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It is well known that helminth parasites have immunomodu-
latory effects on their hosts. They characteristically cause a
skew toward TH2 immunity, stimulate Treg cells while
simultaneously inhibiting TH1 and TH17 responses.
Additionally, they induce eosinophilia and extensive IgE
release. The exact mechanism of how the worms achieve this
effect have yet to be fully elucidated; however, parasite-
derived secretions and their interaction with antigen present-
ing cells have been centrally implicated. Herein, we will review
the effects of helminth excretory-secretory fractions on
dendritic cells and discuss how this interaction is crucial in
shaping the host response.

Introduction

Parasitic worms have co-evolved with vertebrate hosts over
millions of years. As a result, they have developed numerous
survival strategies including potent factors for immunomodula-
tion. Infections can be long-lived and comprise complex and
morphologically distinct life cycle stages. Worms display multiple
mechanisms not only to evade host immunity for maturation and
transmission, but also to preserve the host long enough for them
to do so. Their success depends not only on their specialized ways
of colonizing their host but also on host-specific genetic and
immunological factors. Differences in worm burden among
communities with equivalent levels of exposure has been
repeatedly noted for a variety of helminth infections in both
animal models and humans1-3 with familial patterns pointing to a
genetic link to susceptibility. For example, linkage analysis has
highlighted three genes with strong associations to Ascaris worm
burden in humans,4 TNSF13B and ABF1, a TNF family member
and transcription factor, respectively, that play central roles in B
cell regulation, as well as IL-7, a cytokine influencing mucosal
lymphocytes whose production is associated with protection
against intestinal worms.5 These gene products have perceptible
links to adaptive immunity pointing to both genetic and

immunological factors as determinants of the course and severity
of infection.

Helminths affect the immune system differently to other
pathogen classes. They present as large multicellular entities that
cannot be readily phagocytosed yet they elicit a strong adaptive
humoral response.6 This point begs the question of how their
components enter the antigen presentation pathway. The answer
likely lies within worm-derived secretions, namely the excretory-
secretory fraction (ES), components of which are released into the
host throughout the life cycles of most parasitic helminths.

The use of “excretory-secretory” to describe the mixture of
material released by helminths into their host organism fails to
distinguish between components that are actively secreted and
those that are released as a consequence of physiological processes
such as egg laying and digestion. Individual characterization of
components that are purposefully host-targeted may be more
useful in understanding a given worm’s adaptation to its
developmental milieu, but the immunological affront inflicted
on the host during infection derives from both passively and
actively secreted antigens. Although ES composition of parasitic
worms of different taxonomies varies significantly, secretions have
been found to contain a mixture of glycoproteins, proteins,
glycolipids, and polysaccharides.7 Effects of ES on cellular
physiology are vast, but here we will focus on what is known
about ES influence on dendritic cells and how these elements are
able to direct adaptive immunity.

Helminth ES

Parasitic worms can progress through intricate life cycles stages,
occupying distinct niches in the host and taking vastly different
physical forms. Echinococcus granulosus, a cestode tapeworm, exists
in the canine intestine as a segmented adult worm but once
transferred to an intermediate host like a human, its larval stage
develops into fluid filled cysts.8 Likewise, adult worms of the
nematode Trichinella spiralis infect the intestinal tract whereas its
larval stage encysts in striated muscle and can survive in this form
for years.9 Each parasitic form and corresponding niche
undoubtedly involve different types of interactions with the host
immune system and distinct DC subtypes, a point that is reflected
in the dynamic reshaping of surface molecules and secreted
elements at each stage. The interactions of adult T. spiralis in the
intestine vs. those of its intracellular larval stage with the host
immune system are inevitably quite different. Therefore, the
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composition of its excretory-secretory fraction is dependent on
how it needs to interface with its host to ensure progression to the
next life-cycle stage.

Characterizing the ES and defining these interactions is an
enormous challenge when dealing with organisms that cannot be
modeled in vitro. In the example of Trichinella, adult worms can
be extracted from the intestine and cultured for a few days as can
larvae enzymatically digested out of muscle tissue. Neither of these
stages truly reflects what is being secreted by the encysted larvae
within the muscle tissue, which is arguably most biologically
relevant. Many helminth parasites cannot be cultured at all,
relying on mouse models and ex vivo studies to infer what is being
released by the worms during natural infection. Furthermore,
barring certain pioneering studies done in schistosomes,10,11 these
worms are genetically intractable, posing an added challenge.

The viability of the worms in culture varies between organisms,
for example T. spiralis L1 stage larvae will only survive 4–5 d in
culture medium whereas adult Heligmosomoides polygrus may be
cultured for up to 20 d. In all examples discussed, the
environmental cues that would be present in the native system
are absent and this will undoubtedly have an effect on the
secretion and metabolic pattern of the parasite. Methods for
collecting ES depend on the parasite, its life cycle and the form in
which ES components are released, a recently discovered route
being through exosomes.12 In some cases many stages of the
parasite are accessible, whereas others prove extremely restrictive.
Nippostrongylus brasiliensis is a rodent gastrointestinal nematode
closely related to the human and sheep/goat hookworms.
N. brasiliensis adults lay eggs in the gut that are excreted by the
host. Eggs can be collected from feces and hatched. The larvae
then develop from L1 to L3 (infective stage larvae) that can be
cultured in liquid media and ES is collected from the supernatant.
N. brasiliensis ES is therefore representative of the free-living stage
that in nature enters the host via the skin and transits to the lungs.
Adults may also be isolated from the host intestines and cultured
for ES, representing parasitic components that encounter the
intestinal microenvironment.

Ascaris lumbricoides, Ascaris suum and Toxocara canis are large
intestinal roundworms that may be collected from the intestines
or the feces of infected hosts. Adult (gut) L2 (circulating) and L3/
4 (lung) stage parasites can also be extracted and cultured for ES.

Brugia malayi and Onchocerca volvulus are examples of filarial
nematodes that are transmitted to humans via mosquito or
blackfly vectors respectively. In the laboratory, adult parasites are
collected from nodules in the lymphatic system of jird rodents and
cultured for ES. Microfilariae and L3 larvae may also be isolated
from the vector. Studies have demonstrated how filarial ES
proteins vary between stages and are gender-specific.13,14

Various stages of the human blood fluke Schistosoma mansoni
can be isolated for study. Eggs can be collected from the liver or
feces of hosts and schistosomula can be recovered from lung tissue
for ES collection. Adult schistosomes may also be collected by
dissection or perfusion, but adult yields are low and the site of
their residence varies between animals.

Often used in laboratory studies of cestodes are the tapeworms
Echinococcus granulosus and Taenia solium, which also parasitize

humans. Adult cestodes usually reside in the intestine of a
definitive host, from which eggs are shed in the feces and ingested
by an intermediate host. Parasites can be dissected out of the
hydatid cysts of intermediate hosts and cultured, as can eggs
isolated from feces that hatch, releasing oncospheres from which
ES can be collected. Occasionally adults may also be extracted
from the gut of infected animals.

Since it is a challenge to purify ES that is representative of the
life cycle stage of interest, it is reasonable that helminth extracts,
which contain a high concentration of helminth antigens, are
routinely prepared for immunological analyses. These extracts can
be prepared after immediate isolation of the parasite, without
culturing or manipulation, and have proven useful for learning
more about important parasite antigens and their effect on the
immune response. For example, soluble S. mansoni egg antigen
(SEA) and soluble schistosomule antigen (SSA) are often used, as
are whole extracts prepared from nematode and cestode parasites.
Although a crude extract, this will contain products from the
parasite secretory organs and therefore the ES products
themselves, pre-secretion. They are also rich in parasite-specific
modifications that decorate ES components. Lewisx, an abundant
parasitic glycan, is found in SEA and SSA but also on omega-1
and a-1, glycoproteins that are amply secreted by schistosome
eggs.15-17 Lex is also expressed by nematodes such as Dictyocaulus
viviparus18 and antisera against structures containing Lex are raised
during infection with Taenia crassiceps and T. spiralis.19,20 In
addition, many helminths have been shown to express an enzyme
responsible for the production of Lex.21-24

Therefore, many of the studies that have truly implicated ES in
immune interactions, such as those with DCs, have either been
done in vitro, or in vivo using elements shown to contain both
secreted and non-secreted helminth components. For the
purposes of this review, we include these studies since our current
understanding of helminth-provoked effects on DCs are in large
part owing to this work.

DC and Helminths: Th2 Polarizing Response

Many subtypes of DCs have been implicated in the host response
to parasitic worms.25-29 Each is characterized by a basic
combination of surface markers, however new subtypes and
slight variants of known subtypes are constantly being
discovered. The specific phenotypes differ based on host
organism (mouse or human), whether a study was done in vitro
or in vivo, what location or organ they are extracted from and
how they were matured. The particular adaptations of DC
subtypes to their distinct microenvironments makes studying
them in situ of paramount importance to understanding their
behavior. This point is particularly pertinent for helminth
infections given their diverse tissue specificity. In light of the
experimental obstacles outlined above, localized analysis of DC
response to worms is often impossible. As a result, the majority
of published work on this topic heavily relies on either ex vivo
observations or monocyte and bone-marrow derived DCs and
their characteristic plasticity, wherein their behavior can be
largely driven by microbial cues.30

SPECIAL FOCUS REVIEW: DENDRITIC CELLS
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Parasitic worms have long been known to promote host
immune responses heavily skewed toward the TH2 phenotype.31

Unlike viruses and bacteria, worms do not elicit release of pro-
inflammatory cytokines and responses targeted toward killing the
pathogen itself. Perhaps this phenomenon is partly due to the
worms being large, multicellular entities difficult to damage via
direct inflammatory mechanisms.7

Type 2 immunity to helminths revolves around the CD4+ T
helper 2 cell, whereby depletion of these cells is associated with an
inability to control32 or clear33 infection. Through cytokine
secretions, this cell type is able to elicit a range of downstream
responses, including B cell-derived antibody production and
granulocyte-derived release of inflammatory effectors. In the
context of a helminth infection, these events, in turn, result in
both direct and indirect challenges against the pathogen.
Immunoglobulins can directly opsonize antigens,6 while
effector-induced muscle contractions and mucus release can work
toward mechanically expelling the parasite.34,35

Why do helminths specifically drive TH2 responses? The
answer to this question is still largely unknown. One hypothesis
that has been suggested is that this happens as a default, a result of
no TH1 polarizing stimuli on the part of worms.36 Another is that
TH2 responses promote wound repair, important during worm
infections where skin and gut epithelia are often damaged.37 The
mechanisms behind TH2 polarization likely combine elements
from both these hypotheses. In an effort to distill the underlying
processes involved, much work has been done toward character-
izing the host receptors and parasitic ligands responsible for
initiating the immune response during helminth infections. These
studies have collectively implicated a range of pattern recognition
receptors (PRR) and identified the dendritic cell as an essential
regulator of TH2 polarization. For instance, in vivo removal of

DCs via CD11c-selected depletion results in a remarkable
decrease in both TH2 cytokine release and expansion of T helper
cells upon parasitic challenge.38 Conversely, adoptively trans-
ferred-DCs pulsed with ES antigens from the rodent nematode N.
brasiliensis can efficiently drive TH2 responses in naïve recipient
mice.28 A synergistic role for basophils in the cooperative
generation of TH2 immunity to worms with DCs has also
recently been described. However, despite their ability to antigen
present, to expand T cell populations and to elicit production of
regulatory cytokines, their presence seems to be dispensable to
these processes, unlike that of DCs.39

How Do Dendritic Cells Interface with Parasite ES?

The main function of dendritic cells is to capture, process and
present antigen to T cells, serving as mediators between innate
and adaptive immunity. The mechanisms by which they detect
antigen are manifold; however pattern recognition receptors
(PRR) are particularly important to this process. These receptors
comprise several molecular families including cytoplasmic DNA
sensors, Toll-like (TLR), C-type lectin (CLR), NOD-like (NLR)
and RIG-1-like receptors and have evolved to recognize pathogen-
associated molecular patterns (PAMPs) in order to allow DCs the
ability to rapidly detect and respond to foreign antigens. In the
context of helminth infections, ES-derived and parasite surface
molecules are the agents responsible for the contact and
interaction with host immune cells (Fig. 1).

Parasite-derived signals. As previously mentioned, ES contains
a complex mixture of proteins, lipids and metabolic by-products.
Many of these proteins and lipids are highly glycosylated. It is
widely understood that it is these carbohydrate moieties, or
glycans, that are most important for the interface with host DCs.40

Figure 1. The molecular interactions involved in DC conditioning by components found in helminth excretory-secretory products (ES) and in S. mansoni
soluble egg antigen (SEA) are illustrated. ES and SEA contain a mixture of immunogenic proteins and lipids, many of which are glycosylated. Many of the
most potent antigens in SEA are also found in ES. Interactions are C-type lectin (CLR) or Toll-like receptor (TLR) dependent or pattern recognition receptor
(PRR) independent. DCs are polarized toward a TH2 phenotype and Treg cells are stimulated. Each interaction is numbered based on the corresponding
reference in which it was reported.

670 Virulence Volume 3 Issue 7



Evidence shows that the functional protein portion of the ES is
not necessarily required for DC recognition but does play a role in
the overall response. For example, heat treated ES from the
nematodes Heligmosomoides polygyrus and Nippostrongylus brasi-
liensis is still able to elicit a response representative of Th2
polarization in mouse BMDCs.41 However, Everts et al. recently
showed that although the carbohydrate domain alone of omega-1,
a glycoprotein secreted from Schistosoma mansoni eggs, is sufficient
for binding to DCs, the protein domain is still required for
conditioning the Th2 response.42

Immunodominant helminth glycans were first identified, and
have largely been characterized via the analysis of protective
antibodies from the serum of immune animals.21 Lewisx or Lex

was one of the first helminth glycan antigens to be described in
the immune sera of mice infected with S. mansoni.43-45 Later, it
was found that LacdiNAc (GalNAcβ1–4GlcNAc-R, LDN) and
fucosylated LacdiNAc (LDNF) are also immunodominant
glycoproteins and glycolipids from soluble extracts of S. mansoni
and in immune sera to Trichinella spiralis and Hemonchus
contortus.46-50 Lacto-N-fucopentaose III (LNFPIII) is found in
the urine of S. mansoni infected animals and in those vaccinated
with irradiated larvae51 but also in human milk and the urine of
pregnant women. LNFPIII contains the terminal trisaccharride
Lex. LDN and LDN-F share similar motifs to mammalian
glycoconjugates and, along with LNFPIII, may be described as
host-like helminth glycans. Other host-like helminth antigens
include the T and Tn antigens which are GalNAc-O-Ser/Thr
motifs often found on surface glycoproteins of mammalian cancer
cells.52 T and Tn antigens are common to cestodes, nematodes
and trematodes.53 There is some speculation that the expression of
host-like antigens may aid protection of the parasite from immune
attack and clearance.54,55 There are however helminth glycans that
are parasite or even genus specific such as the O-methylated
glycans from the nematode Toxocara canis56 and the glycan
terminal tyvelose (3,6-dideoxy-D-arabino-hexose) from
Trichinella spiralis.57-59 Alternatively, parasite glycans may be
helminth-specific but common among different groups, such as
the a(1–3)-linked core fucosylation of LacdiNAc60 and chitin, a
polysaccharide that is found in the cuticle of parasitic and non-
parasitic worms.61,62 Phosphorylcholine {PC, [(CH3)3N+CH2CH2

PO4
−]} is a small zwitterionic molecule.63 It is found in the LPS of

various pathogenic bacteria as well as helminth ES products such
as ES-62, an abundant ES glycoprotein antigen from
Acanthocheilonema viteae, a rodent filarial nematode. It is also
found on the ES-62 homolog from Brugia pahangi and the N-
acetylglucosaminyl-transferase from Brugia malayi and seems to be
nematode specific.64-66 Other lipid antigens include phosphati-
dylserine (PS), which is found in S. mansoni and the dog
heartworm Dirofilaria imitis.67,68

Host DC receptors: TLR. Although many helminth antigens
have been identified, our knowledge of the host DC receptors
responsible for their recognition, binding and internalization is
more limited. There are 11 known mammalian TLRs that
recognize bacterial, viral and fungal pathogen-derived antigens.
TLR2, TLR4 and TLR9 are all expressed on DCs and have been
well characterized for their interaction with potent TH1-inducing

agents such as bacterial LPS. DC TLR2 has also been linked to
TH2 immunity in response to certain pathogenic stimuli, and
more recent evidence suggests that TLR4 may also be important
for cross-talk between TH1 and TH2 immunity.69,70 Pre-treatment
with helminth ES has been shown to inhibit classical LPS
signaling through DC TLR receptors.71-74

In vitro activation of DCs by SEA and SSA has been shown to
be TLR4 independent.75,76 In contrast, pulsing DCs with
synthetic forms of the Lex containing carbohydrates LNFPIII
and LNFPIII-Dex (both found in SEA and SSA) was shown to
drive DC activation in a TLR4-dependent manner.77

Additionally, Gao et al. showed that TLR2 deficient mouse
BMDCs were unable to produce IL-12p70 and IL-10 in response
to SSA and SEA.78 This result was not observed in TLR4-deficient
BMDCs, suggesting that TRL2 but not TLR4 is essential for the
Th2-specific DC response to SSA and SEA but that LNFPIII
alone may signal via TLR4.

ES-62 carries the phospholipid PC and is expressed by A. viteae
in a stage-specific manner. A number of studies have evaluated the
molecular interaction of ES-62 with DCs.64,79 ES-62 alone is able
to stimulate DCs and induce a Th2 phenoype.80,81 This
glycoprotein was found to signal via DC TLR4 and its adaptor
MyD88 but not via TLR2.82 The mechanism of this interaction
however was shown to be unconventional, i.e., mutated TLR4
that can no longer respond to LPS, still responds to ES-62.
Further studies by the same group showed that the PC portion
alone (as PC conjugated to ovalbumin) was still able to redirect
DC maturation, and this effect was also found to be TLR4 and
MyD88 dependent. The phospholipid PS from S. mansoni was
also shown to activate DCs toward a Th2 phenotype, but unlike
PC, it is most likely this occurs via TLR2 signaling.67 There is
therefore a role for both TLR2 and TLR4 in the recognition of
helminth antigens by DCs and there may be some interplay
between the two receptors.

CLR. CLRs contain an extracellular carbohydrate recognition
domain (CRD) that binds antigenic glycans, a process that
requires calcium. DC CLRs that are involved in pathogen
recognition include DC-specific ICAM-3 grabbing nonintegrin
(DC-SIGN), which binds high mannose glycans.83 DC-SIGN
plays an important role in viral recognition and binding to the
HIV antigen gp 120 has been well characterized.84 DC-SIGN
activation can in turn activate TLR signaling.85 Macrophage
galactose binding lectin receptor (MGL) recognizes, among
others, the helminth and tumor Tn antigen motif.86 Mannose
receptor (MR) also recognizes mannose-containing glycans.54

Van Die et al. and others have shown that DC-SIGN is also a
receptor for Lex and that antibodies against Lex inhibit the binding
of SEA to DC-SIGN.83,87 The mechanism of binding, however, is
not the same as that observed in the interaction between DC-
SIGN and HIV gp120. The carbohydrate recognition domain
(CRD) of DC-SIGN is still responsible for binding Lex, but site-
directed mutagenesis of the receptor showed that the regions
within the CRD that mediate interaction are not conserved.
Furthermore, the internalization of SEA is not only mediated by
DC-SIGN, but also by MGL and MR.88 DC-SIGN is also able to
bind total ES products from Toxocara canis but not synthetic
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versions of the most abundant T. canis glycans.56 DC-SIGN,
MGL and MR receptors appear to provide some form of
redundancy whereby the inhibition of any one of these receptors
at any one time still allows the helminth-associated activation of
the DC.88 Everts et al. recently demonstrated that the MR, but
not DC-SIGN, is responsible for the binding and internalization
of the S. mansoni secreted glycoprotein omega-1 by DCs.42

Omega-1 is a T2 RNase enzyme decorated with a Lex-containing
glycan.89 Although the carbohydrate domain alone is sufficient for
binding DCs, the RNase activity of the glycoprotein is required to
induce Th2 polarization in vitro. Another DC CLR receptor that
has been shown to bind SEA is Dectin-2. Dectin-2 is a PRR
whose role in fungal antigen recognition and innate immunity has
been well characterized.90 Ritter et al. showed that the Dectin-2/
FcRc complex on BMDCs is required for SEA-induced
production of the inflammatory cytokine IL-1β.91 This was not
the case when Dectin-1, CD36 or indeed MR were tested.
Interestingly, IL-1β production was not observed after heat or
proteinase K inactivation of the SEA, again implicating an
important role for the functional proteins in SEA.

What Happens to Dendritic Cells upon ES Exposure?

Of all antigen-presenting cells, DCs express the highest levels of
MHC class II and are the most efficient processors of exogenous
antigens. Once they have received the necessary stimuli via PRRs,
DCs undergo a process of maturation to become efficient antigen
presenters via a series of subcellular and morphological changes.
They translocate class II MHC molecules loaded with antigenic
peptides to the cell surface, they upregulate CD40, CD80 and
CD86 costimulatory molecules on the cell surface, and they release
pro-inflammatory cytokines and chemokines including IL-12, IL-
6, IL-23 and TNF.92 These events enable the DC to communicate
with other cells types and to determine the course of the immune
response. Classically TLR-activated DCs will release IL-12 which
signals effector T cells to expand and also recruits macrophages to
the site of infection. In addition, IL-12 acts as a signal to
neighboring cells to release other pro-inflammatory cytokines (IFN-
c and TNF-a) that drive a TH1 response.

In the context of helminth infections, DCs exhibit a very
different phenotype. As a general rule, they fail to classically
mature in that they do not upregulate coreceptors nor do they
release pro-inflammatory cytokines.93 This phenomenon seems to
be common to most helminth infections, irrespective of their
taxonomic classification (nematode, cestode, trematode). DCs
exposed to ES derived from Taenia crassiceps, a cestode tapeworm,
fail to upregulate CD83, HLA-DR, CD80 or CD86.73 This
immature phenotype persists even when DC are subsequently
stimulated with LPS. DC stimulated with schistosome SEA
exhibit the same behavior, with low expression of CD80, CD86,
class II MHC and CD4094 and no IL-12 production. Like their
cestode-exposed counterparts, they too fail to classically respond
to LPS stimulation. Nematode ES also inhibits DC maturation,
with ES from the filarial worm Brugia malayi blocking IL-12
production,95 and ES from Trichinella spiralis inhibiting both the
upregulation of costimulatory molecules as well as LPS-respon-

siveness.96 By stimulating ES-exposed DC to various TLR
agonists, the authors of this study show that the inhibitory effects
of the T. spiralis secretions are specific to TLR4. However, TL4-
mediated non-responsiveness in unlikely to be caused by
differences in absolute levels of TLR4 surface expression since
SEA-exposed DC, that also present with the same phenotype,
have equivalent levels of this receptor on their surface as compared
with unexposed controls.70 More likely, the downstream signaling
pathways that are stimulated following helminth ES exposure are
liable for the observed differences. TLR signaling is known to
proceed via mitogen activated protein kinases (MAPK) ERK and
p38. Induction of TH1 responses, namely the release of IL-12 by
DCs, results from p38 phosphorylation, whereas the ERK
pathway is associated with TH2 polarization via stabilization of
the c-fos transcription factor that suppresses IL-12 release.97,98

Consistent with these signaling associations, SEA favors ERK
phosphorylation.70,99 Therefore, the anti-TH1 bias may partially
arise from the subcellular signaling cascades that are triggered
upon ES exposure.

In addition to their rapid, PPR-induced activities, DCs ingest,
process and present antigen to CD4+ helper T cells. Protein
peptides are presented in association with class II MHC
molecules, but glycolipids—which helminth ES is rich in—can
also be presented via cell-surface CD1d.100 This protein seems to
play a critical role in DC-mediated TH2 priming, since DCs from
CD1d−/− mice were unable to drive expansion of SEA-specific
TH2 lymphocytes.101 The fact that proper antigen processing and
presentation are necessary components to an effective host
response is another aspect of DC functionality with which
parasitic worms can interfere. As mentioned above, helminth
infections are associated with decreased MHC class II expression.
Low levels of expression may either result from interference with
protein synthesis and molecular assembly102 or from worm-
induced inhibition of class II MHC-peptide complex transloca-
tion to the cell surface. In line with the latter idea, the rodent
intestinal nematode Nippostrongylus brasiliensis secretes nippocys-
tatin, a cysteine protease inhibitor that effectively decreases
antigen processing. Furthermore, mice with anti-cystatin circulat-
ing antibodies are able to better control their infection103

suggesting that foreign peptides are not efficiently presented and
downstream effector mechanisms that control worm burden are
disrupted. Onchocerca volvulus and Brugia malayi are also known
to secrete similar protease inhibitors which interfere with host
endolysosomal proteases and potentially inhibit proper processing
and loading of worm proteins onto class II MHC.104,105

How Do ES-Exposed Dendritic Cells Affect the
Downstream Immune Response?

Despite the demonstrated necessity for DCs in the development
of TH2-polarization to helminth infections, the specific signals
they send and the mechanisms through which they interact with
other cells are still quite poorly characterized. The host response to
parasitic worms characteristically begins with an active TH2
effector phase that is then downregulated.106 The presence of
certain ligands on the surface of DCs has been found to be
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essential for proper anti-helminth TH2 responses to develop. One
such molecule is OX40L, where an OX40L−/− model demon-
strated that expression of this ligand on DCs is central to the
development of a TH2 effector response.107 Similarly, DCs
derived from a CD40−/− mouse were also found to be deficient in
their ability to induce TH2 responses.108 Both these studies were
done in the context of S. mansoni infections, but given the
consistency of the host response to parasitic worms irrespective of
taxonomy, it is likely that the importance of CD40 and OX40L
will carry over to other helminth infections as well. Another
mechanism by which DC may polarize a TH2 response is through
mechanical means.109 DC exposed to SEA fail to display the
ruffled appearance and adherence of classically activated DC. This
altered cytoskeletal morphology correlates with decreased ability
to form stable conjugates with CD4 T cells. The authors of this
study hypothesize that fewer interactions between DC and T cells
sends a low-dose antigenic signal to DCs which is known to favor
TH2 responses.110,111

As previously discussed, DCs are central to the initial TH2
polarization, but they are apparently also essential for subse-
quently moderating its strength.

DCs exposed to a wide array of helminth ES products have been
shown to promote the expansion of CD4+CD25+Foxp3+ regulatory
T cells.74,95,96,112 In turn, regulatory T cells are necessary for averting
the pathology and tissue damage arising from an unchecked TH2
response in addition to contributing to the suppression of a TH1
response.113 DC matured in the presence of S. mansoni
phosphatidylserine seem to acquire the capacity to potently drive
naïve T-cells to become regulatory in nature67 and T. spiralis and
H. polygrus stimulate expansion of existing Treg cell populations in
vitro and ex vivo, respectively.96,114 DC conditioning by ES also
results in release of regulatory cytokines such as IL-4 and IL-10.
These cytokines are most commonly produced either by DC-
stimulated T cells or by DCs themselves.99

Although helminths elicit Type 2 immunity, prolonged infection
necessitates a subsequent dampening of these responses in order to
preserve host integrity.115 Whether this downregulation is a direct
effect of the parasite or, more likely, a defense mechanism against
tissue damage on the part of the host, is not entirely clear.

Parasite ES contains host glycan “mimics” and their interaction
with DCs are thought to play a central role in the downregulation
of TH2 responses. These “self glycans” engage C-type lectins on
the surface of DCs and stimulate expansion of T regulatory cell
populations which, in turn, promote tolerance and downregulate
inflammatory responses.54 Therefore, worm infections can help
balance Th1-mediated pathologies given their Th2-promoting
bias, and they can also control Th2-mediated conditions due to
their stimulation of T regulatory populations.

Multiple sclerosis (MS) and murine experimental autoimmune
encephalomyelitis (EAE), a mouse model system for MS, are both
characterized by high Th1 and Th17 cell responses.116 EAE can be

significantly suppressed by treatment with T. spiralis, S. mansoni
and T. suis ES.117 Inhibition of DC-derived TNF-a and IL-12,
coupled with upregulation of OX40L suggests that DCs may play
a central role in the observed immune modulation. Likewise, DC-
driven TH2 responses also seem to protect against development of
Type 1 diabetes in non-obese diabetic (NOD) mice. If exposure
to S. mansoni antigens is established at a young age, DCs stimulate
IL-10 release and Treg cell expansion which protects against the
otherwise spontaneous development of the disease.118,119

Several studies have shown an association between helminth
infection and the suppression of Th2-driven allergic
responses.120,121 Perhaps the most convincing evidence of a link
comes from the central principles underlying the “hygiene
hypothesis” which stipulate that industrialization—which brings
a reduction in infections—is associated with corresponding
increases in allergies and autoimmune diseases.122 For instance,
it is known that infection with Ascaris suum suppresses allergic
immune responses in mice123 in an IL-10 independent fashion.
Reduced activation of DCs was deemed responsible for this
difference, since cytokine production and receptor expression was
suppressed in DCs exposed to parasite-derived products.

Conclusion

Although much remains to be discovered about the signals DCs
receive and send in order to modulate the immune response
during helminth infection, their behavior is incrementally being
defined. Herein, we have attempted to comprehensively review
these efforts, focusing on (1) the recognition elements between
the parasites and the DC, (2) the subcellular changes these
interactions induce within the DC and finally (3) how these
changes translate into signals that drive TH2 polarization and
subsequent control. Like all pathogens, worms have evolved
skillful and innovative ways by which to modulate host immunity
to their own benefit. They secrete ES whose glycosylated
components regulate fundamental processes of antigen recog-
nition, processing and presentation. By expressing parasite specific
as well as “host” glycans, they induce DCs to stimulate both
inflammation and tolerance. The ability to induce and then
downregulate TH2 responses, which allows worms to establish
persistent infections, can also be exploited therapeutically for
certain allergic and autoimmune diseases. Further research is
necessary to isolate specific components that can be used as
“parasite therapeutics,” and unpair them from the pathology that
also accompanies helminth infection. It is likely that DCs—and
the molecular mechanisms by which they interact with parasite
components—hold many more clues of how to attain this goal.
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