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Abstract: The Cry (crystal) proteins from Bacillus thuringiensis are known to have toxicity against
a variety of insects and have been exploited to control insect pests through transgenic plants and
biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in
Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA
database (Accession No. AM292031). For expression analysis, Escherichia coli DH5α was transformed
with the fragment sub-cloned in pET22b expression vector using NdeI and HindIII restriction sites,
and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein
against lepidopteran and dipteran insects, BL21 (codon plus) strain of E. coli was further transformed
with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies
up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5%
Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM
K2CO3 (pH 11.5), dialyzed, and freeze-dried. This freeze-dried protein as well as inclusion bodies
were used in bioassays against larvae of Helicoverpa armigera and Musca domestica. The freeze-dried
protein was toxic to H. armigera larvae with an LC50 value of 131 ng/mL. However, Cry2Ac7 produced
in E. coli did not show any mortality to M. domestica larvae. This is the first report of Cry2Ac protein
toxic to H. armigera.

Keywords: Bacillus thuringiensis (Bt); cry2Ac7 gene; cloning; protein expression; bioassays;
Helicoverpa armigera; Musca domestica

1. Introduction

Bacillus thuringiensis (Bt) is an aerobic, Gram-positive, endospore-forming soil bacterium.
It produces parasporal protein toxins called insecticidal crystal proteins (Cry and Cyt proteins) or
δ-endotoxins during the sporulation phase. These proteins are toxic to dipteran, lepidopteran, and
coleopteran larvae [1]. They are also toxic to some hymenopteran, homopteran and mallophaga
insects, as well as to many nematodes, flat worms, and Sarcomastigophora [2]. Despite the actual
or presumed presence of various pathogenicity factors, Bt does not have a significant history of
mammalian pathogenicity [3].

More than 250 crystal (Cry) proteins have been described [4,5]. The genes encoding Cry proteins
are found (often clustered) on transmissible plasmids and flanking transposable elements, which
explains their easy spread within the species [6–8]. Conjugation between different strains has been
observed in soil environments as well as within the insects [9]. Individual Cry toxins have a defined
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spectrum of insecticidal activity, usually restricted to a few species within one particular order of
insects. A few toxins have an activity spectrum that spans two or three insect orders—most notably
Cry1Ba, which is active against larvae of moths, flies, and beetles [10], and Cry2Aa which is toxic to
dipteran as well as lepidopteran insects [11].

cry2A gene encodes a protein of 65-kDa, which forms cuboidal crystals [11,12]. Three cry2A
genes viz., cry2Aa [11,13], cry2Ab [11,14,15], and cry2Ac [15], have been reported. Cry2Aa is toxic to
lepidopteran and dipteran larvae, while Cry2Ab and Cry2Ac are toxic only to lepidopteran species.
cry2Aa and cry2Ac genes have a common characteristic in that these are placed at the third position
in a three-gene operon. However, the crystallization of Cry2Aa protein requires the second gene,
orf2, in the cry2Aa operon [16], while the two orf s upstream of cry2Ac gene do not have an apparent
role in the formation of Cry2Ac inclusions [15]. On the other hand, cry2Ab gene is cryptic [11,14,17].
Dankocsik et al. [14] found Cry2Ab protein to be highly toxic to Lymantria dispar, Heliothis virescens, and
Trichoplusia ni, but not toxic to Aedes aegypti. cry2Ac gene encodes approximately 65-kDa protein, which
targets lepidopteran as well as dipteran insects. In the mature toxin, the N-terminal domain (residues
1–272) is a pore-forming seven-helical bundle. The second domain (residues 273–473) is a receptor
binding β prism which is a three-fold symmetric arrangement of β sheets, each with a Greek key fold.
The third domain (residues 474–623) is implicated in determining both larval receptor binding and
pore function, and is a lectin-like C-terminal β sandwich. Cry2A binds to different receptors on BBMV,
and thus is used for resistance management. Transgenic tobacco, rice, and cotton plants expressing
cry2A genes have been generated for auto-protection against insects. Bt cotton that expresses two
different Bt toxins (Cry1Ac + Cry2A) is being used to manage insect resistance [18]. Kota et al. [19]
demonstrated that overexpression of the Bt Cry2Aa2 protein in chloroplasts confers resistance to plants
against susceptible and Bt-resistant Heliothis virescens.

Besides their long-term use as a biological insecticide in the form of sprays of spore-crystal
mixtures, individual Cry toxins have been expressed in transgenic plants to render crops resistant to
insect pests. Since Cry1-type toxins have extensively been used in transgenic plants, there are reports
that insects have developed resistance against some of these toxins. Akhurst et al. [20] reported the
resistance of pests against Bt-cotton expressing Cry1Ac. In Pakistan, Maqbool et al. [21] generated
transgenic rice indica expressing cry2A gene, which was reported to be effective against two major
rice pests in the Indian subcontinent—the yellow stem borer and the rice leaf folder. Later, Zaidi [22]
produced a transgenic tobacco plant, Nicotiana tabacum with cry2A to protect it against Heliothis virescens.

However, information about the distribution of cry genes is still limited and does not cover many
distinct geographic areas. There is, therefore, a need to search for novel and more potent strains with
new pathogenic spectra and wider host ranges, especially in parts of the world that have not been
adequately sampled. Pakistan constitutes one such area which needs to be explored for crystalliferous
strains with wider host ranges in this region. The present report characterizes cry2A-type gene(s) from
these strains, and evaluates the toxicity of Cry2A proteins against the target insects, Helicoverpa armigera
and Musca domestica.

2. Results

2.1. Genotyping for cry2 Gene

All of the 50 local isolates were subjected to genotyping for cry1, cry2, and cry4 genes using a universal
set of primers (Supplementary Table S1). Only six isolates (SBS BT1-6, Supplementary Table S2) amplified
0.5 kb PCR product, which showed the presence of cry2 gene in these isolates, while five of the locally
isolated Bt isolates (CMBL BT1-5), obtained from Cell and Molecular Biology Lab (CMBL), University of
the Punjab, Lahore, revealed the presence of cry2 gene [23]. SBS BT1 was found negative for cry1, cry1Ac,
and cry4, but positive for cry2Ab and cry2Ac.
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2.2. Sequencing of the cry2ac7 Gene

Full length cry2Ac gene, cloned from local isolate SBS-BT1, was sequenced from both strands and
deposited to EMBL with accession number AM292031. It has now been named as Cry2Ac7 protein by
B. thuringiensis Delta-Endotoxin Nomenclature Committee, becoming a new member of the Bt toxins
(http://www.lifesci.susx.ac.uk/home/Neil_Crickmore/Bt/).

2.3. Hyperexpression of cry2ac7 Gene in Escherichia coli (BL21 Codon Plus)

For overexpression, BL21 codon plus strain of E. coli was transformed with the recombinant
SBS-BT1/cry2Ac7. Ten colonies were picked up from the plate, inoculated in LB broth and induced
with IPTG (1 mM) at 37 ◦C for 8 and 20 h. Protein profiles were analyzed with SDS-PAGE. All colonies
expressed about 65 kDa Cry2Ac7 protein equally after 8 h. Furthermore, the IPTG concentration was
optimized and no visual difference was noted in the expression of Cry2Ac7 when induced with 0.5,
1.0, 1.5, and 2.0 mM IPTG concentration (Figure 1a). Also, the incubation temperature of 25 ◦C was
found to be optimum for the expression with varying concentrations of IPTG (Figure 1b), though the
expression of non-target proteins was also found low when induced at 16 ◦C.

Figure 1. Optimization of Cry2Ac7 expression in BL21 (codon plus) (a) Molecular weight marker
(lane 1), induction with 2.0 mM, 1.5 mM, 1.0 mM, 0.5 mM IPTG at 37 ◦C (lanes 2–5), uninduced sample
(lane 6), induction with 2.0 mM, 1.5 mM, 1.0 mM, 0.5 mM at 25 ◦C (lanes 7–10), induced and uninduced
pET22b (lanes 11 and 12). (b) Molecular weight marker (lane 1), induction with 0.5 mM IPTG at 16 ◦C
for 2, 4, 6, and 8 h (lanes 3, 5, 7, and 11), induction with 0.5 mM IPTG at 25 ◦C for 0, 2, 4, 6, and 8 h
(lanes 2, 4, 6, 8, and 10).

2.4. Partial Purification of Cry2Ac7 Inclusion Bodies

The Cry2Ac7 inclusion bodies were collected from disrupted cells after centrifugation. They were
partially purified by washing with different buffers as mentioned in the methodology. The SDS-PAGE
analysis after each step revealed the removal of unwanted proteins from the inclusions (Figure 2).

http://www.lifesci.susx.ac.uk/home/Neil_Crickmore/Bt/
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Figure 2. Purification of inclusion bodies of Cry2Ac7 expressed in BL21 (codon plus) induced with
0.5 mM IPTG at 25 ◦C for 4 h: Molecular weight marker (lane 1), total cell protein (lane 2), pellet 1
(lane 3), supernatant 1 (lane 4), pellet 1 (lane 5), supernatant 2 (lane 6), pellet 3 (lane 7), supernatant 3
(lane 8), pellet 4 (lane 9), supernatant 4 (lane 10), pellet 5 (lane 11), supernatant 5 (lane 12).

2.5. Toxicity Assay of Cry2Ac7 Toxin against Helicoverpa armigera

Cry2Ac7 protein, in the form of partially purified freeze-dried powder as well as crude inclusion
bodies, was used in toxicity assays against H. armigera. Both forms of the proteins were almost equally
toxic to the insects with an LC50 value of 131 ng/mL (0.131 µg/mL) for freeze-dried protein and
118 ng/mL (0.118 µg/mL) for inclusion bodies, as shown in Figure 3. The insects stopped feeding
within 24 h. Mortality started after 72 h. Though a few insects resisted even high protein dose, their
sizes were considerably smaller than the control insects (Figure 4).

Figure 3. Bioassays of Helicoverpa armigera with Cry2Ac7 protein, in the form of freeze-dried powder
and inclusion bodies. Mortality was determined using Probit analysis [24].
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Figure 4. Growth difference in first instar larvae of H. armigera after feeding for four days on normal
synthetic diet (a) and on diet with Cry2Ac7 protein (b).

In M. domestica, the protein had no toxic effect on the growth and vigor of the emerging flies (data
not included).

It may, however, be kept in mind that the inclusions produced in E. coli are not reflective of the
true nature of the crystals, and the bioassay data reported here for H. armigera and M. domestica may not
be interpretable and comparable with other Cry2A-based assays in which native Cry2A crystal/spore
mixtures have been used.

3. Discussion

3.1. Profile of Cry2A Subtypes and Toxicity

SBS-BT1 indeed showed the toxicity against lepidopteran (H. armigera) and dipteran (M. domestica)
insects. PCR amplification, a sensitive method which can rapidly detect and identify target DNA
sequences, had been employed by researchers to identify Bt genes [4,6]. In this study, the technique
was used to investigate SBS-BT1 for the presence of the cry1, cry1Ac, cry2, and cry4 genes. The results
indicated the presence of cry2 gene only, whereas cry1 and cry4 were not detected. The toxicity of the
strain in the bioassays was therefore possibly because of cry2 gene(s). There are however, a number of
other factors apart from Cry toxins in Bt which show insecticidal activity found within the crystals or
act as enhancers for Cry or cytolysins (Cyt) toxins. Bt produces various virulence factors other than the
crystal proteins, including secreted insecticidal protein toxins, α-exotoxins, β-exotoxins, hemolysins,
enterotoxins, chitinases, and phospholipases [25]. The spore itself contributes to pathogenicity, often
synergizing the activity of the crystal proteins. In the presence of so many factors contributing to
pathogenicity, the exact contribution of each factor is often unknown [6].

Genotyping with specific primers of cry2 subfamilies indicated the presence of cry2Ab and cry2Ac
genes. These cry2 gene(s) might be the target gene-encoding protein toxic to the tested insects. To the
best of our knowledge, this is the first report of Cry2Ac-type protein toxic to American bollworm,
H. armigera. Wu et al. [15] reported the low toxicity of Cry2Ac1 toxin (accession #CAA40536) having an
LC50 value of 4000 ng/mL, while Cry2Ac7 is 30.5-fold more toxic with an LC50 value of 131 ng/mL.
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3.2. Sequence Homology of Cry2Ac7 Protein with Other Related Proteins

Cry2Ac7 has 97.43% amino acid homology with Cry2Ac1. There are 16 amino acid differences
between the two proteins (Tables 1 and 2). Most of these differences lie in Domain I, which is involved
in membrane insertion and pore formation, and Domain II, which is involved in receptor recognition
and binding. Therefore, the increased toxicity of Cry2Ac7 may be due to all or some of these altered
amino acids. None of the rest of Cry2Ac-type protein has been tested against this particular insect.

Table 1. CLUSTALW (2.1) multiple sequence alignment of Cry2Ac1, Cry2Ac7, and Cry2Ac5 proteins.

y2Ac5 MNNVLNSGRNTTCHAHNVVAHDPFSFEHKSLNTIEKEWKEWRRTDHSLYVAPIVGTVGSF
Cry2Ac7 MNTVLNNGRNTTCHAHNVVAHDPFSFEHKSLNTIEKEWKEWKRTDHSLYVAPIVGTVGSF
Cry2Ac1 MNTVLNNGRNTTCHAHNVVAHDPFSFEHKSLNTIEKEWKEWKRTDHSLYVAPIVGTVGSF

**.***.**********************************:******************
Cry2Ac5 LLKKVGSLVGKRILSELQNLIFPSGSIDLMQEILRATEQFINQRLNADTLGRVNAELAGL
Cry2Ac7 LLKKVGSLVGKRILSELQNLIFPGGSIDLMQEILRATEQFINQRLNADTLGRVNAELAGL
Cry2Ac1 LLKKVGSLVGKRILSELQNLIFPSGSIDLMQEILRATEQFINQRLNADTLGRVNAELAGL

***********************.************************************
Cry2Ac5 QANVAEFNRQVDNFLNLNQNPVPLAIIDSVNTLQQLFLSRLPQFQIQGYQLLLLPLFAQA
Cry2Ac7 QANVAEFNRQVDNFLNPNQNPVPLAIIDSVNTLQQLFLSRLPQFQIQGYQLLLLPLFAQA
Cry2Ac1 QANVAEFNRQVDNFLNPNQNPVPLAIIDSVNTLQQLFLSRLPQFQIQGYQLLLLPLFAQA

**************** *******************************************
Cry2Ac5 ANLHLSFIRDVILNADEWGISAATVRTYRDHLRNFTRDYSNYCINTYQTAFRGLNTRLHD
Cry2Ac7 ANLHLSFIRDVILNADEWGISAATVRTYRDHLRNFTRDYSNYCINTYQTAFRGLNTRLHD
Cry2Ac1 ANFNLSFIRGVILNADEWGISAATVRTYRDHLRKFHRDYSNYCINPYQTAFRGLNHRLPD

**::*****.***********************:* *********.********* ** *
Cry2Ac5 MLEFRTYMFLNVFEYVSIWSLFKYQSLLVSSGANLYASGSGPTQSFTAQNWPFLYSLFQV
Cry2Ac7 MLEFRTYMFLNVFEYVSIWSLFKYQSLLVSSGANLYASGSGPTQSFTAQNWPFLYSLFQV
Cry2Ac1 MLEFRTYMFLNVFEYVSIWSLFKYQSLLVSSGANLYASGSGPTQSFTAQNWPFLYSLFQV

************************************************************
Cry2Ac5 NSNYVLNGLSGARTTITFPNIGGLPGSTTTQTLHFARINYRGGVSSSRIGQANLNQNFNI
Cry2Ac7 NSNYVLNGLSGARTTITFPNIGGLPGSTTTQTLHFARINYRGGVSSSRIGQANLNQNFNI
Cry2Ac1 NSNYVLNGLSGARTTITFPNIGGLP-VYHNSTLHFARINYRGGVSSSRIGQANLNQNFNI

******************** ..*****************************
Cry2Ac5 STLFNPLQTPFIRSWLDSGTDREGVATSTNWQSGAFETTLLRFSIFSARGNSNFFPDYFI
Cry2Ac7 STLFNPLQTPFIRSWLDSGTDREGVATSTNWQSGAFETTLLRFSIFSARGNSNFFPDYFI
Cry2Ac1 STLFNPLQTPFIRSWLDSGTDREGVATSTNWQSGAFETTLLRFSIFSARGNSNFFPDYFI

************************************************************
Cry2Ac5 RNISGVVGTISNADLARPLHFNEIRDIGTTAVASLVTVHNRKNNIYDTHENGTMIHLAPN
Cry2Ac7 RNISGVVGTISNADLARPLHFNEIRDIGTTAVASLVTVHNRKNNIYDTHENGTMIHLAPN
Cry2Ac1 RNISGVVGTISNADLARPLHFNEIRDIGTTAVASLVTVHNRKNNIYDTHENGTMIHLAPN

************************************************************
Cry2Ac5 DYTGFTVSPIHATQVNNQIRTFISEKYGNQGDSLRFELSNTTARHTLRGNGNSYNLYLRV
Cry2Ac7 DYTGFTVSPIHATQVNNQIRTFISEKYGNQGDSLRFELSNTTARYTLRGNGNSYNLYLRV
Cry2Ac1 DYTGFTVSPIHATQVNNQIRTFISEKYGNQGDSLRFELSNPTARYTLRGNGNSYNLYLRV

****************************************.***:***************
Cry2Ac5 SSIGSSTIRVTINGRVYTANVNTTTNNDGVLDNGARFSDINIGNVVASANTNVPLDIQVT
Cry2Ac7 SSIGSSTIRVTINGRVYTANVNTTTNNDGVLDNGARFSDINIGNVVASANTNVPLDIQVT
Cry2Ac1 SSIGSSTIRVTINGRVYTANVNTTTNNDGVLDNGARFSDINIGNVVASANTNVPLDIQVT

************************************************************
Cry2Ac5 FNGNPQFELMNIMFVPTNIPPLY
Cry2Ac7 FNGNPQFELMNIMFVPTNLPPLY
Cry2Ac1 FNGNPQFELMNIMFVPTNLPPLY

******************:****
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Table 2. Variation in the amino acid sequences of Cry2Ac1, Cry2Ac5, and Cry2Ac7 proteins.

Amino Acid Cry2Ac1 Cry2Ac5 Cry2Ac7

3 Asn Thr
7 Ser Asn
42 Arg Lys
84 Ser Ser Gly

137 Leu Pro
183 Phe Leu
184 Asn His
190 Gly Asp
214 Lys Asn
216 His Thr
226 Pro Thr
236 His Thr
239 Pro His
326 Insertion Gly
327 Val Ser
328 Tyr Thr
329 His Thr
330 Asn Thr
331 Ser Gln
521 Pro Thr
525 His Tyr
619 Ile Leu

Interestingly, the difference of a few amino acids can alter the toxicity spectrum of Cry proteins.
Widner and Whiteley [26] studied the host range specificity of two highly related crystal protein
genes from Bacillus thuringiensis subsp. kurstaki HD-1, designated cry2Aa and cry2Ab (previously
named cryIIA and cryIIB, respectively). Their respective gene products are 87% identical but exhibit
different toxicity spectra; Cry2Aa is toxic to both mosquito and tobacco hornworm larvae, whereas
Cry2Ab is toxic only to the latter. They generated hybrids of the cry2Aa and cry2Ab genes as well as
their resultant gene products were assayed for toxicity. A short segment of Cry2Aa corresponding to
residues 307 through 382 was shown to be sufficient for altering host range specificity i.e., when this
region replaced the corresponding segment of Cry2Ab, the resulting hybrid protein acquired toxicity
against mosquitoes. The Cry2Aa and Cry2Ab polypeptides differ by only 18 amino acids in this region,
indicating that very few amino acid changes can have a substantial effect on the toxicity spectra of
these proteins.

On the other hand, the toxicity of Cry2Ac5 (Accession # DQ341379) was reported to the third
instar larvae of mosquito, A. albopictus [27]. Cry2Ac7 and Cry2Ac5 are 99.2% identical and differ only
in seven amino acids (Tables 1 and 2). Five of these differences lie in Domain I, which is involved
in membrane insertion and pore formation, whereas two amino acid differences lie in Domain III.
Domains II and III are both involved in receptor recognition and binding. Additionally, a role for
domain III in pore function has been found [3]. The cry2Ac5 encoded a toxic protein against A. albopictus,
which was not in agreement with the previous reports that Cry2Ab, Cry2Ac, and Cry2Ad were only
toxic to lepidopteran insects [15,28]. It might also be possible that the interesting activity was due
to the fact that the other Cry2Ac toxins were not tested against this particular species of mosquito.
Further analysis of the differences in the amino acid sequence and the level and host range of toxicity
is in progress, and would be the subject of further and potentially more extensive study.

Figure 5 shows the multiple sequence alignment of Cry2Ac7 protein with Cry2Ac8, Cry2Ac9,
and Cry2Ac12 proteins reported from Pakistani isolates. Although the samples were collected from
different parts of Pakistan over a period of six years, 99.5% amino acid homology was found amongst
these proteins. There was lesser homology with rest of the Cry2Ac-type toxins from other geographical
regions of the world (homologies not shown here). This high degree of similarity among the toxins
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from one geographical region suggests some geographical basis for the origin and evolution of these
toxins. These proteins contain at least one unique variation in the amino acid sequence. Almond and
Dean [29] showed that even a single amino acid change can dramatically reduce the stability of Cry
proteins and hence affect the toxicity of toxins. Further studies are needed to analyze amino acid
variations which are crucial in assigning toxicity spectra to Cry2Ac-type toxins.

Figure 5. Multiple sequence alignment of Cry2Ac7 protein with Cry2Ac8, Cry2Ac9, and Cry2Ac12
reported from Pakistani isolates. Cry2Ac11 (HD29) is the positive control.

4. Materials and Methods

4.1. Sampling and Isolation of Bacillus thuringiensis Strains

Soil samples were collected from different areas of Lahore, Pakistan. The samples were processed
by the acetate selective method [30]. One gram of each sample was incubated for 4 h at 30 ◦C and
150 rpm in a conical flask containing 20 mL of 0.30 M sodium acetate (pH 6.8). This selectively
suppressed Bt spores that germinated when plated on a rich agar medium after incubating 2 mL
of the sample at 80 ◦C for 10 min. Three hundred microliters of each heat-treated sample was then
spread-plated and incubated at 30 ◦C for 24 h on plates of a medium containing (per liter) 3 g tryptone,
2 g tryptose, 1.5 g yeast extract, 0.05 M sodium phosphate (pH 6.8), 0.005 g MnCl, and 15 g agar.
Developing colonies were grown at 30 ◦C for 24 h on LB agar plates (1 g tryptone, 0.5 g yeast extract,
0.5 g NaCl. and 1.5 g bacteriological agar per 100 mL of water). Smears of these were stained with
Gram’s staining. Diagnostic schemes given in Bergey’s Manual of Determinative Bacteriology [31]
were followed for the identification of different Bt subspecies.

4.2. Ribotyping

Full length 16S rDNA (1692 bp) was amplified through PCR [32] and cloned in pTZ57R/T vector.
These were further proceeded for sequencing. Then, 1.6 kb fragment was sequenced from both strands
with internal primers (Supplementary Table S3) and submitted to the DNA database (EMBL AM 778998).

4.3. DNA Isolation and Genotyping

Total cell DNA of Bt was prepared according to Kronstad et al. [33]. Cells grown in 500 mL of
Spizizen medium ((NH4)2SO4 2 g, KH2PO4 6 g, sodium citrate.2H2O 1 g, MgSO4·7H2O 0.2 g, glucose
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0.5%, K2HPO4·3H2O 18.3 g, tryptone 20 g, yeast extract 5 g, dissolved per liter of water) in a 2.8-L
flask with shaking at 37 ◦C. Cells were harvested at an optical density of 0.7 at 600 nm. The cultures
were harvested by centrifugation at 6000 rpm (4355 rcf) for 10 min at 4 ◦C in a Beckman centrifuge,
and finally washed with 100 mL of a solution containing 100 mM NaCl, 10 mM Tris (pH 7.9), and
10 mM EDTA. The bacterial pellet was resuspended in 5 mL of a solution containing 150 mM NaCl
and 100 mM EDTA at pH 7.9. Lysozyme was added to give a final concentration of 0.25 mg/mL,
and the preparation was incubated at 37 ◦C for 20 min. To lyse the cells, 6.25 mL of a third solution
(100 mM Tris (pH 7.9), 100 mM NaCl, 2% SDS) was added. The preparation was mixed gently by
inverting the tube four or five times and incubated at 60 ◦C until clear (usually 30–45 min). The lysate
was then extracted four times with phenol-chloroform (1:1), which had been equilibrated with the
above Tris-NaCl-SDS solution. The aqueous phase was extracted each time with a wide-bore pipette.
After the final extraction, cold ethanol was added and the DNA was spooled out with a glass rod.
The DNA was then rinsed with 70% ethanol, dissolved in TE buffer (10 mM Tris (pH 7.9), 1 mM EDTA)
and stored in aliquots at −20 ◦C. Universal set of primers [4,34] was used to detect cry1, cry2, cry4,
cry1Ac, cry2Aa, cry2Ab, and cry2Ac genes in these isolates (Supplementary Table S2).

4.4. Cloning and Sequencing of the cry2ac7 Gene

To amplify full length gene from the local Bt isolates, a primer pair was designed manually
from the pre-existing sequences of cry2Ac gene from DNA databases. PCR reaction mixture (50 µL)
containing Taq buffer 1x, MgCl2 1.5 mM, dNTPs 200 µM, each of the primers 50 pmol, DNA 0.2–0.8 µg,
and Taq DNA polymerase 2.5–5.0 units, was run on an Applied BioSystems 2720 thermal cycler.
The thermal cycle of the reaction consisted of pre-PCR heating at 94 ◦C for 5 min, a final extension at
72 ◦C for 10 min, and 30 cycles each of denaturation at 94 ◦C for 1 min, annealing at 50 ◦C for 0:45 min,
and an extension at 72 ◦C for 2 min. For sub-cloning in expression vector pET22b, cry2Ac gene was
amplified with the following primer pair using T/A cloned gene as a template:

pET21a-N 5′ GCTCGGTACCTCGCTGAATGCATCTAGCATATGAATAC 3′

M13 R 5′-d(GAGCGGATAACAATTTCACACAGG)-3′)

NdeI-HindIII digested vector and PCR fragment were used in 1:3 ratio in a 50-µL reaction
containing 5 µL of 10x ligation buffer and 5 units of T4 DNA ligase. The reaction mixture was
incubated at 22 ◦C overnight. BL21 (codon plus) strain of E. coli was transformed with the recombinant
vector for expression analysis.

4.5. Sub Cloning in Expression Vector pET22b

cry2ac7 gene was amplified with N-terminal primer containing NdeI restriction site and ligated in
expression vector pET22b to form a recombinant pSBS-BT1/cry2Ac7. DH5α was transformed with this
recombinant DNA. Six colonies were picked up from the plate. All of them had recombinant plasmids,
which was confirmed by plasmid miniprep and restriction analysis of the plasmid.

4.6. Expression of cry2ac7 Gene in Escherichia coli (BL21C+)

BL21 codon plus (BL21C+) was transformed with the recombinant plasmid pSBS-BT1/cry2Ac7.
A single colony was inoculated in LB broth containing 100 µg/mL ampicillin and grown at 37 ◦C
overnight with continuous shaking. The next day, it was seed inoculated (1%) in LB broth (ampicillin
100 µg/mL), and grown at 37 ◦C for about 2 h (until OD550 was 0.6–0.8) with continuous shaking.
It was induced with various concentrations of IPTG (0.5, 1.0, 1.5, and 2.0 mM) at varying temperatures
(16 ◦C, 25 ◦C, and 37 ◦C) for different time periods (2, 4, 6, 8, and 18 h). Expression levels of the protein
were analyzed on 12% SDS-PAGE. In all experiments, BL21C+ transformed with non-recombinant
pET22b plasmid was proceeded in parallel as a negative control.
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4.7. Purification of Cry2Ac7

The E. coli cells, expressing the recombinant protein in the form of inclusion bodies, were harvested
and resuspended in wash buffer (Tris-Cl (pH 8.0) 50 mM, Triton X-100 1.5%, NaCl 200 mM, EDTA
(pH 8.0) 10 mM, DTT 2 mM). The cells were lysed by passing through a French press under 2500 psi
internal pressure and then centrifuged at 9500 rpm (15,971 rcf) for 15 min at 4 ◦C to harvest inclusion
bodies. The pellet was washed once again with wash buffer, twice with distilled water, once with 0.5 M
NaCl, and twice with water. The pellet was resuspended in 50 mM K2CO3 (pH 11.5) and incubated
at 37 ◦C for 1.5–2 h. It was then centrifuged at 9500 rpm (15,971 rcf) for 25 min at 4 ◦C to harvest the
insoluble inclusions. The solubilized part was dialyzed against different decreasing concentrations of
K2CO3 (25 mM, 10 mM, 5 mM, 2.5 mM, 1 mM) and finally against distilled water overnight at 4 ◦C.
The protein was then freeze-dried.

The freeze-dried protein was solubilized in 20 mM Tris (pH 10.6) and dialyzed against the same
buffer overnight at 4 ◦C, centrifuged at 6000 rpm (4468 rcf) to remove any particulate matter, then
filtered through 0.4-µm Millipore filter and injected in the Amersham Bioscience FPLC machine.
Fractions were analyzed on SDS-PAGE and protein was quantified by taking OD280 (1 OD unit = 1 mg)
as well as by a modified Lowry method [35].

4.8. Toxicity Assay of Cloned Toxin against H. armigera and M. domestica

Various concentrations of Cry2Ac7 protein (0.025 to 1.00 µg/g for H. armigera and 0.217 to
8.696 µg/g for M. domestica), in two separate experiments, were thoroughly mixed in the artificial diet
of H. armigera [36] and M. domestica [37]. In a negative control, the recombinant protein was not added.

Eight to 10 neonate larvae of H. armigera were placed over their diet surface to feed ad libitum,
each in a separate vial. The vials were covered with aluminum foil and kept at 24 ± 2 ◦C. Mortality
was recorded after 72 h. Likewise, 50 eggs of M. domestica were placed on the diet surface for the
eggs to hatch within 8–16 h and the larvae were allowed to feed on the diet ad libitum at 26 ± 2 ◦C.
The mortality was recorded after 10–13 days. All experiments were conducted in three replicas.

4.9. Statistical Analysis

The mortality was determined using Probit analysis [37].

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/9/11/358/s1,
Table S1: Universal set of primers used for genotyping of Bt isolates for cry 1, cry2 and cry 4 genes, Table S2:
Varies local isolates of B. thuringiensis harboring cry2 gene, Table S3: Internal primers used for sequencing full
length genes.
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