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Identification of autophagy‑related risk 
signatures for the prognosis, diagnosis, 
and targeted therapy in cervical cancer
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Abstract 

Background:  To rummage autophagy-related prognostic, diagnostic, and therapeutic biomarkers in cervical cancer 
(CC).

Methods:  The RNA-sequence and clinical information were from the TCGA and GTEx databases. We operated Cox 
regression to determine signatures related to overall survival (OS) and recurrence-free survival (RFS) respectively. The 
diagnostic and therapeutic effectiveness of prognostic biomarkers were further explored.

Results:  We identified nine (VAMP7, MTMR14, ATG4D, KLHL24, TP73, NAMPT, CD46, HGS, ATG4C) and three risk signa-
tures (SERPINA1, HSPB8, SUPT20H) with prognostic values for OS and RFS respectively. Six risk signatures (ATG4C, ATG4D, 
CD46, TP73, SERPINA1, HSPB8) were selected for qPCR. We screened five prognostic signatures(ATG4C, CD46, HSPB8, 
MTMR14, NAMPT) with diagnostic function through the GEO database. Correlation between our models and treat-
ment targets certificated the prognostic score provided a reference for precision medicine.

Conclusions:  We constructed OS and RFS prognostic models in CC. Autophagy-related risk signatures might serve as 
diagnostic and therapeutic biomarkers.
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Background
Cervical cancer (CC) is one of the most common gyneco-
logical malignancies in women [1]. It is estimated that 
600,000 women are diagnosed as CC, and more than 
340,000 people die from CC each year. The continuous 
infection of high risk human papillomavirus (HR-HPV) 

is a necessary condition for CC, but its specific mecha-
nism and co-factors have not yet been clarified [2]. Stud-
ies have shown that more than 70% of CC patients are 
diagnosed as advanced, and 15% to 61% of patients have 
lymph node or distant metastasis and recurrence, then 
the survival rate of these patients is significantly reduced 
[3]. Although the use of HPV vaccine and the progress 
of surgery, radiotherapy and chemotherapy have reduced 
the incidence and mortality of CC, late metastasis, recur-
rence and drug resistance are still huge challenges for 
its clinical treatment [4]. Limited by the economic level, 
the burden of disease is heavier in areas with scarce 
medical resources [5]. To reduce the burden and provide 
better treatment to patients, it is necessary to make accu-
rate judgments on the prognosis of patients in order to 
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achieve the purpose of formulating reasonable treatment 
plans and avoiding overtreatment or undertreatment. In 
recent years, autophagy has been discovered to play a 
momentous role in CC [6, 7].

Autophagy is an evolutionarily conserved important 
process in eukaryotes, which is responsible for the turno-
ver of intracellular substances [8–10]. It has not been fully 
clarified whether autophagy plays a positive or negative 
role in physiological or pathological processes including 
cancer. Studies have shown that autophagy dysregulation 
plays a vital role in the occurrence and development of 
CC. Hu et  al. found that autophagy was undermined in 
CC cells with gradually reduced positive expression rate 
of autophagy-related proteins Beclin1 and LC3 in the 
normal cervical group, CIN (cervical intraepithelial neo-
plasia) III group, and CC group [11]. Li et al. discovered 
that high-risk HPV infection could promote the devel-
opment of CC by inhibiting autophagy of the host [12]. 
Zhang et al. reported that microtubule-associated protein 
7 (MAP7) promoted the migration, invasion and progres-
sion of CC by regulating the autophagy pathway [13].

RNA sequence (RNA-seq) is a technique for observing 
the differences of cells at the gene level, thereby analyz-
ing the biological behavior of different cells. At present, 
through the construction and verification of prediction 
models, a large number of studies have applied RNA-seq 
results to the diagnosis, treatment, and prognosis of CC. 
Wu et al. forecasted two lncRNA signatures as potential 
prognostic biomarkers in CC based on the TCGA data-
base [14]. Ding et  al. screened immune-related genes’ 
(IRGs) prognostic implications in cervical cancer and 
endometrial cancer [15]. Wang et  al. identified DAPK1 
promoter hypermethylation as a biomarker for intraepi-
thelial lesion and cervical cancer [16]. However, the liter-
ature on the prognostic, diagnostic and therapeutic value 
of autophagy-related genes in CC is scarce.

In the present study, we acquired the transcriptome 
profile and clinical information of CC patients from 
The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx). According to the Human 
Autophagy-dedicated Database(HADb), we searched for 
autophagy-related genes (ARGs) in CC. After Cox regres-
sion analysis, ARGs related to overall survival (OS) and 
recurrence-free survival (RFS) were determined and their 
respective prognostic models were established. Kaplan–
Meier curve, area under the curve (AUC) and nomogram 
all indicated that these models had an excellent predic-
tive performance. Endometrial cancer (UCEC) and head 
and neck cancer (HNSCC) were used as external verifi-
cation data to verify the effectiveness of the models. The 
functions of ARGs included in the prognostic models 
were further analyzed by Gene Set Enrichment Analysis 
(GSEA). Finally, the diagnostic value of risk signatures 

was detected based on the Gene Expression Omnibus 
(GEO) database. We found that the risk score was sig-
nificantly correlated with clinical treatment targets. In 
this paper, we screened out valuable biomarkers for CC 
by constructing prognostic models containing ARGs and 
studied their diagnostic value and treatment orientation 
for clinical.

Materials and methods
Data gathered and pre‑neatening of the training set
The RNA-seq transcriptome data (HTSeq-Counts) com-
posed of 306 CC with clinical information and 3 normal 
samples was downloaded from the TCGA data portal 
(https://​tcga-​data.​nci.​nih.​gov/​tcga/). Five normal cervix 
samples from the GTEx portal (http://​gtexp​ortal.​org) 
were added to expand the number of normal samples. For 
subsequent difference analysis, we normalized the tran-
scriptome data from these two datasets and integrated 
data by R program (http://​www.r-​proje​ct.​org/​webci​te) 
v4.0.2 using the limma package (http://​www.​bioco​nduct​
or.​org/). HADb (http://​www.​autop​hagy.​lu/) is the first 
Human Autophagy-appropriated Database. We obtained 
a list of 232 human autophagy genes, as shown in Addi-
tional file  1. Subsequently, 217 autophagy-related genes 
(ARGs) expressed in CC were shown in Additional file 2. 
We matched the autophagy-related gene expression pro-
files with the OS and RFS according to the patient’s ID 
numbers respectively, and those that did not match were 
excluded.

Identification and functional annotation of the differently 
expressed autophagy‑related genes (DEARGs)
DEARGs were appraised by the R program using the 
edgeR package (Bioconductor-edgeR) with cut-off val-
ues as FDR < 0.05 and |log2FC|> 1. To investigate the 
biomedical molecular mechanism of DEARGs, we car-
ried out Gene Ontology (GO) annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment under R environment using clusterPro-
filer package(Bioconductor-clusterProfiler). Then the 
STRING database (https://​string-​db.​org/) was exploited 
to construct protein–protein interaction (PPI) network 
of DEARGs, and we imported the data into the software 
of Cytoscape 3.7.2 to visualize the interaction of PPI 
network.

Construction of the ARGs‑based risk signatures
Firstly, univariate Cox regression analysis was performed 
to screen ARGs related to OS and RFS, and P < 0.05 was 
considered significant. Subsequently, to prevent overfit-
ting of the models, we conducted Least absolute shrink-
age and selection operator (Lasso) regression by using 
the R package “glmnet” (https://​CRAN.R-​proje​ct.​org/​

https://tcga-data.nci.nih.gov/tcga/
http://gtexportal.org
http://www.r-project.org/webcite
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.autophagy.lu/
https://string-db.org/
https://CRAN.R-project.org/package=glmnet
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packa​ge=​glmnet). Finally, multivariate Cox regression 
analysis was carried out to evaluate the risk signatures of 
the predictive model and obtain their regression coeffi-
cients. We calculated the patient’s risk score based on the 
expression level of the prognostic genes and the risk coef-
ficient. The risk score was used to predict the prognosis 
of CC patients, and then patients were divided into high- 
and low-risk groups according to the median risk score 
(P < 0.05). The Kaplan–Meier (K–M) survival curve was 
plotted to evaluate the statistical differences in OS and 
RFS between the two groups respectively. In addition, we 
generated receiver operating characteristic (ROC) curves 
to determine the accuracy of the prognostic models.

Univariate and multivariate Cox regression analyses 
were conducted to investigate whether autophagy-related 
risk biomarkers could be regarded as independent pre-
dictors of OS and RFS in CC patients from the TCGA 
data set. Clinical parameters such as age, stage, grade, T, 
race and BMI were considered for OS. The clinical infor-
mation related to RFS was incomplete, we only included 
age, stage, and grade for independent prognostic analy-
sis. The nomograms were generated to visualize the risk 
score and the survival probability of the patient calcu-
lated according to the prognostic genes in the OS and 
RFS model using the “rms” and “survival” packages, thus 
realizing the combination of bioinformatics research and 
clinical practice. The calibration curve of the prediction 
model was used to evaluate the difference between the 
predicted probability and the actual probability.

Validation of the prognostic model in the testing set
To verify the interpretability and prediction accuracy of 
the model, we introduced two other cancer types, they 
were endometrial cancer (UCEC) and head and neck 
cancer (HNSCC), both of which were directly or indi-
rectly related to CC. HPV infection is an important risk 
factor for head and neck cancer [17, 18]. Endometrial 
cancer is also a common uterine malignant tumor. It has 
been reported that CC may cause endometrial cancer 
after radiotherapy [19].

The mRNA expression data and clinical OS data of 
patients with UCEC were from UCSC Xena (http://​xena.​
ucsc.​edu/). GSE117973, a global gene expression analysis 
of 77 primary head and neck cancer cases consisting of 
clinical progression-free survival (PFS) information, was 
downloaded from the comprehensive Gene Expression 
Omnibus (GEO; https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
Similarly, we calculated the patient’s risk score based on 
the risk signatures selected in the training set and divided 
samples into high- and low-risk groups, the K-M survival 
curves and ROC curves were plotted to verify the validity 
of the models in the testing set.

Detection of the diagnostic values of risk indicators in GEO 
database
The diagnostic values of the risk indicators for OS and 
RFS were assessed using ROC curve analysis from con-
solidated data sets from GSE63514 (24 normal samples 
and 28 CC), GSE75132 (21 normal samples and 20 CC), 
GSE6791 (8 normal samples and 20 CC). We com-
bined the data and removed the batch effect for further 
analysis.

Gene Set Enrichment Analysis of the 12 risk signatures
GSEA 4.1.0 was used to demonstrate the role of each 
gene in CC. We chose C2.CP: KEGG.V7.0.symbols.gmt 
file as the reference gene set file, the values of P < 0.05 
and FDR < 0.25 after performing 1,000 permutations 
were considered a significant difference.

Correlation between risk score and clinical therapeutic 
targets
Here we studied the relationship between risk score 
and the common targeted therapeutic targets in CC 
by Pearson’s correlation analysis. The therapy targets 
are listed as follow: AKT serine/threonine kinase 1 
(AKT1, AKT), BCL2 apoptosis regulator (BCL2, Bcl-
2, PPP1R50), mechanistic target of rapamycin kinase 
(MTOR, FRAP), tumor protein p53 (TP53, P53), vascu-
lar endothelial growth factor A (VEGFA, VEGF).

Expression of the 12 risk signatures at the protein level
The Human Protein Atlas database(https://​www.​prote​
inatl​as.​org/) is a free data resource that contains more 
than 26,000 kinds of antibodies. The immunohisto-
chemical results of 12 risk signatures in normal and 
pathological tissues were found in this database.

RNA expression detection of selected risk signatures 
in cervical cancer and normal tissue samples
To detect certain risk signatures(ATG4C, ATG4D, 
CD46, TP73, SERPINA1, HSPB8) expression in human 
samples by qPCR, a total of seven fresh CC tissues and 
paired adjacent non-tumor tissues were acquired from 
patients between September 2019 and October 2020 at 
Zhongda Hospital. RNA extraction and qRT-PCR can 
be described in the previous literature published by our 
research group [20]. The primer sequences involved in 
this study are shown in Additional file  3. All samples 
were stored at − 80 °C before total RNA extraction.

Statistical analysis
Statistical analyses were performed with the use of 
R 4.0.2 (www.r-​proje​ct.​org), SPSS 26, and GraphPad 

https://CRAN.R-project.org/package=glmnet
http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.r-project.org
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Prism 8.0.2. All statistical tests were two-sided, and 
P < 0.05 were considered statistically significant.

Results
Identification and functional annotation of DEARGs
The flow diagram of the integral analysis is described in 
Fig.  1. We obtained 217 autophagy genes expressed in 
306 CC patients and 8 normal controls. Among these 
expressed autophagy genes, there were 53 differentially 
expressed genes (Fig.  2a), including 21 down-regulated 
and 32 up-regulated (FDR < 0.05, |log2FC|> 1). The box 
plot revealed the expression pattern of differential genes 
in tumor and normal samples (Additional file  7: Figure 
S1a), all DEARGs were represented in Additional file  4. 
To rummage the signal pathways of DEARGs, we per-
formed GO and KEGG enrichment analysis (Fig.  2b, 
c). In the term of biological process (BP), the enriched 
pathways such as autophagy, macroautophagy, cellular 
response to external stimulus, intrinsic apoptotic sign-
aling pathway and extrinsic apoptotic signaling path-
way closely related to cell proliferation and migration. 
For the cellular component (CC) part, autophagosome, 
autophagosome membrane and vacuolar membrane 
were involved in autophagy. The results of molecular 
function (MF) of the genes showed these genes par-
ticipated in many binding reactions. KEGG analysis 
showed 53 DEARGs were included in critical pathways 
associated with cancer development, such as apoptosis, 
autophagy—animal, platinum drug resistance and p53 
signaling pathway. The detailed results of significant top 

8 GO annotation and top 10 KEGG pathway enrichment 
were shown in Additional file 5. The PPI network showed 
the connection between the various genes (Fig. 2d). The 
hub genes might be identified by the number of connec-
tions, CASP3 had the most connected nodes with other 
genes (Additional file 7: Figure S1b).

Construction and verification of autophagy prognostic 
model in the training set
We first performed univariate Cox regression analysis 
to find autophagy gene signatures related to OS and RFS 
respectively. Among the 35 genes related to the OS, 13 
genes were protective with HR < 1, and 22 genes were dan-
gerous with HR > 1 (Fig. 3a). Among the 9 genes related to 
the RFS, 3 genes were protective with HR < 1, and 6 genes 
were dangerous with HR > 1 (Fig. 3b). Lasso regression was 
adopted to further screen variables to ensure the stability of 
our model, and finally 20 candidate genes related to OS and 
8 candidate genes related to RFS were obtained (Fig. 3c–f). 
Multivariate Cox regression analysis was utilized to deter-
mine the genes that constructed the predictive model and 
their regression coefficients. For OS and RFS models, 9 
autophagy-related gene signatures (VAMP7, MTMR14, 
ATG4D, KLHL24, TP73, NAMPT, CD46, HGS, ATG4C) 
and 3 autophagy-related gene signatures (SERPINA1, 
HSPB8, SUPT20H) were gotten. The coefficient of each 
gene was shown in Table 1. Moreover, we could find that at 
the level of mRNA or protein, not all risk signatures related 
to survival were differential genes (Additional file 7: Figure 
S2a-l). The results from the K-M analysis of single-gene 

Fig. 1  The flow diagram of the integral analysis
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illustrated 8 genes were significantly related to survival, 
including five protective genes like ATG4D, KLHL24, 
TP73, HSPB8, SERPINA1 (P = 0.025, 0.009, 0.030, 0.050, 
0.014 respectively) and three dangerous genes like CD46, 
HGS, SUPT20H (P = 9.609e−04, 0.007, 0.014 respectively), 
which was consistent with the Cox regression analysis 
(Additional file  7: Figure S3a–l). Simultaneously, it could 
be speculated that these risk genes might have a synergistic 
effect, not just individual genes. According to the expres-
sion of model genes and regression coefficients to calculate 
the patient’s risk score, the formula was as follows:

Risk score =

n∑

i=1

Coefi ∗ xi

Among them, coef represents the coefficient and xi 
represents the relative expression value of each risk 
signature.

The median risk score was applied as a cut-off value 
to divide patients into high- and low-risk groups. The 
OS and RFS survival analysis respectively between 
the two groups were significantly different (Fig.  4a, c, 
P = 2.636e−08 for OS, P = 2.104e−03 for RFS), lower 
risk score generally presages a better survival prognosis.

The AUC of ROC analyses at 1, 3, and 5  years was 
0.783, 0.830, and 0.824 for OS and 0.682, 0.793, and 
0.843 for RFS (Fig.  4b, d). Additionally, the risk score, 
the number of survivals and the expression of model 
genes between the high- and low-risk group had a dif-
ference. The expression of protective genes was higher 
in the low-risk group, and the expression of dangerous 
genes was higher in the high-risk group. The low-risk 
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groups had fewer deaths than the high-risk groups 
(Fig. 4e–j).

OS and RFS prognostic risk models were independent 
predictive indicators in the CC patients of the TCGA 
database
We further analyzed whether the risk score could assume 
independent predictive indicators for CC patients. 
The clinical information was given in Table  2. Univari-
ate Cox regression analysis showed that age (P = 0.030, 
HR = 1.022), stage (P < 0.001, HR = 1.811), T (P = 0.017, 
HR = 1.397), BMI (P = 0.036, HR = 0.954) and the risk score 
(P < 0.001, HR = 2.973) correlated with OS of CC patients 
(Fig. 5a). Differently, only risk score (P < 0.001, HR = 2.867) 
was associated with RFS of CC patients (Fig.  5c). Next, 
we performed multivariate Cox regression analysis using 
the above clinical parameters and risk score. The results 
showed that the prognostic risk model could serve as an 
independent prognostic indicator to predict OS and RFS 
in patients respectively (P < 0.001, HR = 2.759 for OS, 
P < 0.001, HR = 2.785 for RFS) (Fig.  5b, d). Furthermore, 
multivariate Cox analysis showed that stage significantly 
correlated with OS (P = 0.009, HR = 1.436). These results 
demonstrated that both prognostic models could be inde-
pendently used to predict OS and RFS in CC patients. The 
nomogram calculated the survival prediction value of the 

individual at 1, 3, and 5 years based on the total score and 
the probability of the outcome event (Fig. 5e, f ). The cali-
bration curve showed that the predicted risk was consistent 
with the actual risk (Additional file 7: Figure S4a–f).

Verification of autophagy‑related predictive signatures 
in the testing group
The effect of the prediction model is likely to be different 
due to changes in scenarios and populations. To verify the 
validity of the prognostic model and improve its generaliz-
ability, we conducted external verifications on the OS and 
RFS prognosis model. Since other appropriate gene expres-
sion data and clinical information about CC patients were 
not available, we chose UCEC and HNSCC as external 
verification data. We downloaded the transcriptome data 
of UCEC patients and clinical data including OS from the 
UCSC Xena database, then calculated the risk score based 
on the expression of nine OS model genes and regression 
coefficients in the UCEC patients from our testing group. 
Furthermore, GSE117973 containing mRNA expression 
information and PFS clinical data was used for validat-
ing the prognostic model of RFS and risk score was cal-
culated. In the OS and RFS validation sets, patients were 
divided into high- and low-risk groups based on the calcu-
lated median risk score respectively. K–M survival curves 
showed that in UCEC patients and HNSCC patients, the 
higher risk score was associated with adverse outcomes 
(Additional file 7: Figure S4g, i). The AUC also proved that 
the risk signature had good accuracy with 0.571, 0.635, and 
0.669 at 3, 5 and 7 years respectively for the OS of UCEC 
patients. For the PFS of HNSCC patients, the AUC was 
0.443, 0.571, 0.635 at 1, 3 and 5 years respectively (Addi-
tional file 7: Figure S4h, j).

Diagnostic value of risk signatures in GEO consolidated 
data sets in CC
We identified the diagnostic application of risk signa-
tures in the combined data using ROC curve analysis. The 
AUC for ATG4C, ATG4D, CD46, HSPB8, MTMR14 and 
SUPT20H were 0.704, 0.640, 0.697, 0.627, 0.743 and 0.705 
respectively (95% CI 0.612–0.796, 0.542–0.737, 0.603–
0.791, 0.528–0.726, 0.654–0.832, 0.614–0.796), (Fig.  6a-f). 
This demonstrated that risk signatures were potential diag-
nostic markers. Diagnostic values of other risk signatures 
without statistical significance were shown in Additional 
file 7: Figure S5a-f.

Table 1  Multivariate Cox regression analyses of OS and RFS in 
CC patients

Gene Coefficient HR (95%CI) P value

OS

 VAMP7 − 0.99787 0.36866 (0.21117–0.64362) 0.00045

 CD46 0.71823 2.05081 (1.29362–3.25118) 0.00225

 NAMPT 0.41726 1.51780 (1.13852–2.02344) 0.00445

 ATG4C 1.02923 2.79890 (1.35789–5.76911) 0.00529

 HGS 0.75585 2.12943 (1.20152–3.77393) 0.00963

 TP73 − 0.20373 0.81569 (0.69885–0.95205) 0.00979

 MTMR14 − 0.64426 0.52505 (0.31495–0.87530) 0.01348

 KLHL24 − 0.28758 0.75008 (0.56843–0.98978) 0.04209

 ATG4D − 0.36031 0.69746 (0.49070–0.99134) 0.04460

RFS

 SERPINA1 − 0.34683 0.70693 (0.55833–0.89507) 0.00397

 SUPT20H 1.15581 3.17661 (1.47404–6.84571) 0.00317

 HSPB8 − 0.24263 0.78457 (0.63195–0.97403) 0.02792

(See figure on next page.)
Fig. 4  Characteristics of prognostic gene signatures. a, c K–M curves for OS (a) and RFS (c) in the high- and low-risk groups when stratified by the 
autophagy-related signatures. b, d ROC curve of risk score at 1,3,5 years for OS (b) and RFS (d) respectively. e, f Distribution of OS-related risk score 
and RFS-related risk score, the black dotted line is the optimal cut-off value for dividing patients into low- and high-risk groups. g, h Distribution of 
patient survival time, and status. i, j Heatmap of autophagy-related gene expression profiles in the prognostic signature of CC
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Single‑gene Gene Set Enrichment for the risk signatures
Single-gene GSEA of the risk signatures has shown 
the potential roles of the genes in CC. The visualized 
results were filtered with P < 0.05 and FDR < 0.25, as 
shown in Additional file  7: Figure S6a–k. These genes 
were enriched in six different signal pathways, namely 
KEGG_ REGULATION_OF_AUTOPHAGY (ATG4C, 

ATG4D, KLHL24, TP73), KEGG_ MTOR_SIGNAL-
ING_PATHWAY (HGS, VAMP7), KEGG_NEURO-
TROPHIN_SIGNALING_PATHWAY (KLHL24), 
KEGG_PROSTATE_CANCER (SERPINA1, SUPT20H), 
KEGG_PROSTATE_CANCER (SUPT20H) and KEGG_
FOCAL_ADHESION (SUPT20H). Details were shown 
in Additional file 6.

Table 2  Clinicopathological features of cervical cancer patients

Clinical parameters Variable Total(253) Percentages

OS

 Age  ≤ 50 154 60.7

 > 50 99 39.3

 Pathological stage Stage I 131 51.8

Stage II 60 23.7

Stage III 37 14.6

Stage IV 20 8.0

Unknown 5 2.0

 Histological grade G1 15 5.9

G2 117 46.2

G3 99 39.1

G4 1 0.4

GX 21 8.3

 T T1 115 45.5

T2 63 24.9

T3 15 5.9

T4 10 4.0

TX 50 19.8

 Race American Indian or Alaska Native 6 2.4

Asian 18 7.1

Black or African American 23 9.1

Native Hawaiian or other Pacific 1 0.4

White 182 71.9

Unknown 23 9.1

 BMI ≤ 24 80 31.6

> 24 173 68.4

Clinical parameters Variable Total (208) Percentages

RFS

 Age ≤ 50 133 63.9

> 50 75 36.1

 Pathological stage Stage I 113 54.3

Stage II 50 24.0

Stage III 34 16.3

Stage IV 11 5.3

 Histological grade G1 17 8.2

G2 101 48.6

G3 89 42.8

G4 1 0.5
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Risk score could be applied as a sensitive indicator 
of target therapy
Pearson correlation analysis manifested our OS-related 
risk score was significantly related to the mRNA expres-
sion level of AKT1(cor = 0.1565, P = 0.0075), BCL2 
(cor = − 0.2589, P < 0.0001), MTOR (cor = 0.2013, 
P = 0.0006), TP53 (cor = 0.2013, P = 0.0006), VEGFA 
(cor = − 0.3215, P < 0.0001) and RFS-related risk score 
was correlated with the mRNA expression level of 
AKT1 (cor = 0.2630, P = 0.0002), TP53 (cor = 0.1744, 
P = 0.0130), VEGFA (cor = 0.2093, P = 0. 0028), as shown 
in Fig. 6g–n. These results pointed out that patients with 
higher OS-related risk score and RFS-related risk score 

might respond better to therapies targeting AKT1 and 
VEGFA, patients with lower OS-related risk score might 
respond better to therapies targeting BCL2. Besides, 
patients with higher OS-related risk score might be more 
sensitive to drugs targeting MTOR. Interestingly, patients 
with higher OS-related risk score and RFS-related risk 
score had opposite sensitivity to TP53, which was worth 
exploring further.

RNA expression in CC and normal samples
Finally, among the 12 autophagy biomarkers related to 
the survival of cervical cancer, based on literature search, 
we selected 6 genes (ATG4C, ATG4D, CD46, TP73, 
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Fig. 5  Independent prognostic analysis and nomogram diagram. a Univariate Cox regression analysis. Forest plot of associations between risk 
factors and the survival for OS. b Multiple Cox regression analysis. The autophagy-associated gene signature is an independent predictor of 
CC patients for OS. c Univariate Cox regression analysis. Forest plot of associations between risk factors and the survival for RFS. d Multiple Cox 
regression analysis. The autophagy-associated gene signature is an independent predictor of CC patients for RFS. e A nomogram of the CC cohort 
(training set) used to predict the OS. f A nomogram of the CC cohort (training set) used to predict the RFS
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SERPINA1 and HSPB8) to verify their RNA expression 
in CC and normal cervical tissue samples. The results 
showed that except for SERPINA1, the other five genes 
were down-regulated in cervical cancer(Fig.  7a–f, all 
P < 0.05). This result shows that ATG4C, ATG4D, CD46, 
TP73 and HSPB8 may play a protective role in the pro-
gression of cervical cancer. Interestingly, ATG4D, CD46, 
TP73 and HSPB8 were negatively correlated with the risk 
score, which is consistent with the experimental results. 
ATG4C is positively correlated with the risk score, which 
is contrary to the above qPCR results.

Discussion
CC is the most universal gynecological malignancy. In 
economically underdeveloped countries, the incidence 
and mortality of CC remain high all year round. 2018 
International Federation of Obstetrics and Gynecology 
(FIGO) CC patient staging system proposed for the first 

time that imaging and pathological examination results 
should be included in the staging standard, which could 
reduce unnecessary surgery and the risk of complications 
in patients [21], but it had obvious limitations for patients 
with lymph node metastasis. Recently prognostic mod-
els of different cancer patients including CC have been 
constructed based on bioinformatics technology [14, 
22–24]. It has been reported autophagy has a significant 
impact on the occurrence and development of tumors, 
autophagy-related genes can serve as prognostic markers 
[25–27]. However, few studies have reported the predic-
tive relationship of CC transcriptome expression data on 
survival at the level of autophagy.

Inspired by the reported cellular and molecular effects 
of autophagy in CC, here we adopted autophagy-related 
genes expressed in CC rather than differentially expressed 
autophagy-related genes to construct prognostic mod-
els. After Cox regression analysis, we finally found nine 
autophagy-related risk signatures (VAMP7, MTMR14, 
ATG4D, KLHL24, TP73, NAMPT, CD46, HGS, ATG4C) 
were related to OS, and three autophagy-related risk sig-
natures (SERPINA1, HSPB8, SUPT20H) were related to 
RFS. K-M survival analysis and the AUC illustrated our 
models had a great predictive performance. Addition-
ally, the risk scores of the OS and RFS model could be 
considered as independent predictive indicators. Finally, 
the nomogram and calibration chart showed that the 
risk signatures could accurately assess the survival of 
CC patients. Vesicle-Associated Membrane Protein 7 
(VAMP7) is a member of the synaptobrevin family which 
was found to be highly expressed and associated with a 
shorter survival period in esophageal cancer which could 
act as a dangerous gene [28]. However, we found out 
that VAMP7 and risk score were negatively correlated 
contrary to previous conclusions. Myotubularin-related 
protein 14 (MTMR14) is a member of the myotubularin 
(MTM)-related protein family. Knockdown of MTMR14 
promoted cell apoptosis and inhibited migration in liver 
cancer cells [29]. However, Liu et  al. put forward an 
opposite conclusion, they believed that the deficiency 
of MTMR14 could promote autophagy and prolifera-
tion of mouse embryonic fibroblasts [30], which is con-
sistent with our results. Autophagy Related 4D Cysteine 
Peptidase (ATG4D) and its paralog gene ATG4C played 
an important role as autophagy regulators that linked 
mitochondrial dysfunction with apoptosis in cancers 
such as breast carcinoma, human uterine fibroids, colo-
rectal cancer and glioma [31–34]. Here we found that 
ATG4C might act as a risk factor, while ATG4D did the 
opposite. KLHL24 has been uncovered as a prognostic 
predictor for acute myeloid leukemia [35]. Bockers sug-
gested that KLHL24 associated with ESR1 could act as 
the upstream regulator to promote breast tumor growth 

a b

c

e f

d

Fig. 7  RNA expression of ATG4C, ATG4D, CD46, TP73, SERPINA1 and 
HSPB8 in CC and normal samples. a–f qPCR determined the RNA 
expression of ATG4C, ATG4D, CD46, TP73, SERPINA1 and HSPB8 in CC 
and normal samples. Quantitative normalization of the gene was 
performed in each sample using GAPDH expression as an internal 
control
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[36]. In CC, high expression level of KLHL24 can predict 
a better prognosis. TP73 is a member of the TP53 fam-
ily whose expression has been observed altered in most 
human cancers and associated with the prognosis. In our 
present study, TP73 played a protective role in the prog-
nosis of CC. Nicotinamide phosphoribosyltransferase 
(NAMPT) possesses various functions in human cells, 
and altered NAMPT expression is associated with human 
carcinogenesis [37–39]. Currently, inhibition of NAMPT 
as a therapeutic strategy in cancer has attracted more and 
more attention. Our research once again confirmed the 
dangerous role of NAMPT. CD46 has been found to be 
a prognostic indicator and highly expressed CD46 was 
associated with poor prognosis [40, 41], which strongly 
supported our results. Hepatocyte Growth Factor-Reg-
ulated Tyrosine Kinase Substrate (HGS) is one of the 
master regulators whose expression gradually increased 
with CRC canceration and was an independent poor 
prognostic factor [42]. We also found that overexpressed 
HGS was associated with poor prognosis in CC. Ser-
pin Family A Member 1 (SERPINA1) is a protein with a 
highly conserved structure and the most important pro-
tease inhibitor in humans whose expression is increased 
in malignant tumors, and it has been proven to be a pre-
dictor of poor prognosis for high-grade gliomas (HGGs), 
cutaneous squamous cell carcinoma (SCC) and non-
small-cell lung cancer (NSCLC) [43–45]. Contrary to the 
above conclusion, SERPINA1 played an inhibitory role in 
the poor prognosis of CC, which suggested that different 
cancers had different mechanisms. Heat Shock Protein 
Family B (Small) Member 8 (HSPB8) belongs to the small 
heat shock protein(HSP20)family. It has been reported 
that high HSPB8 levels have a worse prognosis than low 
HSPB8 expression [46, 47]. Veyssiere et al. proposed that 
the mutation of SPT20 Homolog, SAGA Complex Com-
ponent (SUPT20H) was significantly related to Rheuma-
toid Arthritis (RA) [48]). Additionally, SUPT20H could 
serve as an independent prognostic biomarker in gliomas 
and multiple myeloma (MM) [49, 50].

Next, we selected six genes(ATG4C, ATG4D, CD46, 
TP73, SERPINA1 and HSPB8) from the above twelve risk 
biomarkers for qPCR verification according to literature 
retrieval. The experimental results confirm that ATG4D, 
CD46, TP73 and HSPB8 are decreased in cervical cancer, 
and the prognosis model shows a negative correlation 
with the risk score, it could be inferred that they had a 
protective effect on the occurrence and prognosis of cer-
vical cancer. ATG4C expression is decreased in cervical 
cancer, but it is a risk factor in the prognosis model, it is 
worthy of further study.

The gene expression information and clinical survival 
information of patients with endometrial cancer (TCGA-
UCEC) were validated to determine the predictive 

value of the OS model. Similarly, head and neck cancer 
(GSE117973) was downloaded to identify the predic-
tive value of the RFS model. The results of the external 
validation set showed that our risk score was significantly 
related to the survival of patients, and a high risk score 
could indicate a poor prognosis for patients. Although 
the type of cancer in the testing set was different from 
the training set, studies have shown radiotherapy for CC 
can increase the incidence of endometrial cancer [19]. 
One of the important pathogenic factors for head and 
neck cancer is HPV infection [51]. So we believed that 
the prediction models for CC patients could be applied 
for endometrial cancer and head and neck cancer. These 
results certificated that the models had wide applicability.

Bioinformatics functional analysis showed that 53 DE-
ARGs were mainly enriched in autophagy and apoptosis 
pathways. Based on the results, we hypothesized that 
autophagy played an important role in the occurrence 
and development of CC. Single-gene GSEA revealed the 
risk signatures included in our computational prognostic 
models could participate in autophagy, cell adhesion to 
affect the cell cycle, cell proliferation and migration.

Finally, we further explored whether model genes could 
be regarded as diagnostic markers. Interestingly, ROC 
curve analysis revealed that the patient might be accu-
rately distinguished from the normal samples according 
to the expression of the risk signatures. In the present 
study, prognostic markers and diagnostic signatures were 
combined in CC for the first time, which explained that 
the incidence and prognosis of cancer were continuous 
and indivisible. Additionally, OS-related risk score and 
RFS-related risk score could prompt the patient’s sen-
sitivity to the target drug to guide reasonable clinical 
treatment.

Conclusion
In summary, we have constructed predictive models to 
predict the OS and RFS of CC patients based on ARGs 
expressed in CC and verified the effectiveness of the 
models in external validation sets. Furthermore, these 
model genes are expected to be diagnostic and treatment 
indicators, which may require a larger sample size to con-
firm this finding.
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Tissue Expression; HNSCC: Head and neck cancer; HADb: Human Autophagy-
dedicated Database; HPV: Human papillomavirus; HPA: Human Protein Atlas 
database; K-M curve: Kaplan–Meier curve; Lasso: Least absolute shrinkage 
and selection operator; MF: Molecular function; OS: Overall survival; PFS: 
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Progression-free survival; PPI: Protein–protein interaction; ROC: Receiver oper-
ating characteristic; RFS: Recurrence-free survival; RNA-seq: RNA sequence; 
TCGA​: The Cancer Genome Atlas.
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