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A QSp Model for predicting clinical 
Responses to Monotherapy, 
combination and Sequential 
Therapy Following CTLA-4, PD-1, 
and PD-L1 Checkpoint Blockade
oleg Milberg1, chang Gong1, Mohammad Jafarnejad  1, Imke H. Bartelink2,5, Bing Wang2, 
paolo Vicini3, Rajesh narwal4, Lorin Roskos4 & Aleksander S. popel1,6

Over the past decade, several immunotherapies have been approved for the treatment of melanoma. 
The most prominent of these are the immune checkpoint inhibitors, which are antibodies that block 
the inhibitory effects on the immune system by checkpoint receptors, such as CTLA-4, PD-1 and PD-
L1. Preclinically, blocking these receptors has led to increased activation and proliferation of effector 
cells following stimulation and antigen recognition, and subsequently, more effective elimination of 
cancer cells. Translation from preclinical to clinical outcomes in solid tumors has shown the existence 
of a wide diversity of individual patient responses, linked to several patient-specific parameters. We 
developed a quantitative systems pharmacology (QSP) model that looks at the mentioned checkpoint 
blockade therapies administered as mono-, combo- and sequential therapies, to show how different 
combinations of specific patient parameters defined within physiological ranges distinguish different 
types of virtual patient responders to these therapies for melanoma. Further validation by fitting and 
subsequent simulations of virtual clinical trials mimicking actual patient trials demonstrated that the 
model can capture a wide variety of tumor dynamics that are observed in the clinic and can predict 
median clinical responses. Our aim here is to present a QSP model for combination immunotherapy 
specific to melanoma.

While researchers and clinicians first hypothesized and found evidence for the ability of immune cells to target 
and eliminate cancer in the late 19th and early 20th centuries, which was later termed immunosurveillance, it was 
not widely accepted and clinically proven until the 21st century1,2. Immunosurveillance has become part of a 
broader concept called immunoediting, which defines the stages of cancer growth: elimination, equilibrium and 
escape3. The preemptive immune cells (primarily the effector T cells) that eliminate cancer cells can eliminate 
the tumor in its entirety, come to a point where elimination is in dynamic equilibrium with tumor growth, or 
the tumor can overcome the immune response against it by dampening the immune response and outgrowing 
it. Such outgrowth can occur when the tumor size and doubling time together far exceed the abundance and 
effectiveness of the immune response. Immune responses are dampened due to several factors, including the 
resistance put forth by cancer cells through cytokine or immune checkpoint expression, in a similar manner by 
tumor-associated cells (e.g., T-regulatory cells, Tregs, and myeloid-derived suppressor cells, MDSCs) and through 
variations in tumor immunogenicity that lower the formation of an effective tumor-specific immune response; 
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considering that immune cell access to the tumor is equally possible4. Some types of tumors are naturally more 
immunogenic than others, with melanoma being the most immunogenic5,6.

immunogenicity, the Mounting of an Anti-tumor Response and its Resistance by the 
Tumor. The immunogenicity of a tumor, which is the ability of an immune response to be mounted against 
it, is a function of its tumor burden (i.e., the abundance of tumor antigens recognized by the immune cells) and 
its antigen mutational landscape (i.e., the variety and strength of those antigens)7. Tumors with antigens more 
abundant, stronger and varied in sequence, are more immunogenic and may activate more T cells against the 
tumor8–10.

Tumor-associated or tumor-specific antigens (TAA or TSA, respectively) are usually proteins, peptides or 
other factors that are products of the cancer cells11. In larger tumors (with higher tumor burden), more TAA and 
TSA are released through natural death and decay of cancer cells during growth, and during killing of cancer cells 
by lymphocytes. TAA (used from now on) can be picked up by antigen presenting cells (APCs), which mature 
(to mAPCs) and present the TAA to naïve T cells during priming to induce their differentiation into activated 
tumor-targeting effector T cells, which then can eliminate the tumor through cytotoxic activity.

During the process of antigen presentation, each naïve T cell can recognize a specific TAA by its unique T cell 
receptor (TCR). A T cell with a TCR specific to a TAA is called a clone. There are usually several copies of each 
clone specific to each TAA available for priming and activation. The more unique TAA a tumor releases, the more 
T cell clones can be primed and activated to target the tumor. Additionally, the strengths of the different antigens 
have been classified from weak to strong; the exact reason for why one antigen is stronger or weaker than another 
is not entirely clear and has been linked to several factors, including the affinity (Kd) and binding ability between 
the antigen presented on the major histocompatibility complex (MHC) and its cognate TCR during antigen pres-
entation. Upon the successful elimination (death) of cancer cells by the effector T cells, TAA associated with 
those cancer cells are released into the environment and thus can be used to prime more effector cells to mount a 
subsequent attack against the tumor; some non-specific cytotoxic activity by the T cells is also thought to occur 
by infiltrating effector T cells12.

As described, an effective immune response is dictated by the number of T cell clones, tumor burden (or anti-
gen abundance, which is assumed proportional to tumor size) and antigen strength. Considering that an effec-
tive immune response can be generated, to eliminate the tumor it must overcome its growth rate and resistance 
mechanisms. The focus of this study is on the resistance to cancer elimination by immune checkpoints Cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), Programmed cell death protein 1 (PD-1), and Programmed 
death-ligand 1 (PD-L1) and how their blockade by immune checkpoint inhibitors can lead to a range of patient 
responses through variations in specific physiological parameters, such as those described above (i.e., numbers 
of T cell clones, tumor size and antigen strength), encoded in a mechanistic framework. Other key parameters 
mechanistically considered are the expression levels of the immune checkpoints (particularly PD-L1 on cancer 
cells, which is a known biomarker of anti-PD-1 efficacy), and inhibitory immune cells, such as T-regulatory cells 
present in the lymph nodes and the tumor microenvironment. While immune checkpoints in recent years have 
been found to be prime targets for cancer immunotherapy in melanoma, non-small cell lung cancer (NSCLC), 
bladder cancer and other cancer types, we particularly examine them here for melanoma13,14.

Immune checkpoint blockade therapies. Both PD-1 and PD-L1 are expressed on effector T cells, cancer 
cells, as well as the mentioned regulatory immune cells in the tumor microenvironment (TME)15–17. When PD-1 
interacts with PD-L1, the effector T cells can be prevented from cytotoxic activity and may become anergic; in this 
way the tumor hijacks the signaling pathways for its own survival. Furthermore, CTLA-4 checkpoints have been 
found on T cells and play an important role during priming in the activation of effector T cells; their blockade 
can help boost effector T cell numbers18,19. Other checkpoints have also been identified: those found that are most 
relevant to this study include the ones mentioned above, as well as the co-stimulatory B7 receptors (CD80 and 
CD86) and CD28, and PD-L2, which also interacts with PD-120–23.

Mathematical models for immunotherapy and their utility. Several mathematical models of the 
immune system have been developed thus far; only a small number of them focus on immuno-oncology and 
immunotherapies, as described here24–26. Previous models of immunotherapies have focused on single chem-
otherapies, combinations of chemotherapies, radiation therapy, a cancer vaccine and IL-2 immunotherapy, or 
focused on a specific molecule or pathway27–31. Quantitative Systems Pharmacology (QSP) approaches to can-
cer immunotherapy are currently being pursued in academia and industry32. It is our belief that computational 
models, such as the one presented here, will play a substantial role in reducing costs and expediting the drug 
development and approval processes to bring therapies to market quicker, especially for combination therapies33.

Much is still unknown about how and why only some patients benefit from particular therapeutic regi-
mens34,35. In order to make personalized cancer immunotherapy a reality, it is necessary to gain a better under-
standing of the physiological system dynamics at play on both the cellular and molecular levels for each cancer 
patient, which may ultimately help determine the optimal personalized dosing, regimens and combination strat-
egies. Here, we aim to link how the mentioned physiological parameters that we described biologically (i.e., 
numbers of T cells clones, tumor size, average antigen strength, expression of PD-L1 on cancer cells, as well as 
the levels of inhibitory cells in the tumor and lymph node) when put into a well-mixed mechanistic framework 
and their values varied across defined ranges, can allow us to simulate a variety of anti-tumor responses when 
the dose level and regimen of each therapy is kept constant. We further show that the median values of our 
model parameters can be used to predict median responses to various combinations of CTLA-4, PD-1 and PD-L1 
blockade therapies that have been reported in the literature specific to the doses and regimens. Lastly, we show 
the significances of the parameters we have varied in terms of how they may correlate to different types of patient 
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responders, in addition to how variations in these parameters can lead to different types of tumor dynamics. We 
use this model to make predictions on outcomes of combination therapies and believe it can be used to predict 
various dosing regimens for optimization purposes within the given framework.

Choice of virtual patient population. Different methods have been utilized in the literature to create a 
virtual patient (VP) population dataset; yet it is still an open question of how to define the most representative 
VP population for each clinical trial. One method defines “plausible virtual patients” within a virtual population 
(Vpop) using a sampling/acceptance-rejection algorithm with applied prevalence weights to each VP to make 
sure the VP cohort spans the entire range of clinically observed responses; additionally, stochastic noise can add 
more variability to this dataset; another method relies on simply fitting parameters within a constrained range to 
the anti-tumor response data a certain number of times to define the VP set36,37. We have employed a technique 
similar to the latter, where we specifically defined the mentioned parameter ranges quantitatively and qualitatively 
from literature sources and varied them using a particular distribution method within those ranges to create a 
multidimensional array of patient parameters for the number of patients we wanted to simulate responses for. 
Primarily, we assumed that if our model is a representative abstraction of the true mechanism underlying these 
therapies, we should see a range of responses similar to clinical data. We further primarily focus on the biological 
parameters discussed, while the remaining parameters in the model were set to their defined averages and not 
varied. Table S11 lists the parameter ranges and the median values used to define the VP populations for each 
simulation. We recognize that the question of how to build a proper VP cohort is open and further studies are 
required to better define it.

Results
Model baseline optimization to anti-PD-1 clinical trial outcomes. The developed QSP model 
is depicted in graphical form in Figs 1, S7–S9. These represent the main compartments and the cellular and 
molecular interactions occurring within them. Physiological trafficking of effector T cells was mathematically 
represented, as described previously by Zhu et al.38. The pharmacokinetics (PK) was represented by a minimal 
physiologically-based pharmacokinetic (mPBPK) model39. The model was first optimized to an anti-PD-1 ther-
apy clinical trial dataset and more qualitatively to match the level of tumor responses to anti-CTLA-4 therapy. 
Certain fit parameters were then used to make predictions for other therapeutic regimens with simulations and 
compared to clinical responses; the only difference between all the simulated trials were the regimens and dose 
levels of the specific therapies, as follows.

To initially parameterize the model and demonstrate that it can emulate clinical results, we fit the model to an 
anti-PD-1 clinical trial conducted by Topalian et al. (ClinicalTrials.gov number, NCT00730639)40. Figure 2 shows 
anti-PD-1 simulated dose responses, effector and mAPC dynamics and the PK (Fig. 2A), indicating a largely 
flat dose response after 1 mg/kg (yellow), as known to occur clinically41. Figure 2B, middle, shows the pooled 
fit to clinical data for progressive disease (black line), stable disease (green line), partial response (blue line) and 
complete response (red line). For the fitting, the mentioned parameters listed in Table S9 were constrained within 
their given ranges, while supporting parameters, such as chemokine factor and antigen abundance per cell (that 
were not varied in subsequent simulations), were also fit to be fixed at a single value for each. The goal was to show 
that given a fixed set of parameters in the model space, VP sets can then be simulated and compared with clinical 
data through the variability of the mentioned parameters in Table S11. Figure 2B, right, shows the fit to a single 
patient responder (by constraining the parameters in Table S11 to their ranges, while keeping all other parameters 
constant in the model), indicating that that model can capture the delay in response (over 50 days from start of 
therapy). Altogether, this demonstrates that the model captures several different types of responders within the 
defined parameter ranges that make up our VP dataset.

While we were able to reasonably fit and capture human clinical tumor response using the set of parameters 
and 3 mg/kg anti-PD-1 Q2W (dosing every two weeks), we realized that there were several combinations of 
values for the given parameters within their defined ranges that could lead to the same or similar responses. 
As a result, we simulated a 200-patient virtual clinical trial using the same regimen by varying the mentioned 
parameters defined in Table S11 simultaneously using Latin Hypercube Sampling (LHS) method; we show the 
diversity of responses in Fig. 2B, left. Figure 2C shows a waterfall plot of the simulated responders (left) and that 
responders represent 43% of total VPs (right) and 34% that were partial/complete responders (PR/CR), approx-
imating the upper end of a known objective response rate (ORR) for PD-1 therapy for melanoma of 43.7%42. 
Figure 2D further shows that of the varied parameters, the number of T cell clones, %PD-L1 expression and start-
ing tumor diameter at therapy were the significant parameters differentiating responders from non-responders. 
The reported number of T cell clones falls in line with number of average clones for responders (100) reported by 
Tumeh et al.43, although it slightly overpredicts the number of clones on average reported for non-responders (10) 
for melanoma in the clinic, still within the range. Higher PD-L1 expression correlated with increased response, as 
shown clinically, and smaller tumors showed better response as well. Lastly, Fig. 2E indicates that PR/CR and sta-
ble disease (SD) responders had significantly (about 3–6 times) higher maximum median effector T cell density 
in the tumor (left), although the density of mAPCs on average over time were lower in responders (right), which 
corresponded to lower overall tumor burden as the tumor shrank.

Simulations and predictions of anti-CTLA-4 monotherapy. Prior to utilizing the model to make 
predictions, we analyzed the simulated response for anti-CTLA-4 therapy (Fig. S1) and compared it to our under-
standing of response on a qualitative level. Response was similar to that seen in44 with a common regimen repre-
sented by Ku et al., (ClinicalTrials.gov number, NCT00324155)45; the boost in peripheral effector T cells was the 
cause of the response in the model, as also shown clinically46. We show a clear and wide dose response between 
0.3 and 10 mg/kg (red to green) in Fig. S1A, and for the 3 mg/kg case, simulations show that approximately 20% 
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of patients would be responders (Fig. S1C, left). This would be slightly below or around 20–28.5% ORR seen with 
CTLA-4 therapy reported for advanced melanoma47. From this point on, we utilized the model to make predic-
tions via simulations and compared them to clinical outcomes of published data.

Simulations and predictions of anti-CTLA-4/anti-PD-1 combination therapy. In Fig. 3, we show 
our predictions for anti-CTLA-4/anti-PD-1 combination therapy, based on the trial regimen as carried out in 
Wolchok et al. (ClinicalTrials.gov number, NCT01024231)48, and represented by the PK in Fig. 3A. The trial was 
simulated using 47 VPs, as done in the clinical trial with 1 mg/kg anti-PD-1 and 3 mg/kg anti-CTLA-4. Figure 3B 
shows that a higher proportion of VPs can be expected to be PR/CR responders, although some could have pro-
gressive disease or SD (left). In Fig. 3B, right, we show that the median of the clinical trial data and the median 
from our simulated virtual clinical trial overlap to a large extent within the narrow confines of the 90% confidence 
interval. We further see that the clinical trial also had patients who had stable and progressive disease, although 
to a much lower extent than those who showed partial or complete responses. Of our VP population, 85% were 
PR/CR responders (Fig. 3b, right), compared to clinical results showing 79% having robust responses, and with 
further analysis we indicate that the number of T cell clones and an increase in maximum effector T cell density 
in the tumor to be the main significant driving factors for response in our virtual population; similar to anti-PD-1 
monotherapy case, except starting tumor diameter and %PD-L1 at therapy were less significant and the density of 
effector T cells in the tumor showed a wider range for responders.

Figure 1. Diagram of model. (A) Compartments, and their associated cellular-molecular interactions and 
distributions are shown. The entire model represents the system of a single VP for each model run given a set of 
parameters. (B) All checkpoint and associated antibody interactions linked to each cell type in the model.
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Figure 2. Dose response and clinical validation of anti-PD-1 monotherapy. (A) From top to bottom: Tumor 
response to anti-PD-1 therapy at doses of 0.3, 1, 3 and 10 mg/kg as represented by the colors in the bottom 
figure in ascending order; the blue line indicates no therapy (top figure). Then, effector T cell density in the 
tumor (second from the top), mAPC density in the lymph nodes (third from the top) and finally, the PK of 
anti-PD-1 at the given doses. For all following figures, 3 mg/kg anti-PD-1 was used, following the same regimen. 
(B) Diversity of tumor response (left), fitting to pooled means patient response data (center) and individual 
patient fit (right); all at 3 mg/kg anti-PD-1. (C) Waterfall plot of VPs (left) and pie chart (right) with percent 
of virtual non-responders (NR), stable disease (SD) and partial or complete responders (PR/CR). (D) Bar 
graph comparison of parameters varied in model for each responder type (left) and box plots of significant 
differentiators (right). (E) Max effector T cell density in the tumor (left) and average mAPC density in the 
lymph nodes (right) for each responder category.
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Simulations and predictions of anti-PD-L1 monotherapy. We further employed the same kind of 
analysis to anti-PD-L1 monotherapy in comparison to a trial run by Brahmer et al., (ClinicalTrials.gov num-
ber, NCT00729664)49, where 20 mg/kg anti-PD-L1 was administered Q2W. Figure 4A shows that much like 
for anti-PD-1 therapy, the dose response is largely flat. As shown previously, we demonstrate that a diversity of 
responses across a VP population of 200 is possible (Fig. 4B, left) and that the simulated median within a 30% 

Figure 3. Dose response and clinical validation of anti-PD-1/anti-CTLA-4 combination-therapy. (A) From 
top to bottom: Tumor response to combination therapy at doses of 0.3, 1, 3 and 10 mg/kg of anti-CTLA-4, as 
represented by the colors in the bottom figure in ascending order and 3 mg/kg for anti-PD-1 was used for all 
simulations; the blue line indicates no therapy (top figure), and orange indicates only anti-PD-1. Then, effector 
T cell density in the tumor (second from the top), mAPC density in the lymph nodes (third from the top) 
and finally, the PK of anti-PD-1 and lastly, anti-CTLA-4 at the given doses. For all following figures, 1 mg/kg 
anti-PD-1 and 3 mg/kg anti-CTLA-4 were used, following the same regimen. (B) Diversity of tumor response 
(left), prediction of median clinical response data (right). (C) Waterfall plot of VPs (left) and pie chart (right) 
with percent of virtual non-responders (NR), stable disease (SD) and partial or complete responders (PR/CR). 
(D) Bar graph comparison parameters varied in model for each responder type (left) and box plots of significant 
differentiators (right). (E) Max effector T cell density in the tumor (left) and average mAPC density in the 
lymph nodes (right) for each responder category.
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confidence interval largely overlaps with the clinically determined median (Fig. 4B, right). We further predict 
that overall clinical response would be lower for anti-PD-L1 than that shown for anti-PD-1, where 35% (Fig. 4C) 
showed overall response compared with 43% in our VP population, respectively, which is in line with what was 
seen qualitatively in the mentioned trials. Interestingly, we determine PD-L1 therapy as lower in efficacy com-
pared to PD-1 therapy for melanoma, which may be a consequence of the associated checkpoints (i.e., CD80, 
PD-1 and PD-L2, expressed at literature reported averages for melanoma). In fact, PD-L2 expression can help 
overcome PD-L1 blockade, since the latter cannot prevent the former’s interaction with PD-1; while anti-PD-1 

Figure 4. Dose response and clinical validation of anti-PD-L1 monotherapy. (A) From top to bottom: Tumor 
response to anti-PD-L1 therapy at doses of 0.3, 1, 3, 10, 15 and 20 mg/kg as represented by the colors in the 
bottom figure in ascending order; the blue line indicates no therapy (top figure). Then, effector T cell density 
in the tumor (second from the top), mAPC density in the lymph nodes (third from the top) and finally, the 
PK of anti-PD-L1 at the given doses. For all following figures, 20 mg/kg anti-PD-L1 was used, following the 
same regimen. (B) Diversity of tumor response (left), prediction of median clinical response data (right). (C) 
Waterfall plot of VPs (left) and pie chart (right) with percent of virtual non-responders (NR), stable disease (SD) 
and partial or complete responders (PR/CR). (D) Bar graph comparison parameters varied in model for each 
responder type (left) and box plots of significant differentiators (right). (E) Max effector T cell density in the 
tumor (left) and average mAPC density in the lymph nodes (right) for each responder category.
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blocks both interactions of PD-1 with PD-L1 and PD-L2 and CD80 is minimally expressed in comparison. The 
effects of varying CD80, PD-1, PD-L1 and PD-L2 expression levels on response during each therapy are examined 
in a sensitivity analysis, described later. In a similar manner, as for anti-PD-1 therapy, we find that number of T 
cell clones, %PD-L1 expression and tumor diameter at therapy are significantly different between non-responders 
and those showing partial or complete responses (Fig. 4D). We further show the same type of trend for maximum 
effector T cell density in the tumor and average mAPC density in the lymph nodes as for anti-PD-1 therapy.

Sequential therapy of anti-CTLA-4 first then anti-PD-1 vs. the reverse for induction. Our 
final comparison to a human clinical trial was performed on a more qualitative basis. We assessed the mod-
el’s ability to emulate sequential therapy responses based on the induction therapy trial published by Weber et 
al., (ClinicalTrials.gov number, NCT01783938)50. Here, anti-CTLA-4 administered first followed by anti-PD-1 

Figure 5. Sequential therapy of anti-PD-1 and anti-CTLA-4. (A) From top to bottom: Tumor response to 
sequential therapy with dosing as listed in phase II CheckMate 064 trial (NCT01783938) with regimens shown 
in bottom two figures. Following response (top), effector T cell density in the tumor (second from the top), 
mAPC density in the lymph nodes (third from the top) and finally, the PK of anti-PD-1 first regimen and lastly, 
anti-CTLA-4 first regimen. (B) Anti-PD-1 therapy first: Comparison of variability in responses (top), waterfall 
plots of responders in virtual trial (second from top), Bar graph comparison parameters varied in model for 
each responder type (third from top), and boxplots of Max effector T cell density in the tumor and average 
mAPC density in the lymph nodes (bottom) for each responder category: virtual non-responders (NR), stable 
disease (SD) and partial or complete responders (CR/PR). (C) Same as (B), except for anti-CTLA-4 therapy 
administered first.
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therapy was compared to the reverse sequence (Fig. 5). Overall, we found our results to indicate that on aver-
age (and for individual cases) anti-PD-1 administered first followed by anti-CTLA-4 (Fig. 5A, blue) produced 
a greater effect on tumor response than anti-CTLA-4 first followed by anti-PD-1 (Fig. 5A, red), consistent with 
clinical results. It was interesting to see these results, even though in both scenarios the ranges and medians of 
maximum effector T cells and average mAPC densities (Fig. 5B,C, bottom) were about equal. Two significantly 
differentiating parameters, however, were the number of T cell clones and %PD-L1 expression on the cancer cells 
(Fig. 5B,C, second from bottom).

Sensitivity analysis and the role of chemokines and antigen spread in diversity of tumor 
responses. So far, we have shown the responses to be largely monotonic; however, evidence shows that a 
number of cases during human tumor regression result in nonmonotonic responses, where the tumor can grow 
for a certain period of time and then all of a sudden rapidly regress, it can be stable and then begin to regress or 
grow, or the tumor can regress for a period of time and to a certain percentage and then either become stable or 
begin to grow again. In Fig. 6, we show that these cases are possible to simulate as well without varying any of the 
parameters during each simulation. We suggest that the cause of these cases may have to do more with antigen 
processing (and presence) and its combined effect within the tumor microenvironment than with just the physi-
ological parameters represented in the simulations thus far that did not focus on variations in mAPC activation, 
antigen abundance per cell and tumor chemokine levels, as well as different combination of CD80, PD1, PDL1 
and PDL2 expressed on the cancer cells. Sensitivity analyses were run for (A) CTLA-4, (B) PD-1 and (C) PD-L1 
monotherapies (using the same regimens presented in previous figures) looking at the mentioned parameters and 
a few others (represented in Table S9); the relative effects on average tumor diameter, maximum effector T cell 
densities in the tumor and average mAPC densities in the lymph nodes are shown via the heatmap. In the last row 
of the figure, we show the diversity of responses that can be achieved with each type of therapy, given the variation 
in the listed parameters. We show the p-values of the sensitivity analyses via heat maps in Fig. S6.

Discussion
Here we developed an immuno-oncology QSP model representing the biophysics of the system of a generic 
VP with each simulation defined by a set of parameter values. We demonstrated that it can capture several 
immunotherapy-related responses seen clinically, such as delayed responses (over several weeks to months), 
non-monotonic responses and a diversity of patient responses from non-responders to complete and partial 

Figure 6. Sensitivity analysis showing (A) anti-CTL-4, (B) anti-PD-1, and (C) anti-PD-L1 sensitivities relative 
to average tumor diameter (top row); in heatmap form to average tumor diameter, max effector T cell density in 
tumor and average mAPC density in the lymph nodes (second row); and representations of diversity in types of 
responses with variation in sensitivity analysis parameters, respectively for each column.
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responders. We also showed that multiple value sets of parameters in the virtual clinical trials were able to pro-
duce the same or similar types of responses, however there were certain parameters that could produce unique 
types of responders within specific ranges. These parameters were percent checkpoint expression levels, tumor 
diameter at the start of therapy and the number of T cell clones and were captured statistically in the presented 
figures.

The key advantage we see for this model is that it encompasses an immune response against a growing tumor 
at its core and is set up in such a manner that additional processes can be added without anticipation of having to 
fully reparameterize the entire model to make clinical predictions. In addition to the validation and simulations 
presented above, we further made predictions on therapy combination for which human clinical data were not 
available in the literature. This is shown in Fig. S2 (for CTLA-4/PD-L1 combination therapy for melanoma) and in 
Fig. S3 (for PD-1/PD-L1 combination therapy). Interestingly, for these, we predict a higher ORR for PD-1/PD-L1 
than for CTLA-4/PD-1 despite a similar expected median at 1-year post-therapy. This may be due to checkpoint 
expression levels and shows that the model captures ORR and median responses as two separate but linked read-
outs. While we believe the model to be valid for the stated purpose, we also realize its potential in explaining 
seemingly contradictory results, as well as its limitations. We begin by with an attempt at explaining the surprising 
results of Fig. 5 (the sequential therapy trial) that we assessed qualitatively51.

The response lines in Fig. 5 were a representation of all the response dynamics averaged and the 90% con-
fidence intervals represented. Effector T cell density was greater with anti-CTLA-4 therapy first due to the 
enhanced activation and proliferation and when anti-PD-1 was administered following it, the cells already pres-
ent in the tumor were able to effectively kill the cancer cell. In the reverse case, when the switch from PD-1 ther-
apy to CTLA-4 therapy occurred, new effector cells had to be generated to catch up with the density present when 
CTLA-4 therapy was administered first; however, since PD-1 therapy proved to be more potent initially in reduc-
ing the tumor size and therefore, the number of antigens (tumor burden) that is required for priming, CTLA-4 
therapy promoted a greater enhancement of response from less tumor burden than was feasible with PD-1 ther-
apy at first. Furthermore, since PD-1 therapy has less of a dose response, adding CTLA-4 therapy allowed for the 
full effect of the latter to contribute to a combination therapy response.

Another interesting aspect captured by this model is the effects of different checkpoint receptor expression 
levels on cancer cells and how this affected response to different therapies; shown in Fig. 6. We previously men-
tioned that PD-L1 therapy may have less efficacy than PD-1 therapy in melanoma as a result of the checkpoint 
expression levels. What this could further mean is that different types of tumors can have different expression 
levels of immune checkpoint receptors, and the way they respond to different therapies can be dependent upon 
the exact combinations of receptor expression levels. Thus, this model may help assist with choice of therapies and 
regimens for specific indications.

Lastly, despite the positive aspects of this model, several key questions were not addressed. First, we did not 
assess if the effector T cells that promote cytotoxic activity against the tumor replicate within the tumor; instead, 
we assumed that the lymph nodes were the sole producers of response. We also did not address synergy vs. 
additivity, how the Tregs and MDSCs function to inhibit the effector T cells and mAPCs, outside of the immune 
checkpoints, and how the TME changes with time, along with the seemingly important added effects from the 
helper T cells and other cell types, such as the NK cells, or considering the inhibitory effects of tumor associated 
macrophages and fibroblasts. These are additional to the assumptions defined by the models we incorporated 
into ours that were published by other groups referenced here. It is also important to state that our VP population 
is defined solely within quantitatively (or qualitatively) defined literature reported ranges and understandings, 
which may not reflect the true nature of the patients enrolled in each trial, as well as how the parameters may have 
changed for the patients as the trials proceeded. This data, which we did not have, would need to be collected for 
each patient over time in each trial to update and refine the model more specifically.

Interestingly, despite not having answers to these questions, we were still able to verify our model with good 
correlation to clinical data from several different clinical trials without having to change the parameter values in 
the model between runs or during the simulations. In fact, we were able to emulate several mentioned clinical 
trials utilizing a range of different regimens of mono-, combo- and sequential therapies targeting CTLA-4, PD-1 
and PD-L1; we were able to show the utility of the model in predicting different therapeutic outcomes at differ-
ent dose levels. We were able to show how different literature reported parameter values (such as T cell clonality 
and %PD-L1 expression on cancer cells) held true in producing different types of responders given the same 
therapeutic regimens. We were able to determine how the model can be further used to define an indication for 
a certain type of therapeutic regimen, and which patient populations may be best served given their parameter 
profiles, which may change dynamically. In addition, while this model was parameterized and validated for met-
astatic melanoma in humans, we believe that given its structure, it can also be reparameterized and validated for 
other types of cancers, as has been done for triple-negative breast cancer52 and, a modified model, for non-small 
cell lung cancer53. Lastly, this model may then assist with optimizing dosing regimens and efficacious dose selec-
tion, which would make it translationally applicable from the preclinical through the clinical phases of drug 
development.

Methods
Model structure and dynamics. We have developed a multiscale PB-QSP model for human melanoma 
in order to predict how the innate state of the immune system and the tumor microenvironment in a patient at 
any given time play a role in determining the efficacies of cancer immunotherapies in a dynamical fashion. The 
model was developed using a bottom-up approach where first the cellular and molecular species interactions were 
defined using biochemical reaction equations as the framework of the model and physiologically-derived param-
eters were utilized as much as possible. The focus was as follows: (1) tumor draining lymph node priming and 
activation of naïve T cells into effector cells in the presence of mature antigen presenting cells (mAPCs) and Tregs, 
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(2) the subsequent migration of the effector cells to the tumor through systemic circulation, (3) interaction with 
a growing tumor that includes Tregs and MDSCs, in addition to cancer cells, (4) the release of TAA/TSA by the 
cancer cells by natural death and killing, (5) the uptake of the TAA/TSA by APCs, their maturation into mAPCs 
and subsequent migration back to the draining lymph node compartment for presentation to naïve effector T 
cells for their priming and activation, as the cycle starts again. Additionally, checkpoint receptors were defined 
to be expressed by the cells at points in specific processes, as defined in the literature, that influence the immune 
response at the respective points. Checkpoint inhibitor therapies in the model were used to block the effects of the 
receptor interactions and the resulting consequence (i.e., reduction in inhibitory signaling) was largely driven by 
the binding kinetics of the antibody to the respective receptors, as explained below.

The immunogenicity in the model was represented as explained in the introduction and described further 
here. It encompasses the number of T cell clones, the antigen strength and the abundance of antigens released by 
each cancer cell upon its death in a continuous manner, and each of the mentioned aspects were represented by 
a given parameter (total of 3 parameters) at the appropriate places in the model. Consequently, the total tumor 
burden in the model was dependent upon tumor size; with larger tumors having more cancer cells that would, 
at least, decay naturally and release more antigens in total at any given time; however, they would also naturally 
put up more resistance and present a larger growing mass for the immune system to compete against. The overall 
tumor response was a result of the previously mentioned factors: (1) Immunogenicity of the tumor and degree 
of formation of an immune response against it, (2) the suppressive mechanisms by the immune checkpoints and 
tumor microenvironment during tumor growth, and (3) the release of the suppressive immune checkpoints by 
antibody blockade against, CTLA-4, PD-1 and PD-L1 administered as monotherapies, combination therapies, or 
sequential therapies. Each antibody therapy regimen was examined on multiple levels, and in specific cases tumor 
response was compared to that reported in published human clinical trials for the given compounds.

In order to simulate virtual clinical trials, parameters defining immunogenicity and tumor resistance were 
varied within known physiological ranges (see Table S9), with each model run and output representing a single 
VP result. For immunogenicity: The antigen strength (represented on a scale from 0.1–1.0, from least to great-
est) is known to be high for melanoma, and thus in the model this value is set between 0.8 and 1.0 and effects 
the priming and activation of T cells5. The number of T cell clones for melanoma was defined between 10–130, 
representative of what was found in a melanoma clinical trial43. Antigen abundance per cancer cell was set to 100 
based on fitting to anti-PD-1 clinical data for each of the responder types, as described. For tumor resistance: 
percent of cancer cells expressing PD-L1 was varied from 40–90%, lymph node T-regulatory cells (Tregs) were 
varied from 5–35% of total lymph node T cells and tumor Tregs were varied from 0–0.25% of total cancer cells, 
while we kept three times as many Myeloid-Derived Suppressor Cells (MDSCs) as Tregs in the tumor at all times 
(see Supplement Tables for parameter references). Finally, the tumor size was varied from 15–80 mm in diameter 
(along the longest diameter) and the tumor was assumed ellipsoid, as defined in the methods.

Priming and activation of effector T cells. The model consists of several compartments for effector T 
cell trafficking once they exit the TDLN following priming and activation, as described previously by Zhu et al. 
Here, we built the model encompassing the following trafficking compartments: lymph node, blood, tumor, lung, 
GI tract, spleen, and liver, while the remainder of the organs were lumped into the peripheral compartment38. 
For each organ, the vascular and interstitial volumes are represented, as well as the blood and lymph flow into 
and out of the organ. As in the physiologically-based model, effector cells can bind reversibly to the vasculature 
in the space of the lung, liver, spleen and tumor, attach irreversibly, becoming arrested and extravasate into the 
interstitial space from where they can circulate through the lymph and back into peripheral circulation. In the 
tumor, however, once the effector cells enter the interstitial space, they stay there to interact with the tumor cells. 
Elimination is set to occur in the lungs, as described in the mentioned study, and in the tumor, based on interac-
tions with cancer and supporting cells. The antibodies are added to the central (blood) compartment and follow 
a minimal-PBPK layout. The cellular dynamics in the model are the prime elements that define the outcomes of 
the immunotherapy regimens, while the molecular dynamics are the defining factors for the cellular dynamics. 
Overall, the model consists of 282 ordinary differential equations (ODEs) and 218 algebraic equations and is 
implemented using the SimBiology plugin in MATLAB (MathWorks, Natick, MA). To ensure reproducibility 
of the model, the complete set of governing equations and parameters are presented in the supplement and the 
SBML code is provided.

In the TDLN compartment, the immune response is generated through the activation of tumor-targeting 
effector T cells resulting from the presentation of antigens by mature antigen presenting cells (mAPCs). Activated 
effector T cells migrate out of the TDLN and are trafficked as described above. In total, the priming process has 
been shown by intravital microscopy to occur in three distinct stages in the LN, which are incorporated in the 
model54. The possibility of a successful priming interaction between mAPCs and T cells is represented by an 
algebraic equation that was extrapolated from an agent-based model, which was coupled with experiments to 
calculate the probability of at least one successful priming interaction to occur over the designated time55. The 
final equation and an example of how it is used is shown in Eqs 1.1 and 1.2
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Equation 1.1 shows that the association of Naïve T cells (NT) with non-interacting mAPC (mAPCnInt) during the 
first priming stage to become a single state variable (NT1) representing the associated state, is determined by an 
association rate (kAssoc,P1 defined by measured literature values), the number of NT undergoing the interaction, the 
strength of the priming co-receptor (where SigCD28 represents the CD80/86 interaction with CD28 on mAPCs 
based on receptor occupancy of 0–1.0), and the probability of a successful priming interaction (P1). In Eq. 1.2, P1 
considers the number of mAPCs available to associate with the NT cells (mAPCnInt), as well as other factors that 
define a value function representing the possibility of a successful priming interaction to occur. These include: 
The number of NT cells available for priming (calculated from the total number of T cells in the TDLN, T, and 
the fraction which are available for priming (φNT)), their migration or diffusion rate in the TDLN (DiffT), the T 
cell clonality (TClonality), the strength of the antigen landscape during presentation (Antigen), a scaling factor 
for the possibility of a successful priming interaction between an mAPC and an NT cell (SNT_mAPC), the geometry 
of the TDLN, the diameter of each T cell (DT) and the total time over which priming occurs (tmax). The number 
of mAPCs available for priming at any given time is algebraically calculated. Other equations during priming 
govern the dissociation of mAPCs and NT during the first priming stage and the association of primed NT with 
free mAPCs for the second priming stage; the equations are listed in the supplement. Thus, the more mAPCs 
associate with each state (up to the maximum possible) and the stronger the antigen is, the more cells mature to 
the next stages and ultimately the higher the number of activated effector T cells are generated; this is the mAPC 
dose response of the T cells during priming56.

A successful priming interaction is one that leads to maturation of the NT cells, whereas an unsuccessful one 
has been shown to lead to a relatively quick dissociation between the NT and mAPCs without the maturation 
of the NT cells57. Once both stages of priming have occurred in a similar manner, the proliferation parameters 
were optimized to represent division of the cells three times a day over about five days at the maximum levels to 
produce effector T cells. When disregarding inhibitory checkpoint signals in total, the priming stage takes about 
a week as Naïve T cells mature to become active effector T cells54,58.

Once primed and activated, effector T cells leave the lymph nodes via the efferent lymphatics and make their 
way into the blood, from which they access the tumor and other tissues59. In a human body, there are about 500–
600 lymph nodes, but since we consider a tumor localized to a particular region of the body, we assume that only a 
fraction of total lymph nodes are involved in producing an anti-tumor immune response60,61. In total, we approx-
imated 20 distinct regions that have clusters of lymph nodes in the human body, and therefore we estimated that 
about 30–35 TDLN are involved in the anti-tumor response in a particular given region62. Since one TDLN is 
considered in the compartment in the model, in order to simulate multiple TDLN, the number of effector T cells 
generated in the TDLN compartment that enter the blood (or the central compartment) are multiplied by the 
number of TDLN considered in the model. In this manner, we assume that each TDLN functions in the same 
manner. Furthermore, we assume that each TDLN receives the same number of mAPCs and TAA that are trans-
ported from the tumor. Once in the blood, a chemokine factor further promotes effector T cell infiltration into the 
tumor63. In fact, immunotherapies to enhance lymphocyte-recruiting chemokine production by the tumor can 
also be explored in this model64. Furthermore, there is evidence that tumor lymphangiogenesis promotes T cell 
infiltration, which can be factored into the simulations through the chemokine factor65.

Interactions between effector and target cells, and elimination of cancer cells. The immune 
response is initiated from the tumor. While in the tumor compartment, the effector T cells interact with and kill 
the cancer cells through cytotoxic activity, and the dead cancer cells release TAA. In general, all effector-target 
interactions in the model are represented by a first interaction step (where two cell types become represented by 
one state variable), and subsequently the effect the interaction has on the target and effector cells over the course 
of the dissociation step. The interaction steps in each case are defined by a validated model for effector cell killing 
of cancer cells66, and the rate of the subsequent step is defined by the measured rates of interaction between the 
different cell types from published literature referenced in the supplement. In Eq. 1.3, E refers to the effector cells 
producing the response, while T refers to the target cells. Algebraic equations govern the accounting of the cells 
during this process in each case, and the effect on each cell type following interaction is dependent upon the 
immune checkpoint signaling. d is the rate of association for killing per day, λ is the exponent of fractional cell 
association for killing and s is the steepness coefficient
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For cancer cells specifically, their death produces the release of TAA to a defined level per cell, as described pre-
viously. In parallel, cancer cells that naturally decay during tumor growth also release TAA. Monocytes migrate 
into the tumor, differentiate into APCs, which pick up the TAA and become mAPCs. The mAPCs then migrate 
back to the TDLN via the lymphatic vessels for presentation of the TAA to Naïve and Primed Naïve T cells, during 
priming for effector T cell activation, and the process begins again. Additionally, the TAA that are not picked up 
in the tumor by APCs can flow back to the TDLN through the lymphatic vessels, where they are picked up by 
resident APCs, which would subsequently be involved in the priming process, leading to effector T cell activation. 
Altogether, this process is a feedforward loop where continuous amplification of effector T cells occurs, and the 
cycle continues until there are no more cancer cells left to release enough TAA that is required for priming.

Immune checkpoint signaling and inhibitory effects. The presented scenario considers the rate of 
natural turnover of the different immune and cancer cell types (i.e. effector T cells, mAPCs and cancer cells) in the 
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human body. In the model, we specifically focus on the molecular species that are either essential for our analysis 
of the immune response (e.g. CD28:CD80/CD86 binding, or the overall strength of the antigen landscape being 
presented during priming), or are the direct or indirect targets of the therapies we are testing in the model (e.g. 
the cognate receptors of CTLA-4, PD-1, and PD-L1 immune checkpoints).

The regulatory immune cells include the Tregs and MDSCs, which are present in the TME along with the 
cancer cells; Tregs are also present in the TDLN. These cells reside in their respective compartments and do not 
migrate from one compartment to another like the effector T cells do. Furthermore, their numbers are a function 
of the other cell types, which change with time within their respective compartments: In the TDLN, Tregs are 
defined as a certain percentage of the total number of T cell as determined experimentally by flow cytometry 
(5–35%), while in the tumor Treg are defined as a percentage (0–0.25%) of the number of cancer cells, and the 
number of MDSCs are two to four times the number of Tregs, based on literature evidence67–69. Note that all 
numerical values of the parameters here and elsewhere in the paper are baseline parameters and can be varied; 
these values are not the principal part of the model. Overall, these regulatory cells are known to play a role in 
inhibiting the anti-tumor immune response, and they carry out their activities through various molecular mech-
anisms, including inhibitory checkpoint receptors and other factors that target effector T cells. Cancer cells also 
employ inhibitory checkpoint receptors and other mechanisms as a means of protecting themselves, which slow 
down or inhibit effector T cell activities. The model incorporates checkpoint receptors expressed on the surface 
of cells and interactions between cells within the volume of the immunological synapses that are formed during 
cell-cell interactions70.

In addition, mAPCs also exhibit a variety of mechanisms that regulate the activation of effector T cells, which 
can stymie or boost an effective anti-tumor immune response. These mechanisms include the types and origins 
of the antigens that they present, the ratios of mAPC-to-Naïve and Primed Naive T cells during priming (where, 
generally, the greater the antigen abundance, the higher the number of mAPCs), the presence of positive immune 
checkpoints (including co-receptors) and (like the regulatory cells) inhibitory immune checkpoints. During anti-
gen presentation, the B7 co-receptors (CD80 and CD86) on the mAPCs must engage CD28 on the Naïve and 
Primed T cells, in addition to antigen presentation, for priming to occur. Additionally, a stronger recognized 
antigen and a higher ratio of mAPC-to-T cells results in a greater extent of priming; i.e., a larger number of acti-
vated effector T cells are produced during priming as a result of greater activation and proliferation. Lastly, the 
inhibitory immune checkpoints expressed on the mAPCs, which are recognized by the cognate checkpoints on 
the T cells, act to limit the extent of priming and ultimately limit the number of activated effector T cells generated 
in the model. The specific cell types and the corresponding immune checkpoints in the model are depicted in 
Fig. 1B. All of the interactions between the ligands and their cognate receptors that are represented in the figure 
take into account experimentally determined Kd values for their binding, receptor expression values measured 
by flow cytometry (or their approximate expression levels) and the volumes in which they interact (being either 
within the immunological synapses, or within the entire volume of the designated compartment where the inter-
action is occurring). Note that in the model, we do not account for the mechanisms of antigen processing and we 
do not know the variety of antigens present and their binding affinity values; therefore, we use a general antigen 
strength value from 0.1–1.0, which for melanoma is known to be on the higher end and is so set between 0.8 and 
1.0 for all simulations and fitting, as mentioned.

Representations of tumor heterogeneity. While tumor heterogeneity is not represented on a spatial 
scale in this version of the model, it is represented in terms of checkpoint heterogeneity. The expression of the dif-
ferent checkpoints on different cancer cells within a tumor can be heterogeneously distributed, but more impor-
tantly in this analysis is the percent of cancer cells that express particular checkpoints. Considering that a cancer 
cell expresses a certain immune checkpoint, it would affect an effector T cell differently than if the cancer cell were 
to express two different immune checkpoints to the same extents. The problem translates to the fact that if we state 
that 60% of the cancer cells express PD-L1 for one tumor, for example, while 5% express PD-1 from an independ-
ent tumor study, we do not know if 5% of the cancer cells should express both immune checkpoints in our model 
(which represents a single unified tumor), or if less than 5% express both checkpoints; in other words, PD-L1 and 
PD-1 can be expressed on the same or distinct cancer cells and their expressions can overlap to varying extents 
across the tumor, which would affect the lymphocytes differently depending on which cells they interact with. 
Although the model is considered “well-mixed” in general, unlike spatially-resolved agent-based models71, local 
interactions are accounted for distinctly by separate compartments and submodules.

Therefore, in this model, the percent expression of each immune checkpoint is an input, and for the presented 
simulations we assumed that the immune checkpoints are equally and independently distributed across the 
tumor; this assumption can be easily relaxed. For example, if we consider checkpoints A and B, at 50% expression 
each across the tumor, then 25% would express A and B, 25% would express only A, 25% would express only B, 
and 25% would express neither A nor B. This distribution can be modified to fit whatever the experimental data 
determine is the correct distribution for the tumor; however, at this stage we have not seen any consensus on how 
the percentages of immune checkpoints across the tumor are distributed across the different cancer cells, which 
resulted in the stated assumption for modeling purposes. In the model, while the number of immune checkpoints 
considered can be expanded, we consider four different immune checkpoints that are expressed on the cancer 
cells that have overlapping interactions with the targets of our therapies, PD-1, PD-L1, PD-L2 and CD80, which 
translates to 2n different checkpoint expression combinations across the tumor (where n = 4, the number of differ-
ent checkpoints considered). This in turn translates to 16 unique cancer cell-effector T cell signaling interactions, 
assuming all effector T cells have the same expression of immune checkpoints.

The advantage of structuring the model in such a manner is that we can translate percentage of different check-
points within the tumor that are found individually on cells into a unified single tumor model, and in the future, 
as more checkpoint expression data are captured from a single tumor regarding the percentage of checkpoint 
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expressions relative to one another, they can be entered in the model. Thus, the distribution of immune check-
points on the cancer cells in the model can be modified if need be. Furthermore, it is useful to note that in the 
current model and for the following analyses we assume that no particular cancer cell type which has a certain 
sequence of immune checkpoints expressed on is ever fully removed from the system in terms of the percent it 
is present in the tumor as a whole; instead, as cancer cells get killed in the model, the tumor as a whole retains 
the same constant heterogeneous checkpoint distribution, fraction-wise. In the future, it would be interesting to 
compare the results obtained here with those when certain cancer cells with specific checkpoint expressions are 
able to be eradicated first or with some stochastic variability in checkpoint expression based on certain criteria.

Pharmacokinetics of immune checkpoint antibodies. Antibodies are delivered to the central com-
partment (blood) as a zero-order intravenous infusion over the course of one or one and a half hours, as pre-
scribed for each antibody. The antibodies are also cleared from the central compartment through a first order 
elimination. The distribution of the antibody was designed using a minimal PBPK model39 between the central, 
tight and leaky tissues and lymph node compartments. Distribution between the central and tumor, and between 
the tumor and lymph node compartments are calculated by considering the surface area of blood or lymph ves-
sels in the tumor volume and permeability of antibodies across that surface area, as represented in Finley et al.72; 
and the PK tumor compartment for the PK volume was varied with the true tumor size in the model, given this 
approach.

For the estimated PK parameters of all the antibodies used in this model, the concentrations of the antibodies 
in the central compartment were fit to available mean patient population serum concentrations taken over time, 
displayed in Fig. S4. For anti-PD-1, the data came from Nivolumab, for anti-PD-L1 it came from Durvalumab, 
and for anti-CTLA-4, it came from Ipilimumab published sources listed in the supplement. Fitting of each ther-
apy to 3 mg/kg single dose administration is shown in Fig. S4, along with the PBPK outputs for the other tissues, 
including the tumor, which was found to have a concentration about 15–20% of the serum concentration within 
a few days, and having an increased ratio with time due to an enhanced permeability and retention (EPR) effect73. 
The concentration in the lymph was about half of the tumor concentration, or less. While target-mediated drug 
disposition (TMDD) was only represented for CTLA-4, there is literature evidence that TMDD for anti-PD-1 
does not occur74 and we assumed that to be the case for anti-PD-L1 as well; although it could be easily incorpo-
rated should the need arises. The free fraction is reported as the concentration in each compartment. Once reach-
ing their sites of activity in the TDLN or tumor, each antibody would bind to its respective target, which would 
influence the pharmacodynamics (PD) of the immune response and the tumor.

Immune checkpoint signal modeling. Multiple immune checkpoints were considered to have effects on 
cells at specific points. The combined effect of the signaling was calculated as follows in Eq. 1.4
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This equation was based on the generalized equations derived by Chou and Talalay to determine summation of 
effects (fa) of two or more mutually exclusive drugs75. In order to avoid having to calculate the potency of each 
checkpoint interaction, D in the original equation was replaced by receptor occupancy (RO) and instead of D50, 
the maximum RO possible during signaling for each respective receptor was used (ROmax). Lastly the weights 
of receptor signaling (wi) were assumed to take on the fraction of total receptor occupancy for all the receptors, 
as shown in Eq. 1.5; this turned out to be a consequence of the receptor expression levels, their binding affin-
ities to the respective antibodies, any competing binding interactions and the concentration (or exposure) of 
the antibodies in the environment. For all signaling, the Hill-coefficient (m) was greater than 1 to represent the 
higher-order system, which denotes the sigmoidicity of the dose-effect curve. The same values for all the variables 
were used consistently throughout the model, with exception of the RO related values, which were calculated 
dynamically based upon receptor/ligand interactions.

Parameter optimization. The Multistart function along with lsqnonlin were run using the parallel com-
puting toolbox in MATLAB to perform global optimization on single or multiple parameters in the model in 
a constrained manner. This allowed for multiple local minima to be found by lsqnonlin for each parameter by 
starting at a defined number of randomly dispersed initial values within the constrained search range. Then, the 
local minima that were found were compared to one another and the approximate global minimum was found.

Simulation settings. Since this study focuses on the several specific melanoma clinical trials with CTLA-4, 
PD-1 and PD-L1 therapies administered individually, in combination and sequentially, the model was parame-
terized for melanoma. The model reactions and rate laws are listed in Tables S1 and S2, with the descriptions in 
Table S3. Table S4 lists the species (or state variables) in the model, as well as the units for each and their descrip-
tions. Lastly, the model values, units and ranges of parameters with the references are listed in Table S5 with a 
description for each. Table S6 contains the algebraic equations, Table S7 contains the event functions for antibody 
administration regimens and Table S8 lists all the compartment volumes in the model. Altogether, they provide 
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the complete governing equations, model parameters, and associated information so that the model can be ade-
quately reproduced; the SBML code is also included to simplify its implementation.

For virtual clinical trials, parameter ranges were as follows (all listed in Tables S5 and S9 as well with corre-
sponding references): Tumor diameter at start of therapy (15–80 mm), Antigen strength (0.8–1.0), T cell clonality 
(10–130), Tregs in the TDLN (5–35% of total T cells in the TDLN), Tregs in the tumor (0–0.25% of total can-
cer cells), MDSCs (3 times the number of T-regs in the tumor) and %PD-L1 expression (40–90%, assuming an 
approximate cut-off of 50% for responders). Table S11 lists the values specific to each clinical trial simulated. For 
sensitivity analysis, the following ranges were used (listed in Tables S5 and S10 as well): Same ranges as mentioned 
above, except percent checkpoint expressions levels for PD-L1, PD-1, PD-L2 and CD80 ranged from 1–100%, 
Antigen abundance per cancer cell (10–100,000), T cell clonality (5–130), mAPC inactivation in TME (5–95%), 
chemokine factor (50–500), mAPC activation in the TDLN (0.1–1.0) and tumor diameter at start of therapy 
(5–80 mm) to sample a wider range of conditions.

All steady-state and dynamic solutions were calculated using the Sundials solver with the absolute tolerance 
and relative tolerance set to be 10−9 days and 10−8, respectively. Simulations were performed by setting a tumor 
diameter that is 95% of the tumor diameter at which each therapeutic regimen will begin to be administered; this 
was determined to be enough for the system to reach quasi-steady state prior to administration of therapy. The 
figures show the response only from the start of therapy, and not the tumor, immune or PK dynamics prior to it.

Tumor growth is simulated for approximately 1 year after therapy begins.

References
 1. McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 26, 154–8 (2006).
 2. Topalian, S. L., Weiner, G. J. & Pardoll, D. M. Cancer immunotherapy comes of age. J Clin Oncol. 29(36), 4828–36 (2011).
 3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. 

Science. 331(6024), 1565–70 (2011).
 4. Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1), 1–14 

(2007).
 5. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349(6255), 1483–9 (2015).
 6. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 377(25), 

2500–2501 (2017).
 7. Lee, C.-H. et al. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends Immunol. 39(7), 536–48 

(2018).
 8. Corse, E., Gottschalk, R. A. & Allison, J. P. Strength of TCR-peptide/MHC interactions and in vivo T cell responses. J Immunol. 

186(9), 5039–45 (2011).
 9. Viola, A. & Lanzavecchia, A. T Cell Activation Determined by T Cell Receptor Number and Tunable Thresholds. Science 273(5271), 

104–106 (1996).
 10. Moon, J. J. & Jenkins, M. K. The human T-cell repertoire grows up. Immunol Cell Biol. 93, 601–602 (2015).
 11. Escors, D. Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. New J Sci. 2014, 

1–25 (2014).
 12. Emens, L. A. & Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol 

Res. 3(5), 436–43 (2015).
 13. Abril-Rodriguez, G. & Ribas, A. SnapShot: Immune Checkpoint Inhibitors. Cancer Cell 31(6), 848–848.e1 (2017).
 14. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. 

Cancer Cell 27(4), 450–61 (2015).
 15. Kleffel, S. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162(6), 1242–56 (2015).
 16. Madore, J. et al. PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-

PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res. 28(3), 245–53 (2015).
 17. Cheng, X. et al. Structure and Interactions of the Human Programmed Cell Death 1 Receptor. J Biol Chem. 288(17), 11771–85 

(2013).
 18. Linsley, P. S. et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med. 176(6), 

1595–604 (1992).
 19. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol. 177(7), 4376–83 

(2006).
 20. Rozali, E. N. et al. Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol. 2012, 1–8 (2012).
 21. Butte, M. J. et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell 

responses. Immunity 27(1), 111–22 (2007).
 22. Orlikowsky, T. W. et al. Expression and regulation of B7 family molecules on macrophages (MΦ) in preterm and term neonatal cord 

blood and peripheral blood of adults. Cytometry B Clin Cytom. 53B(1), 40–7 (2003).
 23. Vallejo, A. N. et al. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescenc. J 

Immunol. 162(11), 6572–9 (1999).
 24. Morel, P. A. et al. Modeling the T cell immune response: a fascinating challenge. J Pharmacokinet Pharmacodyn. 41(5), 401–13 

(2014).
 25. Palsson, S. et al. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through 

integration of multiple subset models. BMC Syst Biol. 7 (2013).
 26. de Pillis, L. G., Eladdadi, A. & Radunskaya, A. E. Modeling cancer-immune responses to therapy. J Pharmacokinet Pharmacodyn. 

41(5), 461–78 (2014).
 27. Cappuccio, A., Elishmereni, M. & Agur, Z. Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a 

mathematical model. Cancer Res. 66(14), 7293–300 (2006).
 28. Kirschner, D. & Panetta, J. C. Modeling immunotherapy of the tumor-immune interaction. J Math Biol. 37(3), 235–52 (1998).
 29. de Pillis, L. G., Gu, W. & Radunskaya, A. E. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and 

biological interpretations. J Theor Biol. 238(4), 841–62 (2006).
 30. de Pillis, L. G. et al. Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. 

Math Biosci. 209(1), 292–315 (2007).
 31. Laubenbacher, R. et al. A systems biology view of cancer. Biochim Biophys Acta 1796(2), 129–39 (2009).
 32. Byrne-Hoffman, C. & Klinke, D. J. 2nd. A Quantitative Systems Pharmacology Perspective on Cancer Immunology. Processes 3(2), 

235–256 (2015).
 33. Siddiquia, M. & Rajkumar, S. V. The High Cost of Cancer Drugs and What We Can Do About It. Mayo Clin Proc. 87(10), 935–943 

(2012).

https://doi.org/10.1038/s41598-019-47802-4


1 6Scientific RepoRtS |         (2019) 9:11286  | https://doi.org/10.1038/s41598-019-47802-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

 34. Wurz, G. T., Kao, C.-J. & DeGregorio, M. W. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical 
potential. Ther Adv Med Oncol 8(1), 4–31 (2016).

 35. Kakimi, K. et al. Advances in personalized cancer immunotherapy. Breast Cancer 24(1), 16–24 (2017).
 36. Cheng, Y. et al. QSP Toolbox: Computational Implementation of Integrated Workflow Components for Deploying Multi-Scale 

Mechanistic Models. AAPS J. 19(4), 1002–1016 (2017).
 37. Rieger, T. R. et al. Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog 

Biophys Mol Biol. 139(2018), 15–22 (2018).
 38. Zhu, H. et al. Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive 

immunotherapy. Cancer Res. 56(16), 3771–81 (1996).
 39. Cao, Y. & Jusko, W. J. Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic 

model. J Pharmacokinet Pharmacodyn. 41(6), 571–80 (2014).
 40. Topalian, S. L. et al. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. N Engl J Med 366(26), 2443–54 

(2012).
 41. Feng, Y. et al. Nivolumab Exposure–Response Analyses of Efficacy and Safety in Previously Treated Squamous or Nonsquamous 

Non–Small Cell Lung Cancer. Clin Cancer Res. 23(18), 5394–405 (2017).
 42. Marconcini, R. et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 9(15), 12452–70 

(2018).
 43. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528), 568–71 (2014).
 44. Luke, J. J. et al. Clinical Activity of Ipilimumab for Metastatic Uveal Melanoma. Cancer 119(20), 3687–95 (2013).
 45. Ku, G. Y. et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting. 

Cancer 116(7), 1767–75 (2010).
 46. Yang, A. et al. CTLA-4 blockade with ipilimumab increases peripheral CD8+ T cells: Correlation with clinical outcomes. Journal of 

Clinical Oncology 28(15_suppl), 2555–2555 (2010).
 47. Fellner, C. Ipilimumab (Yervoy) Prolongs Survival In Advanced Melanoma: Serious Side Effects and a Hefty Price Tag May Limit Its 

Use. P T 37(9), 503–11 (2012).
 48. Wolchok, J. D. et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med 369, 122–33 (2013).
 49. Brahmer, J. R. et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N Engl J Med 366, 2455–65 

(2012).
 50. Weber, J. S. et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced 

melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17(7), 943–955 (2016).
 51. Serra-Bellver, P., Valpione, S. & Lorigan, P. Sequential immunotherapy regimens—expect the unexpected. Lancet Oncol. 17(7), 

854–5 (2016).
 52. Wang, H. et al. In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer 

using a systems pharmacology model. R. Soc. open sci. 6(5), 190366 (2019).
 53. Jafarnejad, M. et al. A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer. AAPS J. in press 

(2019).
 54. Mempel, T. R., Henrickson, S. E. & Andrian, U. H. V. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. 

Nature 427(6970), 154–9 (2004).
 55. Celli, S. et al. How many dendritic cells are required to initiate a T-cell response? Blood 120(19), 3945–8 (2012).
 56. Henrickson, S. E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell 

activation. Nat Immunol. 9(3), 282–291 (2008).
 57. Stoll, S. et al. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574), 1873–6 (2002).
 58. Miller, M. J. et al. Imaging the Single Cell Dynamics of CD4+ T Cell Activation by Dendritic Cells in Lymph Nodes. J Exp Med. 

200(7), 847–56 (2004).
 59. Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat Rev Immunol. 13(5), 309–20 

(2013).
 60. Farzad, Z. et al. Lymphocyte subset alterations in nodes regional to human melanoma. Cancer Res. 50(12), 3585–8 (1990).
 61. Willard-Mack, C. L. Normal Structure, Function, and Histology of Lymph Nodes. Toxicol Pathol. 34(5), 409–24 (2006).
 62. Qatarneh, S. M. et al. Three-dimensional atlas of lymph node topography based on the visible human data set. Anat Rec B New Anat. 

289(3), 98–111 (2006).
 63. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69(7), 

3077–85 (2009).
 64. Dubinett, S. M. et al. Chemokines: Can Effector Cells be Re-directed to the Site of Tumor? Cancer J. 16(4), 325–35 (2010).
 65. Fankhauser, M. et al. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci 

Transl Med 9(407), eaal4712 (2017).
 66. de Pillis, L. G., Radunskaya, A. E. & Wiseman, C. L. A validated mathematical model of cell-mediated immune response to tumor 

growth. Cancer Res. 65(17), 7950–8 (2005).
 67. Shen, X. et al. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of 

hepatocellular carcinoma. J Cancer Res Clin Oncol. 136(11), 1745–54 (2010).
 68. Battaglia, A. et al. Lymphocyte populations in human lymph nodes. Alterations in CD4+CD25+ T regulatory cell phenotype and 

T-cell receptor Vβ repertoire. Immunology 110(3), 304–12 (2003).
 69. Currana, M. A. et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid 

cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9), 4275–80 (2010).
 70. Halle, S., Halle, O. & Förster, R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol. 38(6), 

432–443 (2017).
 71. Gong, C. et al. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and 

PDL1 inhibition. J R Soc Interface 14(134), 20170320 (2017).
 72. Finley, S. D. et al. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol. 5, 193 (2011).
 73. Thurber, G. M., Schmidt, M. M. and Wittrup, D. K. Antibody tumor penetration: Transport opposed by systemic and antigen-

mediated clearance. Adv Drug Deliv Rev. 60(12) (2008).
 74. Brahmer, J. R. et al. Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, 

Clinical Activity, Pharmacodynamics, and Immunologic Correlates. J Clin Oncol. 28(19), 3167–75 (2010).
 75. Chou, T.-C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme 

inhibitors. Adv Enzyme Regul. 22, 27–55 (1984).

Acknowledgements
Supported by grants from MedImmune and NIH R01 CA138264 to ASP. The authors thank members of the Popel 
laboratory Richard Sove and Hanwen Wang, for reading the manuscript and useful comments.

https://doi.org/10.1038/s41598-019-47802-4


17Scientific RepoRtS |         (2019) 9:11286  | https://doi.org/10.1038/s41598-019-47802-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
Oleg Milberg developed the QSP model, conducted the simulations, and wrote the main manuscript and all 
Supplementary Information. Chang Gong, Mohammad Jafarnejad, Imke H. Bartelink, Bing Wang, Paolo 
Vicini, Rajesh Narwal, Lorin Roskos and Aleksander S. Popel critically discussed ideas along the way during the 
development of the QSP model. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-47802-4.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-47802-4
https://doi.org/10.1038/s41598-019-47802-4
http://creativecommons.org/licenses/by/4.0/

	A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, an ...
	Immunogenicity, the Mounting of an Anti-tumor Response and its Resistance by the Tumor. 
	Immune checkpoint blockade therapies. 
	Mathematical models for immunotherapy and their utility. 
	Choice of virtual patient population. 
	Results
	Model baseline optimization to anti-PD-1 clinical trial outcomes. 
	Simulations and predictions of anti-CTLA-4 monotherapy. 
	Simulations and predictions of anti-CTLA-4/anti-PD-1 combination therapy. 
	Simulations and predictions of anti-PD-L1 monotherapy. 
	Sequential therapy of anti-CTLA-4 first then anti-PD-1 vs. the reverse for induction. 
	Sensitivity analysis and the role of chemokines and antigen spread in diversity of tumor responses. 

	Discussion
	Methods
	Model structure and dynamics. 
	Priming and activation of effector T cells. 
	Interactions between effector and target cells, and elimination of cancer cells. 
	Immune checkpoint signaling and inhibitory effects. 
	Representations of tumor heterogeneity. 
	Pharmacokinetics of immune checkpoint antibodies. 
	Immune checkpoint signal modeling. 
	Parameter optimization. 
	Simulation settings. 

	Acknowledgements
	Figure 1 Diagram of model.
	Figure 2 Dose response and clinical validation of anti-PD-1 monotherapy.
	Figure 3 Dose response and clinical validation of anti-PD-1/anti-CTLA-4 combination-therapy.
	Figure 4 Dose response and clinical validation of anti-PD-L1 monotherapy.
	Figure 5 Sequential therapy of anti-PD-1 and anti-CTLA-4.
	Figure 6 Sensitivity analysis showing (A) anti-CTL-4, (B) anti-PD-1, and (C) anti-PD-L1 sensitivities relative to average tumor diameter (top row) in heatmap form to average tumor diameter, max effector T cell density in tumor and average mAPC density in 




