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Role of subsurface ocean in decadal 
climate predictability over the 
South Atlantic
Yushi Morioka1, Takeshi Doi1, Andrea Storto2, Simona Masina2,3 & Swadhin K. Behera   1

Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments 
using a coupled general circulation model with two initialization schemes; one is assimilated with 
observed sea surface temperature (SST) only, and the other is additionally assimilated with observed 
subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability 
exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean 
heat transport. Decadal reforecast experiments in which only the model SST is initialized with the 
observation do not predict well the observed decadal SST variability in the South Atlantic, while the 
other experiments in which the model SST and subsurface ocean are initialized with the observation 
skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth 
analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport 
in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results 
demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate 
variability over the South Atlantic.

Decadal climate variability is one of key research issues for regional societies to mitigate its related damages and 
build long-term adaptation plans. Low-frequency variability of sea surface temperature (SST), sea ice and exter-
nal forcings such as greenhouse gases and aerosols are important factors for generation of the decadal climate 
variability. As a key driver of the decadal climate variability, many studies have elaborated on understanding 
and predicting the decadal SST variability in the tropics1–4, the North Pacific5,6 and the North Atlantic7–9 where 
long-term observation data are available. On the other hand, significant advances in climate modeling and global 
ocean observation networks such as Argo floats are now bringing more attention to understanding and predicting 
the decadal SST variability in the data-sparse Southern Hemisphere.

The decadal climate variability in the South Atlantic was first identified by seminal studies10,11. A singular value 
decomposition (SVD) analysis of observation data in the late 20th century revealed that low-frequency fluctuations 
of SST and sea level pressure (SLP) with 14–16 year period exist in the South Atlantic and a north-south dipole 
structure of SST anomalies tends to appear accompanied with subtropical high variations. Performing long-term 
simulation with a coupled general circulation model (CGCM), a subsequent study12 suggested that the South 
Atlantic may exhibit multi-decadal variability with 25–30 year period as well. This involves variations in southward 
extension of the subtropical high, which results in modulating meridional heat transport and generating SST var-
iability in the South Atlantic. The important roles of meridional heat transport and wind-induced mixing in the 
decadal SST variability of the South Atlantic were further reported in other climate modelling studies13,14.

Besides local air-sea interaction, remote influences from the tropical Pacific decadal variability such as the 
Interdecadal Pacific Oscillation (IPO)15 have been recently identified for the decadal SST variability in the South 
Atlantic16 through the well-known atmospheric teleconnection, the Pacific-South American modes (PSA)17. On 
the other hand, one recent study18 demonstrated in an eddy-resolving ocean general circulation model (OGCM) 
that the multi-decadal SST variability in the Atlantic Sector of the Southern Ocean can be generated as an intrin-
sic ocean variability mode through eddy-mean interaction and propagate eastward along the background east-
ward current. Since the decadal SST variability generated in the South Atlantic tends to migrate eastward and 
have potential influences on decadal climate variability in the southern Indian Ocean14,19, skillful prediction of 
the decadal SST variability in the South Atlantic is crucial for that of decadal climate variability in the southern 
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Indian Ocean. Furthermore, downstream influences on southeast Australian climate through the atmospheric 
teleconnection have been recently reported20.

Although significant advances are made in understanding decadal climate variability in the South Atlantic, 
decadal climate predictability in the South Atlantic was described only in a part of global decadal climate pre-
diction3,21–23 and not fully understood. Therefore, this study aims to investigate the decadal climate predicta-
bility in the South Atlantic by performing decadal reforecast experiments using a CGCM. Two types of ocean 
initialization schemes, providing initial conditions for the reforecast experiments, are adopted here to exam-
ine potential roles of surface and subsurface oceans in the decadal variability. One is the SST initialization in 
which the model SST is strongly nudged to the observed SST using the surface heat flux (see Methodology). The 
SST-initialization has been widely utilized for seasonal climate prediction24–28 and decadal climate prediction (e.g. 
North Atlantic7,29). The other is the initialization of subsurface ocean temperature and salinity using three dimen-
sional variational (3DVAR) data assimilation30,31. By adopting the 3DVAR initialization scheme, Doi et al.32 have 
successfully demonstrated a significant improvement in predicting interannual climate variability in the tropical 
Indian Ocean. In the following section, relative roles of surface and subsurface ocean initializations in the decadal 
climate predictions are examined.

Results
Decadal climate variability and predictability in the South Atlantic.  Decadal climate variability is 
defined as low-frequency fluctuation from the mean state, so describing the mean state helps understand its dec-
adal variability. Long-term mean SST during 1982–2016 (Fig. 1a) shows warm water intrusion by the southward 
Brazil Current and its confluence with cold water advection by the Malvinas Current along the South America. 
The confluence of the two western boundary currents leads to strong wind-driven eastward current, the South 
Atlantic Current at around 40°S. To the north of the South Atlantic Current (20–40°S), the subtropical high, the 
St. Helena High, dominates over the South Atlantic with its peak amplitude in the eastern side (Fig. 1b). In the 
Atlantic sector of the Southern Ocean (40–60°S), the low air pressure zonally extends over the cold SST, exhibiting 
prevalence of strong westerly winds.

The low-frequency SST variability, defined as standard deviation of the 8-year low-pass filtered SST anoma-
lies using a simple running mean technique, is large along the Brazil Current and Malvinas Current (Fig. 1c). In 
analogy with other western boundary current regions (e.g. the North Pacific33), the fluctuations of these western 
boundary currents and their interaction with local atmosphere may be related to the low-frequency SST varia-
bility along the coast. Also, the northwestern South Atlantic shows slightly high variability, which may be related 
to decadal modulation of interannual variability, known as the South Atlantic subtropical dipole34 or the South 
Atlantic Ocean dipole35,36. The most noteworthy region in Fig. 1c, however, is the Southeast Atlantic where the 

Figure 1.  (a) Long-term mean SST (in °C) observed during 1982–2016. (b) Same as in (a), but for the SLP (in 
hPa). (c) Standard deviation of 8-yr running mean detrended SST anomalies (in °C) from the observation. Black 
box indicates the Southeast Atlantic Ocean (SEAO; 20–0°W, 50–40°S) region of research interest where the low-
frequency SST variability is large. (d) Same as in (c), but for the standard deviation of the 8-yr running mean 
detrended SLP anomalies (in hPa). The maps were generated using Grid Analysis and Display System (GrADS) 
Version 2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
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SST has the largest variability with a zonal orientation. The SST variability could be related to the atmospheric 
variability, because the low-frequency SLP variability also exhibits a zonally elongated structure with larger vari-
ability to the south of the large SST variability (Fig. 1d).

Decadal reforecast experiments exhibit some potentials in predicting the low-frequency SST variability. The 
ensemble mean of control (CTR) experiment initiated from Mar 1st of every year from 1982 to 2006 (i.e. 25 
starting dates), in which only the model SST is initialized with the observed SST, shows moderately high skills 
above 0.6 anomaly correlation coefficient (ACC) in the southern South Atlantic, statistically significant over 6–10 
year leads (Fig. 2a). Similarly as in the CTR experiment, the 3DVAR experiment, in which the model’s subsurface 
ocean temperature and salinity are additionally initialized using in-situ hydrographic profiles with the 3DVAR 
data assimilation scheme, presents moderately high skills in the southern South Atlantic, but the region with 
the moderately high ACC slightly shifts eastward along the 50–40°S compared to the CTR experiment. The dif-
ferences in the ACCs between the two experiments indicate much improvement in the prediction skills of the 
Southeast Atlantic Ocean (SEAO; 20–0°W and 50–40°S) region for the 3DVAR experiment (Fig. 2c). Although 
the decadal SST predictability is spatially limited in the South Atlantic, the regions where the prediction skills 
show improvement correspond well with the regions where the decadal SST variability is pronounced (Fig. 1c), as 

Figure 2.  (a) Anomaly correlation coefficient (ACC) between the observed SST and the model SST predicated 
over 6–10 year leads in the CTR experiment. The positive ACC which is above the persistence (i.e. anomaly 
correlation between the observed SST and the SST over 6–10 year leads) and statistically significant at 90% 
confidence level of the two-tailed Student’s t test is shown by contour. Here we used the detrended SST 
anomalies for calculation of the ACC. For the model SST, a simple mean SST of 12 ensemble members was 
computed. Black boxes indicate the SEAO region defined in Fig. 1c. (b) Same as in (a), but from the 3DVAR 
experiment. (c) Differences in the ACCs over 6–10 year leads between the CTR and 3DVAR experiments. The 
maps were generated using Grid Analysis and Display System (GrADS) Version 2.1.a3 (http://cola.gmu.edu/
grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
http://cola.gmu.edu/grads/downloads.php
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suggested by Ding et al.37. In particular, the sea-surface observations show that decadal SST variability developed 
in the SEAO region migrates eastward along the background eastward current and contributes to the generation 
of decadal SST variability in the southern Indian Ocean14. So, it is crucial to understand and predict the genesis of 
this decadal SST variability in the SEAO region. Therefore, we have decided to select the SEAO region as the study 
area, as also suggested by previous studies14,37.

The skillful SST prediction over 6–9 year leads in the 3DVAR experiment is confirmed in time series of SST 
anomalies averaged over the SEAO region. Since the subsurface ocean observation was very limited during 1980s 
(Fig. S1a,b), here we only show the time series after 1990s. In contrast to the CTR experiment, the 3DVAR exper-
iment initialized in 1991 predicts a gradual decay from warm to cold phase during late 1990s (Fig. 3a). The cold 
phase in early 2000s is also predicted in the 3DVAR experiment initialized in 1996 (Fig. 3b), while the CTR 
experiment predicts warm phase. Although the 3DVAR experiment initialized in 2001 captures the cold phase 
in early 2000s, it does not predict a rapid shift from cold to warm phase during late 2000s (Fig. 3c). However, the 
3DVAR experiment initialized in 2006 reasonably predicts the warm phase in late 2000s and early 2010s (Fig. 3d).

A remarkable increase in number of subsurface observation (Fig. S1a,b) may contribute to more skillful pre-
diction towards recent period in the 3DVAR experiment. This motivates us to further investigate the recent warm 
phase as a case study. During the warm phase of late 2000s and early 2010s, cold SST anomalies are initially 
observed in the SEAO region during 2001–2005, but they turn into warm SST anomalies during 2006–2010 with 
long persistence over 2011–2015 (Fig. 4). The CTR experiment initialized in 2006 does not capture the devel-
opment of warm SST anomalies in the SEAO region, rather it predicts persistence of cold SST anomalies in late 
2000s and early 2010s. On the other hand, the 3DVAR experiment initialized in 2006 successfully predicts the 
development of warm SST anomalies over the SEAO region in late 2000s and its long persistence in early 2010s.

The skillful prediction of the warm SST anomalies in the 3DVAR experiment may not be linked to that of 
surface heat flux anomalies (Fig. 5). The surface heat flux anomalies observed during 2001–2005 show positive 
anomalies over the cold SST anomalies in the SEAO region, contributing to damping the cold SST anomalies. 
The counteracting effect of surface heat flux anomalies is also observed during 2006–2010. However, during 
2011–2015, the positive surface heat flux anomalies act to keep the warm SST anomalies in the SEAO region. 
The inverse relationship between the SST and surface heat flux anomalies is more notable in both the CTR and 
3DVAR experiments where the negative (positive) surface heat flux anomalies are generated over the warm (cold) 
SST anomalies in the South Atlantic.

Figure 3.  (a) Time series of detrended SST anomalies (in °C) averaged over the SEAO region (back box 
in Fig. 1c) from the observation (black line) and the CTR (red line) and 3DVAR (blue line) experiments 
initialized on Mar 1st 1991. For the CTR and 3DVAR experiments, the ensemble mean value (thick line) and 
each ensemble member (thin dotted line) are shown. (b–d) Same as in (a), but for the case of the experiment 
initialized on Mar 1st 1996, 2001, and 2006, respectively. The maps were generated using Grid Analysis and 
Display System (GrADS) Version 2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
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The insignificant roles of atmospheric variations in the warm SST anomalies over the SEAO region are also 
suggested in the atmospheric circulation anomalies (Fig. S2). The SLP anomalies observed during 2001–2005 
exhibit anticyclonic and cyclonic circulation anomalies to the west and east of the SEAO region, respectively. 
During the initialization period of 2001–2005, both the CTR and 3DVAR experiments show opposite signs of 
the observed circulation anomalies. In the atmospheric reanalysis, the positive SLP anomalies start to evolve in 
the SEAO region during 2006–2010, but turn into negative SLP anomalies during 2011–2015. However, the SLP 
anomalies predicted in both the CTR and 3DVAR experiments are negative during 2006–2010, opposite to the 
observed ones. On the other hand, both the CTR and 3DVAR experiments during 2011–2015 slightly reproduce 
the negative SLP anomalies in the SEAO region. The clear disagreement among the atmospheric reanalysis and 
the two experiments suggests that the successful prediction of the warm SST anomalies in the 3DVAR experiment 
may be more related to the low-frequency ocean variability induced by the subsurface ocean initialization than 
the atmospheric variability.

Role of subsurface ocean in the South Atlantic decadal predictability.  To investigate potential roles 
of subsurface ocean initialization in decadal predictability of the Southeast Atlantic, longitude-depth sections of 
ocean temperature anomalies, absolute mixed-layer depth and potential density averaged in 50–40°S are shown in 
Fig. 6. During the initialization period of 2001–2005, the observation shows that the cold temperature anomalies 
in the SEAO region (20–0°W) penetrate into deeper ocean below 300 m. The cold temperature anomalies in the 
subsurface ocean below 120 m are reproduced in both the CTR and 3DVAR experiments except for the subsur-
face warm temperature anomalies in the eastern part of the SEAO region, which is probably due to paucity of the 
in-situ observations (Fig. S1b). The amplitude of the cold temperature anomalies in the 3DVAR experiment is 
much larger than that in the CTR experiment. During the prediction period of 2006–2010, the observation exhib-
its development of warm temperature anomalies in the SEAO region. In contrast to the observation, the CTR 
experiment predicts cold temperature anomalies there. On the other hand, the 3DVAR experiment successfully 
predicts the development of warm temperature anomalies, in particular, in the eastern part of the SEAO region. 
The warm temperature anomalies are notably large below the mixed layer. Similar results are obtained for the 
prediction period of 2011–2015 when the observation shows warm temperature anomalies in the SEAO region. 

Figure 4.  Spatial patterns of detrended SST anomalies (in °C) during (top) the initialization period of 
2001–2005 and the prediction periods of (middle) 2006–2010 and (right) 2011–2015. From left to right, the 
SST anomalies from the observation, the CTR and 3DVAR experiments initialized on Mar 1st 2001 are shown. 
For the model SST, a simple mean SST of 12 ensemble members was computed. Black boxes correspond to the 
SEAO region defined in Fig. 1c. The maps were generated using Grid Analysis and Display System (GrADS) 
Version 2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
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The deep structure of warm temperature anomalies is confirmed in the other ocean reanalysis product, although 
it shows cold temperature anomalies in the eastern part of the SEAO region (Fig. S3).

The impact of subsurface ocean initialization in the 3DVAR experiment is evaluated by performing heat 
budget analysis in the SEAO region (see Methodology). The temperature tendency anomalies in the 3DVAR 
experiment show larger positive values in 2006 than those in the CTR experiment (Fig. 7a,b). Among the three 
components contributing to the temperature tendency anomalies, it is the convergence anomalies of zonal heat 
transport that explain most of the positive temperature tendency anomalies in the 3DVAR experiment (Fig. 7d). 
The convergence anomalies of meridional heat transport act to dampen the anomalies in temperature tendency 
(Fig. 7f). There is secondary contribution from the residual component in the 3DVAR experiment (Fig. 7h), but 
it is vertically limited in the upper ocean above 120 m including the mixed layer (not shown) and the amplitude 
is smaller than the convergence anomalies of zonal heat transport (Fig. 7d). Since the surface heat flux anoma-
lies in the 3DVAR experiment show negative values in the SEAO region during 2006–2015 (Fig. 5), ocean pro-
cesses such as vertical advection and mixing could contribute to the positive anomalies in temperature tendency 
(Fig. 7h). Similar contribution from the convergence anomalies of zonal heat transport is confirmed in the other 
ocean reanalysis product, particularly during 2006–2011 (Fig. S4). The initialization of ocean heat transport may 
be crucial for development of warm temperature anomalies in the SEAO region after 2006.

The convergence anomalies of zonal heat transport in the 3DVAR experiment were further decomposed into 
contributions from west (20°W) and east (0°W) boundaries of the SEAO region. Although slightly stronger at 
the east boundary, the zonal heat transport anomalies at both boundaries contribute to the positive convergence 
anomalies (Fig. 8a,b). This is mainly due to anomalous zonal convergence of mean warm temperature by zonal 
current anomalies (Fig. 8c,d), because anomalous zonal convergence of temperature anomalies (~0.5 °C, not 
shown) by mean eastward current (~0.05 m s−1) is estimated to be smaller than that of mean warm temperature 
(~10 °C) by zonal current anomalies (~10–2 m s−1). The latitude-depth section of potential density anomalies at the 
west boundary during 2006–2010 shows high and low values in the surface mixed-layer to the northern (45–35°S) 
and southern (55–45°S) parts of the SEAO region (Fig. 8e). The associated southward pressure gradient anomaly 
is geostrophically balanced by the Coriolis force exerted on the eastward current anomalies (Fig. 8c). On the 
other hand, at the east boundary, the high potential density anomalies in the surface mixed-layer shift southward 
(50–40°S) followed by the low potential density anomalies to the north (35°S, Fig. 8f). The associated northward 
pressure gradient anomalies may be linked to the westward current anomalies (Fig. 8d).

One may wonder if the convergence anomalies of the meridional heat transport during 2011–2015 also con-
tribute to the positive temperature tendency anomalies in the 3DVAR experiment (Fig. 7b,f). Detailed analysis 

Figure 5.  Same as in Fig. 4, but for the detrended surface heat flux anomalies (in W m−2). Positive values 
indicate that the atmosphere warms the ocean. The maps were generated using Grid Analysis and Display 
System (GrADS) Version 2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
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(Fig. S5a,b) reveals that the meridional heat transport anomalies at the north boundary (40°S) of the SEAO 
region contribute more than those at the south boundary (50°S). This is mainly attributed to anomalous merid-
ional advection of mean warm temperature by anomalous southward current during 2011–2015 (Fig. S5c). The 
southward current anomalies seem to be related with the westward pressure gradient induced by the high and 
low potential density anomalies to the east (10°W–5°E) and west (25–10°W) of the SEAO region (Fig. S5d). The 
contribution from the anomalous meridional heat transport is also reported in previous results12–14.

Discussion
An improvement of decadal climate prediction in the Southeast Atlantic is demonstrated by initializing the sub-
surface ocean in a CGCM with a 3DVAR data assimilation scheme. A better representation of zonal heat trans-
port associated with the anomalous zonal current contributes to skillful prediction of warm SST anomalies in the 
Southeast Atlantic in late 2000s and early 2010s. The results show that both the observed and predicted surface 
heat flux anomalies tend to dampen the SST anomalies and the atmospheric anomalies do not seem to contribute 
much to generation of the warm SST anomalies in contrast to previous studies12–14. The analysis of upper-ocean 

Figure 6.  Same as in Fig. 4, but for the longitude-depth sections of detrended subsurface ocean temperature 
anomalies (in °C) averaged over 50–40°S of the Southeast Atlantic. Black and gray lines exhibit absolute mixed-
layer depth and potential density (C. I. 0.1 Kg m−3), respectively. Here we defined the mixed-layer depth as the 
depth where the potential density increases by 0.125 Kg m−3 from the surface layer. The maps were generated 
using Grid Analysis and Display System (GrADS) Version 2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php


www.nature.com/scientificreports/

8SCIEnTIFIC REPOrTS |  (2018) 8:8523  | DOI:10.1038/s41598-018-26899-z

Figure 7.  (a,b) Year-to-year variations of the detrended subsurface ocean temperature tendency anomalies 
(in 10−7 °C s−1) averaged over the SEAO region (black box in Fig. 1c) from the CTR and 3DVAR experiments, 
respectively. (c,d) Same as in (a,b), but for the contributions from convergence anomalies of the horizontal 
heat transport (in 10−7 °C s−1) to the total temperature tendency anomalies. (e,f) Same as in (c,d), but for 
the contribution from convergence anomalies of the meridional heat transport (in 10−7 °C s−1) to the total 
temperature tendency anomalies. (g,h) Same as in (c,d), but for the contribution from the residual heat 
transport (in 10−7 °C s−1). The maps were generated using Grid Analysis and Display System (GrADS) Version 
2.1.a3 (http://cola.gmu.edu/grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
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heat budget reveals that the initialization of subsurface ocean in a CGCM appears to directly improve the pre-
dicted zonal heat transport, leading to skillful prediction of the decadal SST variability. Remarkable changes in 
stratification due to initialization of subsurface ocean temperature and salinity may be responsible for inducing 

Figure 8.  (a) Year-to-year variations of detrended horizontal heat transport anomalies (in 10−7 °C s−1) at the 
west boundary (20°W) of the SEAO region (black box in Fig. 1c) from the 3DVAR experiment. (b) Same as in 
(a), but at the east boundary (0°W) of the SEAO region. For comparison with (a), the values are multiplied with 
minus one. (c,d) Same as in (a), but for the detrended zonal current anomalies (in 10−2 m s−1) at the west and 
east boundaries of the SEAO region, respectively. (e,f) Latitude-depth sections of detrended subsurface potential 
density anomalies (in 10−1 Kg m−3) at the west and east boundaries of the SEAO region, respectively. Black and 
gray lines exhibit absolute values of the mixed-layer depth and the potential density (C. I. 10−1 Kg m−3). The 
maps were generated using Grid Analysis and Display System (GrADS) Version 2.1.a3 (http://cola.gmu.edu/
grads/downloads.php).

http://cola.gmu.edu/grads/downloads.php
http://cola.gmu.edu/grads/downloads.php
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the geostrophic current anomalies afterwards. Since the experiments show that the SST-nudging initialization 
scheme is not able to precondition the subsurface ocean variability, we note that the subsurface ocean data assim-
ilation considerably helps to improve the predictability of the Southeast Atlantic.

The 3DVAR experiment shows moderately high skills (0.6 ACC) in predicting the decadal SST variability of 
the Southeast Atlantic, but the prediction skills outside the region do not show much improvement compared to 
the CTR experiment. Although the choice of the study area is arbitrary to some extent, here we focus on the SEAO 
region defined previously according to the relevant literature that highlights its potential predictability. However, 
out of this region, the merits of the subsurface data assimilation appear more questionable and difficult to assess. 
Since the decadal SST variability in the Southeast Atlantic is large compared to the other regions, the high pre-
diction skills in the Southeast Atlantic may have relations to the large decadal SST variability there. A similar 
tendency is seen in the other ocean basins using the non-linear statistical prediction37, suggesting that there exists 
an upper limit of prediction skills in the regions where the decadal SST variability is rather small.

Also, the role of atmospheric variability in the decadal SST predictability could not be verified in this study 
due to lack of long-term observed data. We had only one observed event (2006–2015) to analyze here. Previous 
studies12–14 suggested the role of atmospheric variability based on long-term model simulations in which several 
events associated with decadal variability are analyzed in a statistical or composite manner. It is expected that 
more number of observations in the future will help us to properly account for the exact role of the atmospheric 
variability as reported in those previous modelling studies.

This study provides much evidence for potential roles of subsurface ocean initialization in the decadal SST 
prediction in the Southeast Atlantic. However, for more realistic application to society, the skillful predictions of 
surface temperature and rainfall variability over continent and the ocean are indispensable. Both the CTR and 
3DVAR experiments represent low skills in predicting SLP anomalies (Fig. S2) which play a key role in determin-
ing temperature and rainfall variability. Since the atmospheric circulation in the South Atlantic undergoes dec-
adal variability due to local air-sea interaction10–14 and remote influences from the IPO through the atmospheric 
teleconnection16, skillful predictions in the tropical Pacific decadal variability and the South Atlantic SST variabil-
ity are greatly important. Future work would be required to improve model physics and initialization schemes for 
the atmosphere (e.g. external forcing such as greenhouse gases), land surface (e.g. soil moisture and snow cover), 
ocean (e.g. sea-surface height) and sea ice (e.g. sea-ice cover and thickness).

Methodology
In this study, the decadal climate prediction in the South Atlantic was assessed using historical climate datasets 
during the satellite period after 1982. The SST data is derived from the Optimum Interpolation SST (OISST) V238 
provided by NOAA, whereas the subsurface ocean temperature and salinity are obtained from EN4 quality con-
trolled dataset39 provided by Met Office Hadley Centre. The atmospheric data are derived from the ERA-Interim 
atmospheric reanalysis provided by ECMWF40. Here we used monthly mean values with a uniform horizontal 
resolution of 1° × 1° and calculated monthly anomalies by subtracting monthly climatology from the original 
product and removing a linear trend related to global warming using a least squared method.

To perform decadal reforecast experiments, we used a CGCM developed under Japan-EU collaboration, 
called the Scale Interaction Experiment-Frontier Research Center for Global Change 2 (SINTEX-F2) model41,42. 
The SINTEX-F2 model is an upgraded version of SINTEX-F1 model24,43. The atmospheric component of the 
SINTEX-F2 is based on ECHAM544 with 31 levels in the vertical on a T106 Gaussian grid. The ECHAM5 was 
originally developed at ECMWF and has a parameterization package developed at the Max-Plank Institute 
for Meteorology. The oceanic component of the SINTEX-F2 is Nucleus for European Modeling of the Ocean 
(NEMO)45, which includes the Louvain-la-Neuve Sea Ice Model 2 (LIM2) sea ice model46 and has 0.5° × 0.5° 
horizontal resolution of ORCA configuration (ORCA05) with 31 levels in the vertical. The atmospheric and oce-
anic fields are exchanged every 2 hours with no flux correction by means of the Ocean Atmosphere Sea Ice Soil 3 
(OASIS3) coupler47.

We performed two types of decadal reforecast experiments. One is control (CTR) experiment which is based 
on the seasonal climate prediction system28, but the forecast lead time is extended up to 10 years (Fig. S6a). After 
32-yr spun-up with the observed SST climatology since 1950, the model was initialized with SST-nudging scheme 
every month from 1982 to 2006 in such a way that the model SST is strongly nudged to the observed SST using 
surface heat flux in the ocean-atmosphere coupled run. The decadal reforecast experiment, then, was performed 
from Mar 1st of every year from 1982 to 2006, and the model was freely integrated over a 10-year period.

To perform ensemble predictions, we generated 12 different initial conditions in the following manner. 
For initialization of the model SST, we employed two different SST datasets of the weekly OISSTv238 and the 
high-resolution daily NOAA OISST analysis48. We applied three negative feedback values (−2400, −1200, and 
−800 W m−2 K−1) to the surface heat flux in the model, corresponding to 1, 2, and 3-day relaxation time for 
the 50-m mixed-layer temperature, respectively. The restoring values are set much larger than the value (−40 
W m−2 K−1) proclaimed by the CLIVAR Decadal Climate Variability and Predictability Working Group. This is 
because our goal here is not the correction of bias, which has by definition longer spatial and temporal scales, but 
the actual ocean temperature initialization that requires a stronger relaxation within a shorter period. Then, we 
integrated the model with and without the vertical mixing scheme developed by Sasaki et al.49. In the scheme, the 
model takes into account the strong vertical mixing associated with small vertical scale structures (SVSs) within 
and above the equatorial thermocline. These different initial conditions lead to generating 12 ensemble members 
for the CTR experiments.

The other experiment, called 3DVAR experiment, is an upgraded version of the CTR experiment involving 
subsurface ocean initialization (Fig. S6b). Although the SST-nudging scheme is adopted for the initialization 
phase from 1982, the model’s subsurface ocean temperature and salinity are additionally corrected via 3DVAR 
data assimilation scheme with 10-day assimilation window at the end of every month30,31. For the correction 
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of the subsurface ocean, we used the EN4 subsurface ocean observation data39. Same as in the case of the CTR 
experiment, we performed 10-year lead prediction from Mar 1st of every year from 1982 to 2006 with 12 ensem-
ble members. More detailed information can be referred to Doi et al.32.

For the above decadal reforecast experiments, the ensemble mean of monthly climatology for the 12 ensemble 
members was calculated over 10 years (i.e. 120 months) and the model drift (systematic error) was estimated as 
differences in monthly climatology between the model and the historical datasets. Here a simple averaging tech-
nique was used in the calculation of ensemble mean. Monthly anomalies for each ensemble member were calcu-
lated by extracting the monthly observed climatology and the model drift from the total values, then by removing 
the linear trend over the 25-yr experiment period for each lead time.

To investigate physical mechanisms behind the decadal temperature variability in the SINTEX-F2 model, we 
calculated the temperature tendency anomalies ′∂

∂( )T
t

 at each depth averaged over the region of research interest 
Area( ) and their components using the following equation,

ρ ρ ρ


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+∬ ∬ ∬c

Area
T
t

dxdy
c

Area
UT

x
dxdy

c
Area

VT
y
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p p p

where ′()  indicates the monthly anomalies, ρ is the ocean density, and cp is the ocean heat capacity. Here we calcu-
lated the monthly anomalies by subtracting the monthly climatology and the linear trend over the 25-yr experi-
ment period for each lead time. The first and second terms on the right-hand side represent contributions from 
convergence anomalies of horizontal UT( ) and meridional VT( ) heat transport. The last term on the right-hand 
side is residuals including surface heat flux anomalies, convergence anomalies of vertical heat transport and the 
remaining heat transport associated with horizontal and vertical mixing. We calculated the residuals by subtract-
ing the first two terms on the right-hand side from the temperature tendency anomaly. For convenience of inter-
pretation, we showed the values without the constant ρcp in Eq. (1).
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