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Abstract
Chronic headache pain is one of the most commonly reported comorbid pain conditions with post-traumatic stress disorder 
(PTSD) patients and resistant to effective treatment, yet no combined preclinical model of the two disorders has been reported. 
Here, we used a modified chronic headache pain model to investigate the contribution of single prolonged stress (SPS) model 
of PTSD with sodium nitroprusside (SNP)-induced hyperalgesia. Injection of SNP (2 mg/kg, i.p.) occurred every other day 
from day 7 to day 15 after initiation of SPS in rats. Paw withdrawal threshold (PWT) to von Frey stimuli and tail flick laten-
cies (TFL) dramatically decreased as early as 7 days after SPS and lasted until at least day 21. Basal PWT and TFL also 
significantly decreased during the SNP treatment period. The lower nociceptive thresholds recovered in 6 days following the 
final SNP injection in SNP group, but not in SPS + SNP group. Elevated nociceptin/OFQ (N/OFQ) levels observed in cer-
ebrospinal fluid of SPS rats were even higher in SPS + SNP group. Glial fibrillary acidic protein (GFAP) and N/OFQ peptide 
(NOP) receptor mRNA expression increased in dorsal root ganglia (DRG) 21 days after SPS exposure; mRNA increases in 
the SPS/SNP group was more pronounced than SPS or SNP alone. GFAP protein expression was upregulated in trigeminal 
ganglia by SPS. Our results indicate that traumatic stress exaggerated chronic SNP-induced nociceptive hypersensitivity, 
and that N/OFQ and activated satellite glia cells may play an important role in the interaction between both conditions.
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Introduction

Estimates of past-year and lifetime prevalence of PTSD 
are 4.7 and 6.1%, respectively, in the USA (Goldstein et al. 
2016); this rate is much higher in those with chronic pain. 
For instance, prevalence in PTSD patients with chronic pain 
was 9.8% in the general population, and as high as 50.1% 
in veterans (Fishbain et al. 2017). In subgroup analysis, 
the PTSD prevalence was 20.5%, 11.2%, and 0.3% among 
persons with chronic widespread pain, headache, and back 
pain, respectively (Siqveland et al. 2017). PTSD comorbid-
ity with chronic pain negatively influences the symptoms 
and course of treatment for both disorders (Sullivan et al. 

2009; Rosenthal and Erickson 2013; Outcalt et al. 2015). 
The interaction of PTSD and chronic pain gained growing 
interest in last two decades; however, current knowledge 
relies almost entirely upon clinical observations; develop-
ment of animal models of PTSD and chronic pain will help 
us better understand the underlying mechanisms contribut-
ing to this comorbidity.

Single prolonged stress (SPS), an established animal 
model for PTSD, simulates many of the PTSD symptoms 
reported in humans such as exaggerated negative feed-
back of the HPA axis, hypocortisolism (Zhang et al. 2012), 
enhanced fear and anxiety responses, and cognitive impair-
ment (Yamamoto et al. 2009; Lisieski et al. 2018). We and 
others reported that SPS induces long-lasting mechani-
cal and thermal allodynia and visceral and inflammatory 
hypersensitivity (Zhang et al. 2012, 2015; He et al. 2013). 
Clinical observations have long noted that nitroglycerin 
(NTG) evokes migraine-like headache pain (Demartini et al. 
2019). NTG has been commonly used in rodent models of 
migraine wherein systemic administration of NTG produced 
acute hyperalgesia in rats (Tassorelli et al. 2003) and mice 
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(Gölöncsér and Sperlágh 2014) lasting 2–4 h. Another nitric 
oxide donor, sodium nitroprusside, also produces allodynia 
and hyperalgesia in rats in similar time window (Galeotti 
and Ghelardini 2013). Recently, a new model of chronic 
migraine was introduced, in which 5 i.p. injections of NTG 
every other day over 9 days induced progressive and sus-
tained hyperalgesia that took 7 days to recover after final 
NTG administration (Pradhan et al. 2014a, b). This model, 
if combined with SPS, would be promising to explore mech-
anisms underlying interaction of chronic pain and PTSD. 
However, prior to and during this study, it was difficult to 
find the more concentrated NTG needed for rat studies. 
Therefore, the current study modified the chronic headache 
pain model of Pradhan et al. (2014a, b) to utilize SNP to 
investigate if SPS affects severity and duration of headache-
induced hyperalgesia, nociceptin/orphanin FQ (N/OFQ)-N/
OFQ peptide receptor (NOP) levels, and astrocyte activa-
tion under both treatments. The results will help us to better 
understand how traumatic stress evoked changes noted with 
PTSD contribute to chronic pain to provide novel approaches 
for treatment of the two disorders.

Methods

Animals

Male Sprague–Dawley rats weighing 250–300  g were 
obtained from Charles River Labs (Wilmington, MA). 
After arrival, rats were acclimated to the animal facility 
for at least 7 days before experiments were initiated. They 
were housed in the animal facility under a 12-h light:12-h 
dark cycle (lights on at 0600 h) with free access to food and 
water. Experimental protocol was approved by the Institu-
tional Animal Care and Use Committee of the University 
of Oklahoma Health Sciences Center. All experiments con-
formed to the guidelines of the International Association for 
the Study of Pain. Every effort was made to minimize animal 
discomfort and reduce the number of animals used. A total 
of 30 rats were used in this study.

SPS and Drug Treatment

Rats were randomly divided into control (n = 7), SNP (n = 8), 
SPS (n = 7), and SPS + SNP (n = 8) groups; the experimental 
paradigm is illustrated in Fig. 1. The SPS procedure pro-
ceeded as described (Zhang et al. 2012). After 7 days of 
acclimatization, rats were immobilized by placing inside 
a clear polyethylene restraint cone for 2 h, followed by 
grouped (3–4 rats) forced swimming for 20 min in a cylin-
drical Plexiglas tank (46 cm tall × 20 cm in diameter) filled 
with 22 °C water to a depth of 30 cm. Following 15 min 
of recovery and drying, animals were exposed to diethyl 

ether until loss of consciousness. Upon awakening, rats were 
returned to home cages and left undisturbed and alone for 
7 days. From day 7 after SPS, sodium nitroprusside (SNP, 
Sigma-Aldrich, 2 mg/kg i.p.) was injected between 12 p.m. 
and 1 p.m. every other day (QOD) until day 15, for a total of 
5 injections. Control and SPS rats received the same volume 
of saline vehicle. On day 21, animals were euthanized by 
i.p. injection of Beuthanasia (0.22 mg/kg, Henry Schein). 
Blood was withdrawn from the heart with an 18-gauge nee-
dle (between 13:00 and 15:00 h); it was maintained at room 
temperature for 30 min. Blood samples were centrifuged 
at 5000 × g at 4 °C for 5 min and the serum was collected 
and stored at − 80 °C. CSF from each rat was withdrawn by 
inserting a 26-gauge needle into the cysterna magna and 
immediately stored at − 80 °C. Trigeminal and L4–6 dor-
sal root ganglia were excised and frozen for biochemical 
analyses.

Nociception Assessment

Experiments were performed in a climate-controlled room. 
Rats were acclimated in clear plastic boxes with a wire mesh 
floor for ~ 15 min, before an electronic von Frey filament 
(IITC Life Science, Inc., Woodland Hills, CA) was applied 
to the midplantar aspect of the left paw. Paw withdrawal 
threshold (PWT) was determined by averaging 3 assess-
ments, spaced 3 min apart. Following PWT assessment, a 
tail flick unit with a tail temperature sensor (IITC Life Sci-
ence, Inc., Woodland Hills, CA) was used to assess the noci-
ceptive sensitivity by radiant heat tail flick latency (TFL) 
assay, with the lamp set at 25% active intensity (Burke et al. 
2010). Rats were covered with a soft cloth and lightly held 
in place with the tail extended under the lamp. A radiant 
light source was focused 3 cm from the distal end of the tail. 
The lamp in the tail flick unit turned off as soon as the rat 
flicked its tail and the time lapse between the onset of irra-
diation; the flick of the tail was noted as TFL. Values from 
three measurements with 3 min intervals were averaged. Tail 

Fig. 1  Experimental paradigm. Day 0 represents the beginning of the 
7 day SPS period. SNP was administered (i.p. 2 mg/kg, QOD) to SNP 
or SPS + SNP groups from days 7 to day 15; control and SPS groups 
received the same volume of saline. Rats were assessed for baseline 
nociceptive sensitivity to mechanical and thermal stimuli as described 
above, prior to SPS initiation at day 0, and every other day from days 
7 to 21. Rats were euthanized on day 21
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temperature was monitored by tail temperature probe for 
every test, and a cut-off limit of 12 s was set to prevent any 
tissue damage. Tail temperatures ranged between 22.5 and 
23 °C. In addition, to nociceptive threshold testing, overall 
behavior was observed with special attention to any reduc-
tion in overall or hind limb movements.

Assessment of sensitivity to thermal and mechanical 
nociceptive stimuli was made prior to initiation of SPS and 
between 8 a.m. and 12 p.m. every other day from day 7 to 
21 post SPS. Rats in control and SNP groups were assessed 
for PWT and TFL prior to and also 1, 2, and 4 h after SNP 
injection on day 7 to examine acute effects of SNP.

Radioimmunoassay

After administration of Beuthanasia, N/OFQ levels in CSF 
and serum were determined by RIA kit (Phoenix Pharma-
ceuticals, CA) according to the manufacturer’s protocol, and 
data are presented as N/OFQ-IR. The sensitivity of the assay 
was < 10 pg/mL; non-specific binding was 2.9%. There was 
no cross-reactivity with Dynorphin A (1–17), enkephalin, 
or β-endorphin. Corticosterone levels in serum also were 
determined by RIA kit (MP Biomedicals, NY) according 
to the manufacturer’s manual. The sensitivity of the assay 
was 25 ng/mL and non-specific binding was 2.6%. Total 
amount of corticosterone was calculated and expressed as 
ng/mL. Samples and standards were assayed in duplicate. 
RIA curves and data were analyzed using GraphPad Prism 
8.2 software.

Real‑Time PCR

TRI reagent (Sigma-Aldrich, MO) was immediately added 
to TG and DRG tissue for mRNA extraction. cDNA was 
synthesized using Super-Script III Reverse Transcriptase 
(Sigma-Aldrich, MO). Real-time PCR was performed 
using SYBR Green Master Mix (AnaSpec, Fremont, CA) 
and 125 nM forward and reverse primers (rat GFAP Fwd: 
5′-CCT TGA GTC CTT GCG CGG CA-3′, Rev: 5′-TTG 
GCC CTC CTC CTC CAG CC-3′; rat GAPDH Fwd: 
5′-ACC CAG AAG ACT GTG GAT GG-3′, Rev: 5′-CAC ATT 
GGG GGT AGG AAC AC-3′; rat NOP Fwd: 5′-GTT CAA 
GGA CTG GGT GTT CAG CCA GGT AGT-3′; rat NOP 
Rev: 5′-TGC TGG CCG TGG TAC TGT CTC AGA ACT 
CTT-3′; rat preproN/OFQ Fwd: 5′-TGC ACC AGA ATG 
GTA ATG TG-3′, Rev: 5′-TAG CAA CAG GAT TGT GGT 
GA-3′, all from Sigma-Aldrich) in an ABI 7000 Sequence 
Detection System (Applied Biosystems, CA). The GAPDH 
gene was used as an internal standard to which expression 
of other genes was normalized. Data were analyzed using the 
comparative Ct method, and compared with control values 
(Schmittgen and Livak 2008).

Immunoblotting

DRG and TG tissue was homogenized with RIPA buffer 
(1% NP40, 0.5%  Na2deoxycholate, 0.1% SDS, 5 mM EDTA, 
10 mM NaF, PBS) containing freshly added protease and 
phosphatase inhibitors and incubated for 30 min on ice, with 
subsequent centrifugation at 14,000 × g for 10 min. After 
protein concentration determination with Pierce BCA pro-
tein assay kit (ThermoFisher), homogenates were solubi-
lized with 4 × Laemmli buffer and stored at − 80 °C. Samples 
were resolved using SDS-PAGE on 8–15% Tris–glycine gels 
(∼20 μg total protein per well), transferred to polyvinylidene 
fluoride membranes, blocked with 5% milk in TBS-Tween 
buffer, and incubated overnight at 4 °C with goat anti-GFAP 
antibody (1:2000; RB-087A, ThermoFisher). Secondary 
antibody conjugated to horseradish peroxidase was incu-
bated for 1 h at room temperature in 5% milk in TBS-T. 
Immunoreactive bands were visualized by chemilumines-
cence, captured with the Ultralum Omega Imaging System 
and densitometry was performed using Ultra Quant 6.0. 
Membranes were rinsed, stripped, and re-probed with anti-
actin (1:2000; Sigma-Aldrich) as an internal loading control.

Data Analysis

Symbols and error bars represent mean ± SD, respectively, 
unless otherwise stated. Statistical comparisons of behav-
ioral and neurochemical data were performed by unpaired 
Student t-test or two-way ANOVA followed by Bonferro-
ni’s post hoc analysis using GraphPad Prism 8.2 software. 
Results were considered statistically significant if P < 0.05.

Results

Since nitric oxide donors nitroglycerin and sodium nitro-
prusside (SNP) induce allodynia and hyperalgesia to thermal 
stimuli, the ability of SNP (Galeotti and Ghelardini 2013) to 
produce acute hyperalgesia in rats was tested using assess-
ment methods utilized in the headache (tail flick latency, 
TFL) and in the SPS literature (paw withdrawal thresh-
old, PWT). PWT assessed centrally mediated responses to 
mechanical stimuli and TFL assessed spinal responses to 
thermal stimuli. PWT and TFL were determined over 4 h 
after SNP administration, as illustrated in Fig. 2a, b. Two-
way, repeated measures ANOVA revealed significant effects 
of SNP treatment [F(1, 13) = 87.49, P < 0.0001], time [F(3, 
39) = 4.873, P = 0.0057], and the interaction of SNP × Time 
[F(3, 39) = 5.406, P = 0.0033] on PWT with control and SNP 
rats (Fig. 2a). Bonferroni’s multiple comparisons post hoc 
tests revealed significant differences between control and 
SNP groups at 1, 2, and 4 h after SPS injection, indicat-
ing that SNP acutely induced mechanical allodynia over 
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the 4 h period. Changes in thermal sensitivity were more 
subtle (Fig. 2b). Two-way ANOVA with repeated measures 
revealed that only SNP treatment produced a significant 
effect on TFL [F(1, 13) = 6.448, P = 0.0247], and only at 
4 h post SNP injection (P < 0.05). These results suggest 
that the single injection of SNP introduced acute mechani-
cal allodynia and mild thermal hyperalgesia that were still 
present after 4 h.

Once acute headache allodynia and hyperalgesia results 
were obtained with SNP, SNP was substituted for NTG 
(Pradhan et al. 2014a, b), a modified chronic headache 
model in rats. SNP (or vehicle) was administered every other 
day (QOD) between day 7 and day 15 post SPS (5 total 
injections), to control and SPS-treated rats. Sensitivity to 
mechanical and thermal stimuli was assessed before each 
injection that occurred between days 9 and 17 and continued 
until day 21, as shown in Fig. 2c, d (black arrows). Since 
each nociceptive assessment was made more than 42 h after 
the previous SNP injection, the hyperalgesia noted could 
not be attributed to an acute hyperalgesic effect of the prior 

SNP injection. Significant effects of treatment group: [F(3, 
26) = 40.33, P < 0.001], time: [F(5.097, 126.2) = 9.352, 
P < 0.001], and treatment × Time: [F(24, 198) = 3.013; 
P < 0.001] on PWT were revealed by two-way ANOVA 
mixed-effects model (REML). Tukey’s multiple compari-
sons tests confirmed that SPS produced mechanical allo-
dynia through day 21 as previously reported compared to 
control (*). SNP alone did not reduce PWT until day 13; 
and returned to baseline levels by day 21. PWT was sig-
nificantly reduced in SPS + SNP rats compared to control 
(*), SNP alone (Δ), or SPS alone (#), that was maintained 
through day 21. Similar to PWT but less pronounced, the 
mixed-effects model found significant effects of treatment 
[F(3, 26) = 7.646, P = 0.0008], Time [F(5.902, 146.1) = 3.53; 
P = 0.0029], and significant interaction between treatment 
and time [F(24, 198) = 1.595, P = 0.0449] on TFL. Post hoc 
tests confirmed that SNP + SPS exposure produced signifi-
cantly greater nociceptive sensitivity on day 21 than either 
SNP or SPS alone. However, while SNP treatment reduced 
TFL by day 13, this hypersensitivity was gone by day 21. 

Fig. 2  SNP + SPS increases mechanical and thermal nociceptive sen-
sitivity more than either condition alone. Mechanical (a) and thermal 
(b) sensitivity were assessed before and 1, 2, 4  h after SNP injec-
tion in day 7 control and SNP groups. PWT decreased more quickly 
with SNP than TFL, but both were down by 4  h. Basal mechani-
cal (c) and thermal (d) sensitivity were assessed at day 0 and every 
other day from day 7 to 21 before vehicle or SNP injection in all 
four groups. Basal PWT and TFL decreased by day 15 after SNP 

injection then recovered to control level by day 21. Decreased PWT 
exhibited as early as day 7 and maintained at least until day 21 after 
SPS. SPS + SNP further decreased PWT and TFL when compare to 
SPS or SNP alone. Data from c and d were analyzed using a mixed-
effects model followed by Bonferroni’s post hoc analysis (*P < 0.05, 
**P < 0.01, SNP or SPS + SNP vs. VEH; ΔP < 0.05, ΔΔP < 0.01, 
SPS + SNP vs SNP; #P < 0.05, ##P < 0.01, SPS + SNP vs SPS)
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Unlike responses to mechanical stimuli, SPS exposure did 
not reduce TFL significantly until day 19 and through day 
21. Enhanced sensitivity to mechanical and thermal stimuli 
was found in the combined SPS + SNP group 4 days after 
the final SNP injection. Overall, these results suggest that 
SPS exacerbated SNP-induced hyperalgesia and prevented 
its recovery by day 21.

We previously reported that SPS elevated N/OFQ levels 
in CSF and serum (Zhang et al. 2012, 2015) and were curi-
ous to see how the presence of SNP affected N/OFQ levels. 
Two-way ANOVA revealed a significant interaction between 
SPS and SNP [F(1, 26) = 4.82, P = 0.0372], as well as sig-
nificant effects of SPS [F(1, 26) = 11.56, P = 0.0022] and 
SNP [F(1, 26) = 4.343, P = 0.047] on N/OFQ levels in CSF 
(Fig. 3a). Post hoc analysis indicated SPS + SNP treatment 
increased N/OFQ compared to all other groups. As reported 
previously, there was significant effect of SPS on serum N/
OFQ [F(1, 26) = 11.33, P = 0.0024, Fig. 3b], with N/OFQ 
levels higher in SPS + SNP rats than controls.

We previously reported that serum corticosterone lev-
els remained unchanged at days 9 and 14 after SPS, but 
decreased at days 21 and 28 (Zhang et al. 2012). Two-way 
ANOVA revealed a significant effect of SNP on serum cor-
ticosterone [F(1, 22) = 4.351, P = 0.048] (Fig. 4), though no 
differences between groups were found.

The effect of SPS and/or SNP on the N/OFQ-NOP recep-
tor system mRNA and GFAP mRNA and protein expression 
also were examined. TG and L4–6 DRG mRNA were pre-
pared and subjected to real-time PCR analysis. As shown 
in Fig. 5a, two-way ANOVA revealed a significant effect 
of SPS on NOP receptor [F(1, 26) = 12.17, P = 0.0017] and 
preproN/OFQ [F(1, 26) = 6.844, P = 0.015] mRNA expres-
sion in DRG. NOP receptor mRNA expression in SPS + SNP 
rats was significantly higher than that in controls or SNP 
alone, as determined by Tukey’s multiple comparisons post 
hoc test. In contrast to its effects on the NOP receptor, the 

effect of SPS on preproN/OFQ mRNA was to decrease 
expression. There was significant interaction between SPS 
and SNP, and a significant effect of SPS on GFAP mRNA 
expression in DRG (Interaction: F(1, 26) = 6.764; P = 0.015; 
SPS: F(1, 26) = 5.796, P = 0.024) and TG (Interaction: F(1, 
26) = 6.036; P = 0.021; SPS: F(1, 26) = 13.36, P = 0.001) 
as determined by two-way ANOVA. Moreover, post hoc 
analysis indicated significantly higher GFAP mRNA expres-
sion in SPS + SNP rats than in control, SPS, or SNP alone 
(Fig. 5b, c). To determine if GFAP protein levels increased, 
cell lysates from DRG and TG were prepared for immuno-
blotting. Though no significant interaction or effects of SPS 
or SNP were found for GFAP from DRG samples (Fig. 6a), 
there was a significant effect of SPS on TG GFAP, as deter-
mined by two-way ANOVA: [F(1, 26) = 7.849, P = 0.0095] 
(Fig. 6b, c).

Fig. 3  SNP + SPS treatment increased N/OFQ levels in CSF (a) and 
serum (b) more than either group alone. CSF N/OFQ levels increased 
with SPS alone at day 21; even more so in SPS + SNP group. Two-
way ANOVA revealed significant interaction between SPS and SNP 
and significant effects of both treatments on N/OFQ level. Signifi-

cant effect of SPS on N/OFQ levels was noted in serum as well. Data 
were analyzed by two-way ANOVA followed by Bonferroni’s post 
hoc analysis (*P < 0.05, **P < 0.01, SPS + SNP vs. VEH; ΔΔP < 0.01, 
SPS + SNP vs SNP; #P < 0.05, SPS + SNP vs SPS)

Fig. 4  Effect of SPS and SNP treatment on serum corticosterone lev-
els. Corticosterone levels in serum samples were determined by RIA 
at day 21 from control and SPS rats treated with or without SNP (i.p., 
2 mg/kg QOD from days 7 to 15 after SPS; n = 7 in control, n = 8 in 
SNP, n = 6 in SPS, n = 5 in SPS + SNP). Serum corticosterone levels 
did not change in SPS or SNP rats, but increased in SPS + SNP rats. 
Data are plotted as means ± SD. *P < 0.05; two-way ANOVA fol-
lowed by Bonferroni’s post hoc test
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Discussion

Single prolonged stress (SPS) is an established model that 
mimics many physiological and behavioral alterations 
described in PTSD patients including enhanced negative 
feedback to the HPA axis, anxiety behavior, and cognitive 
impairments (see review, Yamamoto et al. 2009; Lisieski 
et al. 2018). Moreover, SPS induces persistent mechanical 
allodynia, thermal hyperalgesia (Zhang et al. 2012, 2015), 
and increased visceral hyperalgesia (He et al. 2013). Nitric 
oxide donors, such as nitroglycerin and SNP, have been 
used to recapitulate headache in human (Demartini et al. 
2019; Guo et al. 2013) and rodent models of migraine 
(Moye and Pradhan 2017; Galeotti and Ghelardini 2013). 
Pain in rodents was reported as allodynia to cold plate test 
and hyperalgesia using a hot plate test. Repetitive injec-
tions of NTG produced sustained hyperalgesia using a 
TFL test (Pradhan et al. 2014a, b). That model of chronic 
migraine was not difficult to pair with SPS to investigate 

comorbid PTSD and chronic pain. Due to a nationwide 
shortage of nitroglycerin of sufficient concentration for use 
in rats during the time of this study, the second commonly 
used nitric oxide donor, SNP, was substituted for NTG 
in the chronic pain model. A single i.p. injection of SNP 
induced allodynia to mechanical stimuli and hyperalgesia 
to radiant heat in rats that lasted atleast 4 h. This is con-
sistent with a previous study that showed hyperalgesia for 
2 to 4 h that disappeared by 6 h after acute administration 
(Galeotti and Ghelardini 2013). The chronic pain model 
employed repetitive injection of SNP in the same paradigm 
as previously reported with NTG (Pradhan et al. 2014a, b). 
Again, rat PWT and TFL progressively decreased and with 
SNP and remained decreased until day 19, 4 days after 
the final treatment, with full recovery at day 21. This SNP 
effect is similar to NTG in mice (Pradhan et al. 2014a, 
b). Therefore, SNP appears to be a valuable substitute for 
NTG for a chronic migraine rat model.

Previous studies with SPS demonstrated that nociceptive 
hypersensitivity emerged as early as 7 days after initiation 

Fig. 5  Effects of SNP and SPS on NOP receptor, preproN/OFQ ,and 
GFAP mRNA expression in DRG and TG. mRNA from L4 to L6 
DRG and TG were extracted for real-time PCR. Target gene expres-
sion in SNP-, SPS-, and SPS + SNP-treated rats was normalized to 
control; error bars represent SEM. Two-way ANOVA analysis indi-
cated significant effects of SPS on NOP and preproN/OFQ mRNA 
expression in DRG (a) and GFAP mRNA expression in DRG (b) and 

TG (c). GFAP changes in the SPS + SNP group was more pronounced 
than SPS alone. SNP treatment alone did not alter GFAP, NOP, or 
preproN/OFQ mRNA levels. Bonferroni’s post hoc analysis indicated 
specific differences (*P < 0.05, **P < 0.01, SPS + SNP vs. VEH; 
ΔP < 0.05, ΔΔP < 0.01, SPS + SNP vs SNP; #P < 0.05, SPS + SNP vs 
SPS)

Fig. 6  SPS increases GFAP protein expression in TG, but not DRG. 
Immunoblotting was performed using cell lysates from L4 to L6 
DRG (a) and TG (b). Panel c contains representative immunoblots of 
GFAP in TG. GFAP expression was normalized to actin in all groups. 

Two-way ANOVA analysis indicated significant effect of SPS on 
GFAP expression in TG (**P < 0.01, b); post hoc analysis indicates 
that SPS + SNP was significantly higher than SNP alone (*P < 0.05)
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of SPS, and lasted at least 28 days (Zhang et al. 2012, 2015), 
and PWT results in this study were similar. The decreased 
TFL after SPS exposure was less profound than PWT, as 
TFL reductions were n until day 19. In contrast, we previ-
ously observed thermal hyperalgesia in the paw from day 7 
through day 28 post SPS (Zhang et al. 2012). The difference 
between thermal sensitivity assessed in the paw versus the 
tail likely reflects TFL is a spinal nociceptive reflex, while 
paw withdrawal responses following SPS include central 
contributions from cortical and limbic structures. The radi-
ant heat source intensity was reduced to 25% so that baseline 
TFL in control rats was increased to allow for reduced TFL 
with hyperalgesia resulting from SNP, SPS, or SPS + SNP. 
When combined with SNP treatment, SNP + SPS exposure 
produced significantly greater nociceptive sensitivity to both 
mechanical and thermal stimuli on day 21 than either SNP or 
SPS alone. A recent study demonstrated that 2 h of restraint 
stress for 3 consecutive days induced facial mechanical 
hypersensitivity in mice that was resolved by 14 days post 
stress. Following returning to baseline, a single low dose of 
SNP (i.p. 0.1 mg/kg) elicited mechanical hypersensitivity in 
stressed, but not in control animals, demonstrating the pres-
ence of migraine-like state after stress (Avona et al. 2020). 
This result and ours indicate that stressed animals are more 
vulnerable to SNP-induced acute and chronic hyperalgesia 
that is in line with clinical findings that many PTSD patients 
develop chronic pain. To our knowledge, the current study is 
the first to combine preclinical PTSD and chronic pain mod-
els to examine the contribution of each disorder to the other.

N/OFQ and NOP receptors are widely expressed in the 
CNS and involved in stress, anxiety, and pain processing 
(Zaveri 2016). In humans, N/OFQ levels were significantly 
increased in serum and CSF of patients with chronic pain 
(Ko et al. 2002; Raffaeli et al. 2006). However, in migraine 
patients, the plasma N/OFQ levels were reduced (Ertsey 
et al. 2005) or unchanged (Munksgaard et al. 2019). NOP 
receptor agonist Ro 64-6198 blocked cute NTG-induced 
hyperalgesia in mice (Targowska-Duda et al. 2020). We 
reported that SPS exposure increased N/OFQ in CSF and 
serum (Zhang et al. 2012), and that NOP receptor antagonist 
treatment reversed SPS-induced hyperalgesia (Zhang et al. 
2015), consistent with an important role of the N/OFQ-NOP 
receptor system in the development and maintenance of pain 
hypersensitivity after traumatic stress. In this current study, 
repetitive administration of SNP did not alter N/OFQ lev-
els in CSF and serum. SPS increased N/OFQ level in CSF, 
but SPS + SNP further increased N/OFQ levels in both CSF 
and serum higher than SPS alone, suggesting that N/OFQ 
is associated with the enhanced hyperalgesia noted in the 
presence of a traumatic stressor. Future studies will explore 
this relationship further.

N/OFQ and NOP present in lumbar dorsal horn and 
DRG, mainly small- and medium-sized neurons (Chen 

and Sommer 2006; Ozawa et al. 2018) that are impor-
tant for the regulation of acute thermal and mechanical 
pain, and injury-induced hyperalgesia. A similar pattern 
of distribution exists for N/OFQ precursor preproN/OFQ 
mRNA (Harrison and Grandy 2000; Mogil and Paster-
nak 2001; Mika et al. 2003). NOP and ppN/OFQ mRNA 
were upregulated in inflammatory (Itoh et al. 2001) and 
neuropathic (Briscini et al. 2002; Pettersson et al. 2002; 
Mika et al. 2003) pain models. At the protein level, both 
N/OFQ and NOP immunoreactivity were upregulated after 
nerve injury and inflammation (Chen and Sommer 2006); 
upregulation of NOP in periaqueductal gray (PAG) and its 
mRNA in PAG and amygdala is found with SPS (Zhang 
et al. 2015). Here, we examined N/OFQ and NOP receptor 
mRNA at the level of the primary afferent neuron cell bod-
ies. SNP treatment did not alter NOP or ppN/OFQ mRNA 
levels in DRG 6 days after the final treatment, when pain 
threshold had returned to baseline. NOP mRNA expression 
increased after SPS, and was even higher in SPS + SNP 
rats, suggesting that NOP biosynthesis is upregulated in 
DRG similar to its ligand, N/OFQ, in CSF. Contrary to 
upregulation of N/OFQ levels in CSF, ppN/OFQ mRNA 
expression decreased in DRG after SPS, and was further 
suppressed when SPS was combined with SNP. N/OFQ is 
produced by neuronal, glial and immune cells (Lambert 
2008). Decreased ppN/OFQ mRNA level in DRG may 
indicated that DRG is not the source of increased N/OFQ 
content in CSF, or that ppN/OFQ transcription and transla-
tion are differentially regulated. It is common to find that 
recently translated mRNA levels decreased relative to their 
resulting protein product.

PTSD is associated with long-term dysregulation of the 
hypothalamus–pituitary–adrenal axis (HPA) axis; cortisol 
levels are increased in some PTSD patients and decreased 
in others (Handwerger 2009). Migraine patients showed 
higher variation of cortisol levels (Ziegler et al. 1979). 
NTG generated more cortisol release in migraineurs, how-
ever, that cortisol release did not correlated with headache 
pain (Lippi and Mattiuzzi 2017; Baksa et al. 2019). Elevated 
serum CORT levels were observed after a single dose of 
NTG (Farajdokht et al. 2016), and repetitive NTG injections 
induced chronic migraine when detected 2 days after final 
treatment (Farajdokht et al. 2017). In our study, SNP did not 
alter serum CORT level 6 days after final injection. This dis-
crepancy is likely due to different time points of blood sam-
ple collection. In the SPS model, circulating CORT levels 
remained unchanged before day 14 and decreased 28 days 
post SPS (Zhang et al. 2012). We also did not see serum 
CORT level change at day 21 after SPS exposure. However, 
the SPS + SNP group exhibited elevated serum CORT level 
than other groups, it seems that SPS prolonged the effect of 
SNP to activate the HPA axis resulting in elevation of adren-
ocorticotrophic hormone (ACTH) and serum CORT levels.
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Growing evidence indicates that satellite glia cells 
(SGCs) in sensory ganglia play important roles in pain 
modulation. SGCs are activated after nerve injury (Liu et al. 
2012; Zhang et al. 2009) and inflammatory pain (Takeda 
et al. 2007, 2009) in TG and DRG, and play an active role 
in the development of persistent pain. Several studies sug-
gested that PTSD-like conditions induced astrocytic inhibi-
tion in CNS, specifically in hippocampus and frontal cortex 
(Perez-Urrutia et al. 2017; Saur et al. 2016; Han et al. 2015; 
Xia et al. 2013). The response of SGCs to SPS and chronic 
migraine has not been reported. Here we examined expres-
sion of GFAP, a marker of activated SGCs (Takeda et al. 
2007), in TG and DRG, which is the first station in pain 
pathways. We found that SPS upregulated GFAP mRNA 
expression in TG and DRG, as well as protein levels in TG. 
Similar to the observations in pain assessment, SNP alone 
did not alter GFAP expression at the time when hyperalgesia 
recovered, but it accentuated the GFAP changes at messen-
ger level by SPS when two treatments combined, indicating 
that SGC activation may contribute to prolonged hyperalge-
sia after SPS exposure. The absence of GFAP protein change 
in DRG is unclear. A recent study compared transcriptome 
and translatome activity in TG and DRG, and found that 
translational efficiency in mammalian target of rapamycin 
(mTOR)-related genes is higher in the TG compared with 
DRG, whereas other genes associated with the negative 
regulator of mTOR have higher translational efficiency in 
DRG (Megat et al. 2019). The distinct translational profiling 
may result in the discrepancy of GFAP protein expression 
in these two tissues.

Conclusion

The novelty of this study is combining two preclinical 
models of PTSD and chronic migraine to explore how the 
combination alters responses to each condition. Our major 
findings are that SPS exacerbated severity and duration of 
chronic pain by SNP, accompanied by elevated N/OFQ lev-
els in serum and CSF, higher expression of NOP mRNA 
and lower expression of ppN/OFQ mRNA in DRG, and 
enhanced expression of GFAP mRNA in TG and DRG. 
Taken together, our results suggest that the N/OFQ-NOP 
system and activated SGCs may play important roles in the 
interaction between PTSD-like and chronic pain conditions, 
presenting two potential targets for therapeutic approach of 
comorbid PTSD and pain.
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