐿 allow increased attenuation
of the harmonic artefact activity (Figures 10(a) and 10(b)). For
𝐿 = 5 (pink trace), residual spectral power associatedwith the
artefact was substantially attenuated in the bandwidth up to
300Hz. In turn, when 𝐿 = 100 (green trace), such attenuation
was even higher, and artefact harmonic activity in the fre-
quency bins could be strongly reduced in the bandwidth
below 500Hz.

As observed in the spectrumdetails around 56 and 336Hz
(Figure 10(a)), by increasing 𝐿, it provokes larger attenuation
around the frequency bins. Thereby, (16) can be used to
account for the enlargement of the spectral artefact harmonic
lines provoked by the alignment error between the EEG
sampling interval and TR-slice, thus being able to correct the
scalp potential within this scenario. No signal interpolation
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Figure 9: (a) Scalp potential excerpt picked up from the EEG electrode FP1 of the GE data; (b) power spectrum of the signal (a), showing
up the harmonic artefact activity associated with the gradient artefact at multiples of 1/TR-slice (TR-slice = 357 ± 1 samples), approximately
equal to 14Hz for the GE data.
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Figure 10: (a) Power spectrum of the scalp potential of Figure 9(a) after application of OMA, taking into account (16) and 𝐽 = 200000, for
𝐿 = 1 (dark trace), 𝐿 = 5 (pink trace), and 𝐿 = 100 (green trace); (b) detail in the time-course corrected EEG by OMAwith similar setup and
colour code as indicated in (a); (c) power spectrum of the scalp potential of Figure 9(a) taking into account (16) for 𝐿 = 100 (blue trace) and
power spectrum of the corrected EEG by AAS (red trace); (d) detail in the time-course corrected EEG by OMA (blue trace) and AAS (red
trace).

for correction of the artefact waveform phase has been
performed. Figure 10(c) depicts the power spectra of the cor-
rected EEG after application of OMA (blue trace, 𝐽 = 200000

and 𝐿 = 100) and themean template subtraction by AAS (red
trace) in the signal of Figure 9(a). As can be noticed for the
signal corrected by the AAS method, residual power asso-
ciated with the artefact activity arose in higher-frequencies
bins, above around 200Hz. In Figure 10(d), a detail around
408 s of the time-course of the corrected EEG by OMA and
AAS is also depicted. Some small amount of residual artefacts
corresponding to the artefact residual power can be noticed
in the time-course signal corrected by AAS. Rather, those
residuals could be attenuated by using OMA.

Both OMA and AAS play a role of comb-filtering
approaches [24, 38] whereby harmonic frequency compo-
nents associated with the slice repetitive frequency (1/TR-
slice) can be attenuated. On the one hand, AAS implementa-
tion consists of a coherent detection-based comb-filtering

process [24, 48] that is carried out by subtraction of the
template with period TR-slice. As such, the AAS method is
highly dependent on precise sampling of the scalp potential
as well as accurate alignment amongst the averaging epochs
to construct the average template. Moreover, small drifts
and subject head motions can provoke broadening of the
high-frequency artefact spectral lines, in such a way that AAS
may fail to attenuate them, and residual artefacts arise in the
corrected EEG as a consequence [49]. This helps to explain
why AAS is not effective in eliminating the high-frequency
artefact activity shown in Figures 10(c) and 10(d), whose
attenuation is more affected by imprecise sampling than
low-frequency artefact activity as well [25, 29]. On the other
hand, OMA performs comb-filtering making use of the
filtering implementation described in Section 2.4. By using
proper values of 𝑀, 𝐽, and 𝐿 in (16), thereby, it allows OMA
to effectively account for the attenuation of high-frequency
artefact activity, as depicted in Figure 10.
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Figure 11: Attenuation in the frequency bins provoked by application of (a) OMA and (b) AAS for an EEG excerpt picked up from the channel
CPz (Philips data), taking into account different values of 𝐽 and number of averaging epochs. Although OMA and AAS can provide similar
EEG preservation (same value of SNR and MSE), OMA is more effective in attenuating the artefact in the overall frequency bins, mainly in
higher-frequencies than 100Hz.

Table 1: Median artefact voltages attenuation over time.

Method Philips data GE data
RMS (𝜇V) Amplitude (𝜇V) RMS (𝜇V) Amplitude (𝜇V)

OMA 622.5291 5167.6000 207.1564 1847.9000
AAS 622.5524 5172.3000 207.1422 1858.1000

The results presented in Tables 1–5 for the OMA correc-
tion (16) refer to 𝐽 = 200000 and 𝐿 = 1 (Philips data)
and 𝐽 = 200000 and 𝐿 = 100 (GE data). As observed
in Table 1, the median RMS and amplitude calculated for
the artefact voltages estimated by both approaches are quite
similar. However, when the power spectra of the corrected
signals are compared, the attenuation of the artefact activity
in the frequency bins provoked by the AAS and OMA is
different (Table 2). Although both approaches are shown to
provoke attenuation approximately similar in some artefact
frequency bins, OMA provided more attenuation than AAS
in higher-frequency bins.

To perform the quantitative evaluation of EEG preserva-
tion, we used the scheme depicted in Figure 6 and calculated
the median values of SNR (19) and MSE (20) between 𝑒ref ,𝑛
and 𝑒̂ref ,𝑛. The results of such measures are shown in Tables
3, 4, and 5. In Tables 4 and 5, we show the individual results
for some exemplary channels, Fp1, F3, Oz, CPz, Fz, FC5, and
AF3. In these tables, we also included the values of SNR and
MSE, considering application of low-pass (LP) filtering in
𝑒ref ,𝑛 and 𝑒̂ref ,𝑛. The LP filter cut-off frequencies are indicated
andwere used to assess the EEGpreservation in different EEG
bandwidths for both OMA and the AASmethod. Calculation
of the median global values shown in Table 3 also took
into account the results considering LP filtering. It can be
observed that the overall values of SNRandMSE for theOMA
method are better than those for AAS.

It is also noteworthy that low-pass filtering of 𝑒ref ,𝑛 and
𝑒̂ref ,𝑛 substantially increased the SNR and decreased the MSE
considering the OMA approach, unlike the AAS method.

Therefore, by using OMA, the signals 𝑒ref ,𝑛 and 𝑒̂ref ,𝑛 have
become more similar after LP filtering, attesting even better
preservation of the neuronal EEG in low-frequencies.We also
noticed that the mean subtraction by AAS produced signals
𝑒ref ,𝑛 and 𝑒̂ref ,𝑛 less similar because of the higher influence
of small drifts and subject head motions. This led to the
small differences of the values of SNR and the MSE for the
considered LP cut-off frequencies, as observed inTables 4 and
5 (AAS).

Figure 11 shows a comparison of the typical attenuation
in the frequency bins provoked by OMA (15) and AAS,
taking into account different values of 𝐽 and different number
of averaging epochs, as well as similar EEG preservation
(same SNR and MSE). The results shown in Figure 11 were
obtained from an EEG excerpt picked up from the channel
CPz of the Philips data. As observed, even though OMA and
AAS can provide similar EEG preservation according to the
values of 𝐽 and the number of averaging epochs, respectively,
OMA provokes larger attenuation than AAS in the overall
frequency bins, mainly in frequencies higher than 100Hz. In
addition, the larger the values of 𝐽, the higher the difference
of attenuation by OMA in a certain frequency bin. In turn,
the attenuation by AAS is more uniform among different
numbers of averaging epochs taking into consideration a
certain frequency bin. The attenuation provided by AAS is
shown to be slightly higher and less uniform than OMA only
for the frequency bins 20 and 40Hz. Therefore, Figure 11
demonstrates that our proposed comb-filtering approach can
be more effective in attenuating the artefact activity and
simultaneously in achieving EEG preservation similar to that
provided by the AAS method.

5. Discussion

As the repetitive gradient artefact waveform recorded in the
scalp potential during continuous acquisition of EEG-fMRI
is approximately the differential waveform generated within
the MR sequence [17], a proper integration over the artefact
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Table 2: Median attenuation in the artefact frequency bins.

EEG data set
Philips data GE data

Frequency Bin (Hz) OMA AAS Frequency bin (Hz) OMA AAS
Attenuation (dB) Attenuation (dB) Attenuation (dB) Attenuation (dB)

20 45.3751 57.5263 14.01 16.9613 16.1357
40 78.9570 91.8088 28.01 33.6730 32.4054
60 85.6000 96.0201 42.02 60.0656 55.6886
80 98.2415 111.0143 56.02 62.9907 61.6082
100 98.3248 110.7207 70.03 47.2065 40.3737
120 110.7477 121.1444 84.03 67.6971 63.3023
140 117.0230 126.7208 98.04 70.2665 64.4877
160 104.1135 110.7799 112.04 77.2094 71.3954
180 112.6177 119.6797 126.05 76.8379 64.6367
200 120.2490 126.1687 140.06 71.6883 61.2908
220 122.7164 127.8049 154.06 92.4285 82.1534
240 120.7178 123.6904 168.07 73.6179 57.6112
260 122.9039 125.0317 182.07 103.6173 77.8464
280 116.5943 117.3843 196.08 104.8400 82.8587
300 130.2747 129.5068 210.08 111.4681 81.6893
320 141.4297 139.5853 224.09 111.8922 80.3991
340 140.0759 136.2834 238.10 127.1047 78.2103
360 142.5260 138.4374 252.10 143.5516 85.3269
380 144.0613 137.4788 266.11 149.7997 78.9997
400 140.8645 132.8269 280.11 153.8597 79.6079
420 137.6477 128.4942 294.12 174.5559 84.2324
440 142.1547 131.7775 308.12 163.7475 77.0851
460 142.6946 131.4058 322.13 173.4991 79.8261
480 141.9741 130.2354 336.13 173.0371 82.8779
500 131.2361 117.6283 350.14 179.3995 81.8668

364.15 176.0360 81.8207
378.15 160.9627 79.0052
392.16 181.9554 80.8334
406.16 163.7591 77.9195
420.17 175.0643 79.6067
434.17 175.9680 79.2014
448.18 171.1805 78.3351
462.18 171.7091 78.1379
476.19 153.6883 77.2672
490.20 171.5568 77.0958

Table 3: Median SNR and MSE considering the evaluation of the
EEG preservation according to the scheme of Figure 6.

Method Philips data GE data
SNR MSE (𝜇V2) SNR MSE (𝜇V2)

OMA 0.9999 0.1498 0.9993 1.1062
AAS 0.9990 2.3031 0.9960 7.1058

period might be used to cancel out the artefact, as indicated
in Figure 1 and (3). To implement such integration, we have
investigated and proposed the forward-backward application

of a moving-average filter in the scalp potential, described
in (5). When this procedure is recursively carried out, as
depicted in the scheme of Figure 2, it permits suppressing
the gradient artefact from the scalp potential and obtaining
an estimation of the neuronal EEG [38]. Such kind of
moving-average procedure is referred to as iterative filtering
decomposition, which has been investigated as an alternative
implementation for empirical mode decomposition [39, 40].
It also constitutes a comb-filtering approach whereby har-
monic signal components can be filtered out (Figures 3, 4, and
5). As observed in Figures 4 and 5, the OMA comb-filtering
approach described in (15) and (16) can provide increased
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Table 4: SNR and MSE for some EEG electrodes (Philips data), considering application of low-pass filtering in 𝑒ref ,𝑛 and 𝑒̂ref ,𝑛.

Measure Method EEG electrode Filter cut-off frequency
No LP 150Hz 120Hz 100Hz 70Hz 50Hz

SNR OMA

Fp1 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
F3 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
Oz 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
CPz 0.9997 0.9999 0.9999 0.9999 1.0000 1.0000
Fz 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000
FC5 0.9992 0.9998 0.9998 0.9998 0.9998 0.9998
AF3 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999

SNR AAS

Fp1 0.9993 0.9994 0.9995 0.9995 0.9995 0.9995
F3 0.9988 0.9990 0.9991 0.9991 0.9991 0.9992
Oz 0.9987 0.9989 0.9989 0.9989 0.9990 0.9990
CPz 0.9977 0.9981 0.9982 0.9983 0.9984 0.9984
Fz 0.9987 0.9990 0.9991 0.9991 0.9991 0.9992
FC5 0.9975 0.9986 0.9988 0.9989 0.9990 0.9990
AF3 0.9991 0.9992 0.9993 0.9993 0.9994 0.9994

MSE (𝜇V2) OMA

Fp1 0.5078 0.2047 0.1686 0.1537 0.1407 0.1359
F3 0.5841 0.3335 0.3123 0.3020 0.2913 0.2867
Oz 0.4108 0.1962 0.1794 0.1734 0.1694 0.1685
CPz 0.1355 0.0283 0.0225 0.0202 0.0184 0.0179
Fz 0.1091 0.0183 0.0148 0.0132 0.0119 0.0114
FC5 2.3462 0.7015 0.5607 0.5026 0.4500 0.4299
AF3 0.3380 0.1484 0.1305 0.1230 0.1161 0.1135

MSE (𝜇V2) AAS

Fp1 3.6086 2.8759 2.6540 2.5278 2.3824 2.3155
F3 3.2115 2.6447 2.4861 2.3915 2.2782 2.2246
Oz 3.7296 3.1849 2.9991 2.8894 2.7599 2.6993
CPz 0.9186 0.7407 0.6878 0.6575 0.6225 0.6063
Fz 0.4204 0.3190 0.2957 0.2826 0.2675 0.2606
FC5 7.7577 4.0962 3.4639 3.1535 2.8346 2.7007
AF3 1.9105 1.5336 1.4264 1.3652 1.2941 1.2611

gain in the filter pass-bands together with effective attenua-
tion in the stop-bands, in addition to possessing a zero-phase
characteristic (Figure 3).Thus, it is able to effectively suppress
the harmonic artefact activity associated with the repetitive
artefact waveform that occurs in the slice repetition time (TR-
slice) and satisfactorily preserve the neuronal EEG signal at
the same time, as observed in Figures 7–11 and Tables 1–5.

When compared with subtraction of an average artefact
template, according to the AAS method implementation [14,
21], both OMA and AAS show a quite similar RMS and
amplitude attenuation associated with the gradient artefact
over time (Table 1). Meanwhile, OMA is shown to provoke
different attenuation in the artefact frequency bins in com-
parisonwithAAS, as can be observed in Table 2 and Figure 11.
As a consequence, our proposedmethod can lead to different
preservation of the EEG signal than AAS, as indicated by
the SNR and MSE (Tables 3, 4, and 5). In addition, taking
into account similar EEG preservation (same SNR andMSE),
OMA is shown to be more effective in attenuating the
artefact in the overall frequency bins (Figure 11), especially in
higher-frequencies (above 100Hz). Thus, this characteristic
can avoid the use of further processing methods such as

adaptive noise cancelling (ANC) and low-pass (LP) filtering
that may contribute to suppressing high-frequency activity of
the neuronal EEG.This is a substantial conceptual advantage
compared to AAS, in which postprocessing is essential to
remove residual artefacts [14, 25, 26, 28]. Therefore, these
results indicate that OMA can lead to a better balance for
the trade-off artefact attenuation and EEG preservation, thus
outperforming the slice-average subtraction by AAS. Better
preservation of the corrected EEG in low-frequencies was
also achieved by OMA, as shown in Tables 3, 4, and 5. The
SNR closer to unity and the smaller values of the MSE reflect
smaller difference between the reference EEG, 𝑒ref ,𝑛, and its
estimate, 𝑒̂ref ,𝑛, after application of OMA than AAS. Thus, it
confirms an improved preservation and less distortion of the
EEG signal by using OMA.

Yet, baseline correction has not been performed before
application of OMA, whereas it has been carried out before
AAS. This evidences that OMA is more robust to the
alterations of the artefact waveform caused by small drifts
and movements of the subject head. The inherent uncer-
tainty (standard deviation) associated with averaging epochs
provoked by alterations in the artefact waveform because
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Table 5: SNR and MSE for some EEG electrodes (GE data), considering application of low-pass filtering in 𝑒ref ,𝑛 and 𝑒̂ref ,𝑛.

Measure Method EEG electrode Filter cut-off frequency
No LP 150Hz 120Hz 100Hz 70Hz 50Hz

SNR OMA

Fp1 0.9990 0.9997 0.9998 0.9998 0.9998 0.9998
F3 0.9974 0.9994 0.9996 0.9996 0.9997 0.9997
Oz 0.9980 0.9992 0.9993 0.9993 0.9993 0.9994
CPz 0.9968 0.9992 0.9994 0.9995 0.9996 0.9997
Fz 0.9977 0.9991 0.9991 0.9991 0.9990 0.9990
FC5 0.9958 0.9989 0.9990 0.9990 0.9990 0.9989
AF3 0.9990 0.9997 0.9998 0.9998 0.9998 0.9998

SNR AAS

Fp1 0.9960 0.9961 0.9962 0.9962 0.9962 0.9962
F3 0.9977 0.9981 0.9982 0.9982 0.9982 0.9983
Oz 0.9861 0.9861 0.9861 0.9861 0.9861 0.9861
CPz 0.9949 0.9952 0.9953 0.9953 0.9953 0.9954
Fz 0.9953 0.9956 0.9956 0.9957 0.9957 0.9957
FC5 0.9974 0.9979 0.9979 0.9980 0.9980 0.9981
AF3 0.9969 0.9971 0.9971 0.9971 0.9971 0.9971

MSE (𝜇V2) OMA

Fp1 8.1852 2.2973 1.9257 1.8225 1.7843 1.7917
F3 3.1040 0.6376 0.4770 0.4207 0.3828 0.3740
Oz 2.5445 0.9858 0.8820 0.8359 0.7909 0.7727
CPz 0.7211 0.1624 0.1208 0.1007 0.0807 0.0726
Fz 0.6469 0.2537 0.2448 0.2493 0.2621 0.2703
FC5 8.6758 2.2185 1.9761 1.9478 1.9942 2.0390
AF3 2.3881 0.6828 0.5910 0.5671 0.5628 0.5685

MSE (𝜇V2) AAS

Fp1 32.2881 30.8757 30.5258 30.3384 30.1333 30.0426
F3 2.7148 2.1758 2.0877 2.0445 2.0002 1.9816
Oz 18.2050 17.7786 17.6364 17.5485 17.4401 17.3874
CPz 1.1722 1.0444 1.0174 1.0024 0.9855 0.9779
Fz 1.3609 1.2396 1.2154 1.2021 1.1870 1.1801
FC5 5.4794 4.1711 3.9548 3.8491 3.7422 3.6981
AF3 7.5164 7.1415 7.0543 7.0059 6.9510 6.9259

of small drifts as well as subject head motions may lead
to an inaccurate estimation of the average artefact template
[15]. Contrary to AAS, gradient artefact estimation by our
method does not rely on calculation of an average template.
Rather, implementation of OMA is individually performed
sample-by-sample according to application of the OMA filter
indicated in (10), whose uncertainty is influenced by artefact
waveformalterations that occur in samples of the scalp poten-
tial raging from 𝑠

𝑛−𝑀+1
to 𝑠
𝑛+𝑀−1

. In case of AAS, it is affected
by artefact waveform alterations that occur in those 2𝑚 +

1 sliding average windows considered for average template
construction, whose samples range from 𝑠

𝑛−𝑚𝑀
to 𝑠
𝑛+𝑚𝑀

(see
Appendix). Hence, it explains why OMA is less affected by
small drifts and subject head movements than AAS.

As reported by Mandelkow et al. [25], synchronisation
between the EEG sampling interval and the fMRI acquisition
clock leads to increasing of the usable bandwidth in the
corrected EEG up to around 150Hz after average template
subtraction. Since OMA is capable of provoking larger
attenuation of the artefact activity in higher-frequency bins,
this shows that our proposed approach could be used to

produce further broadening of the usable bandwidth of the
corrected EEG. As shown in Figures 10 and 11, by usingOMA,
satisfactory attenuation in the artefact frequency bins could
be achieved in the bandwidth below 500Hz. The study of
high-frequency neuronal activity between 100 and 500Hz has
currently received increased attention and requires the use of
customised fMRI sequences that are generally not available to
all investigators [17, 20, 34]. Furthermore, it makes use of an
interleaved fMRI protocol, which has been shown to be less
effective and flexible than continuous fMRI measurements
[9]. Therefore, the usage of OMA could be useful in EEG-
fMRI studies that address those high-frequencies oscillations.
As depicted in Figure 10, implementation and application of
OMA also have no dependency on interpolation or slice-
timing correction between the slice-length and the EEG
sampling interval [14, 21, 27, 33]. This characteristic suggests
that our approach can produce satisfactory results even when
there are jitter errors between fMRI clock and EEG sampling
rate. Albeit reduction of jitter by using hardware synchronisa-
tion solutions has become increasingly available and OMA is
shown to provide better results within a scenario of alignment
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between TR-slice and the EEG sampling interval (Philips
data), (16) reveals representing a general analytical expression
that allows satisfactory estimation and suppression of the
gradient artefact in scenarios either with or without the
occurrence of such timing errors. Moreover, our method is
data-driven, not requiring accurate information about MRI
triggers and events to be implemented [14, 25, 26, 34].

The approach depicted in Figure 6 proposed for evalu-
ation of EEG preservation is shown to simplify the imple-
mentation of this measurement, so that there is no need to
perform comparison of spectral power of excerpts of the
reference EEG, 𝑒ref ,𝑛, with corrected EEG excerpts, 𝑒̂true,𝑛,
as is usually performed in the literature [14, 34, 35]. Since
the power spectrum represents an average measure of the
frequencies contained in the time-domain signal, spectral
power associated with artefact residuals might be masked
in the power spectrum of 𝑒̂true,𝑛, which can compromise
this kind of analysis. Application of the artefact correction
approach directly in the reference EEG [34, 35] also has
the disadvantage of not accounting for the influence of the
artefact, which might impair the accuracy of the assessment
of EEGpreservation by using such a procedure. Furthermore,
the stochastic nature and the lack of knowledge of the neu-
ronal EEGmake it imprecise to compare the power spectrum
of the artefact-corrected EEG with the spectrum of the refer-
ence EEG recorded inside or outside the scanner. Therefore,
evaluation of EEG preservation by quantification of power in
certain spectral bands should always be performed together
with evaluation of EEG preservation in time-domain in order
to obtain a more precise measurement. On the other hand,
the assessment of single events is not suitable to account for
the stochastic and nonperiodic nature of the neuronal EEG
[35]. All these characteristics can be effectively accounted for
by using the time-domain scheme depicted in Figure 6.

The selectivity of theOMAfiltering, that is, the amount of
attenuation of the gradient artefact together with the degree
of EEG preservation, is influenced by the slice-length (TR-
slice or𝑀) and the values of 𝐽 and 𝐿. Therefore, combination
of proper values of those parameters should be taken into
account to obtain an optimal balance between artefact atten-
uation and EEG preservation. In this respect, the assessment
indicated in Tables 2–5 and Figure 11 could be used to choose
the values of 𝐽 and 𝐿 according to the value estimated for
𝑀, as well as obtaining an optimal selectivity. Additionally,
the EEG sampling frequency should be taken into account as
well, since it can influence the value of𝑀. Some preliminary
investigations suggested that OMAmight be used to satisfac-
torily produce EEG correction for lower EEG sampling fre-
quencies (around 500Hz), provided that the gradient artefact
waveforms arewell reproduced in the scalp potential. Further,
OMA might be applied when empty gaps occur between
volume acquisitions, by setting 𝑀 as TR-slice followed by
TR,without substantial degradation of the EEGquality.These
characteristics should be better assessed in future work. As
further suggestion for future work, OMA should be applied
and generalised for other types of EEG data recorded in other
types of MR scanners as well as for correction of other types
of periodic artefacts, such as the artefact that affects the scalp
potential during electrical impedance tomography [50].

Because of the computational efficiency of the OMAfilter
(𝐻OMA), (15) and (16) are not computationally demanding
either, in addition to possessing quite low complexity of
implementation. Thus, the time to compute our proposed
approach is quite low and comparable with the processing
time of the mean template subtraction performed by the
Brain Vision Analyzer software. Equations (15) and (16)
also allow using noninteger values of 𝑀, according to the
estimated value of TR-slice, which can be used to reduce the
effect of jitter errors on the comb-filtering performance as
well [24]. Regarding the use of (11), some problems that arise
are the substantial ringing effects in the signal ends provoked
by the recursive application and subtraction of the compo-
nents of the corrected EEG as well as the increased computa-
tional load. Thereby, (15) and (16) should preferably be used
in order to minimise such problems. Such characteristics and
the evaluation metrics utilised here constitute the innovative
outcomes of this work in comparison with some previous
results presented by our group [38, 41, 42]. Last, we noticed
that the performance of OMA might be compromised with
the occurrence of EEG amplifier saturation, as also observed
for theAASmethod.Thus, band limiters are needed to reduce
the EEG system dynamic range and prevent saturation of the
EEG amplifier during EEG data acquisition.

6. Conclusions

In this work, we have shown the efficacy of using optimised
moving-average filtering (OMA) for suppression of the gradi-
ent artefact from the scalp potential recorded during continu-
ous EEG-fMRI. OMA constitutes a comb-filtering approach,
whose application in the scalp potential allows suppression of
the gradient artefact and simultaneous estimation of the neu-
ronal EEG. When compared with the slice-average subtrac-
tion as performed according to the established average arte-
fact subtraction (AAS) methodology, OMA is revealed to be
capable of obtaining an improved balance compared to AAS
for the trade-off between effective suppression of the gradient
artefact and preservation of the EEG signal. In this respect,
OMA can provide larger attenuation in higher-frequency
artefact bins and be less affected by artefact waveform
alterations owing to small drifts and subject head motions.
In addition to being data-driven and not requiring accurate
information about MRI trigger and events, OMA also is
shown to satisfactorily correct the EEG signal in scenarios
either with or without misalignment between the EEG sam-
pling interval and the MR slice-time. Finally, besides effec-
tively accounting for the stochastic and nonperiodic nature of
the neuronal EEG, our proposed approach for evaluation
of EEG signal preservation is shown to simplify the imple-
mentation of this measurement. Such characteristics indicate
that our methodology can help to improve the quality of the
EEG signal recorded during fMRI as well as the performance
evaluation of the gradient artefact correction approaches and
thus contribute to the consolidation of coregistered EEG-
fMRI.
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Appendix

Subtraction of a mean template calculated over 2𝑚 + 1 slice-
averaging epochs could be described according to

𝑒̂true,𝑖 = 𝑠
𝑖
−

1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑠
𝑚

= 𝑒true,𝑖 + 𝑔artf ,𝑖

−
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

(𝑒true,𝑚 + 𝑔artf ,𝑚)

= 𝑒true,𝑖 + 𝑔artf ,𝑖 −
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑒true,𝑚

−
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑔artf ,𝑚,

(A.1)

where 𝑒̂true,𝑖 is the estimate of the actual EEG in the epoch
𝑠
𝑖
; 𝑠
𝑚
represents the epochs of the scalp potential considered

for averaging; 𝑒true,𝑖 and 𝑔artf ,𝑖 are the actual EEG and the
gradient artefact in the epoch 𝑠

𝑖
; and 𝑒true,𝑚 and 𝑔artf ,𝑚 are the

actual EEG and the gradient artefact in the epoch 𝑠
𝑚
. When

uncorrelation between the neuronal EEG signal and the
gradient artefact is assumed, the amplitude of the averaged
EEG epochs in the third term of the right hand side of (A.1)
equals 1/√2𝑚 + 1 times the EEG RMS, in such a way that it
is cancelled out by averaging. And the estimate of the average
gradient artefact 𝑔̂artf ,𝑖 in epoch 𝑖 corresponds to

𝑔̂artf ,𝑖 =
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑔artf ,𝑚. (A.2)

In an optimal scenario in which the gradient artefact wave-
form is perfectly reproducible in each epoch, the estimate
𝑔̂artf ,𝑖 equals𝑔artf ,𝑖(=𝑔artf ,𝑚), and thus 𝑒̂true,𝑖matches the actual
EEG, 𝑒true,𝑖. However, under realistic scanning conditions,
changes in EEG recording geometry by subject motion
together with inconsistent scalp potential due to systematic
jitter between EEG system sampling and the fMRI clock
result in alterations in the artefact waveform.This generates a
component of uncertainty in the estimate 𝑔̂artf ,𝑖 that must be
inserted in (A.2):

󳨐⇒ 𝑔̂artf ,𝑖 =
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

(𝑔artf ,𝑚 + 𝑢
𝑚
)

= 𝑔artf ,𝑖 +
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑢
𝑚
.

(A.3)

Thus, 𝑒̂true,𝑖 in (A.1) could be expressed as the sumof the actual
EEG, 𝑒true,𝑖, with the uncertainty 𝑢

𝑖
:

𝑒̂true,𝑖 = 𝑒true,𝑖 +
1

2𝑚 + 1

𝑚

∑

𝑘=−𝑚

𝑢
𝑚
= 𝑒true,𝑖 + 𝑢

𝑖
. (A.4)

Therefore, the residual artefact that remains in the corrected
EEG after AAS is associated with a component of uncertainty
that represents the average of the particular uncertainties of
samples belonging to the 2𝑚 + 1 averaging epochs taken into
account for calculation of the artefact template. Hence, the
influence of small drifts and subject head movements that
occur in scalp potential samples of 2𝑚 + 1 epochs (ranging
from 𝑠

𝑛−𝑚𝑀
to 𝑠
𝑛+𝑚𝑀

) has an impact over the uncertainty 𝑢
𝑖

[15].
On the other hand, as described in (2), the artefact is

estimated sample-by-sample through the moving-averaging
filter when the optimised moving-average (OMA) is applied:

1

𝑀

𝑀−1

∑

𝑘=0

𝑠
𝑛−𝑘

=
1

𝑀

𝑀−1

∑

𝑘=0

(𝑒true,𝑛−𝑘 + 𝑔artf ,𝑛−𝑘)

=
1

𝑀

𝑀−1

∑

𝑘=0

𝑒true,𝑛−𝑘 +
1

𝑀

𝑀−1

∑

𝑘=0

𝑔artf ,𝑛−𝑘

= 𝑒̂
𝑛
+

1

𝑀

𝑀−1

∑

𝑘=0

𝑔artf ,𝑛−𝑘.

(A.5)

When an optimal scenario is assumed, the gradient artefact
waveform is exactly stationary in the period TR-slice (=
𝑀), and the term corresponding to the artefact in (A.5)
is cancelled out by integration, as indicated in (3). Under
realistic conditions, however, the influence of subject head
motions and jitter generates a component of uncertainty in
(A.5):

1
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𝑀−1

∑

𝑘=0

𝑠
𝑛−𝑘

= 𝑒̂
𝑛
+

1

𝑀

𝑀−1

∑

𝑘=0

(𝑔artf ,𝑛−𝑘 + 𝑢
𝑛−𝑘

) ,
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𝑀
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𝑠
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𝑛
+

������
1

𝑀

𝑀−1

∑
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𝑔artf ,𝑛−𝑘 +
1

𝑀

𝑀−1

∑

𝑘=0

𝑢
𝑛−𝑘

.

(A.6)

Thereby, since the uncertainty component has been taken
into consideration in (A.6), the term corresponding to the
gradient artefact can precisely be cancelled out by integration.
Backward application of the moving-average in (A.6) results
in

1

𝑀

0

∑

𝑘=𝑀−1

[
1

𝑀

𝑀−1

∑

𝑘=0

𝑠
𝑛−𝑘

]

𝑛+𝑘

=
1

𝑀

0

∑

𝑘=𝑀−1

[𝑒̂ +
1

𝑀

𝑀−1

∑

𝑘=0

𝑢
𝑛−𝑘

]

𝑛+𝑘

= 𝑒comp,1,𝑛 +
1

(𝑀)
2

𝑀−1

∑

𝑘=−𝑀+1

(𝑀 − |𝑘|) 𝑢𝑛+𝑘

= 𝑒comp,1,𝑛 + 𝑢comp,𝑗,𝑛.

(A.7)
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And, thus, the uncertainty 𝑢comp,𝑗,𝑛 corresponds to

𝑢comp,𝑗,𝑛 =
1

(𝑀)
2
[𝑢
𝑛−𝑀+1

+ 2𝑢
𝑛−𝑀+2

+ ⋅ ⋅ ⋅

+ (𝑀 − 1) 𝑢𝑛−1 + (𝑀) 𝑢𝑛 + (𝑀 − 1) 𝑢𝑛+1 + ⋅ ⋅ ⋅

+ (𝑀 − 1) 𝑢
𝑛+1

+ 2𝑢
𝑛+𝑀−2

+ 𝑢
𝑛+𝑀−1

] .

(A.8)

Therefore, in case of the OMA filter, the uncertainty is
influenced by jitter and subject head movements that occur
in the samples of the scalp potential raging from 𝑠

𝑛−𝑀+1

to 𝑠
𝑛+𝑀−1

. This characteristic allows reducing the impact
of small drifts and head movements by using OMA in
comparison with the AAS method, since the uncertainty
associated with the corrected EEG by OMA is influenced by
samples located in a shorter length of signal than the EEG
corrected by AAS averaging.
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