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Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath,
a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity.
Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding
polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However,
cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate
goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity
study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects
of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally,
the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated
into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell
polarization/myelination will be discussed.

1. Introduction

Cell polarity indicates the presence of structural and
molecular asymmetries based on asymmetric distribution
of proteins, lipids, and RNAs in cells [1–6]. The cell
polarization is ubiquitously important in cellular function,
in particular, in multicellular tissues where multiple types
of differentiated cells play specific roles. Understanding cell
polarization is, therefore, one of the major goals of cell
biology. Cell polarization in epithelial cells or other types of
cells has been extensively studied. However, cell polarization
is a formidably complicated process involving cytoskeletal
remodeling, membrane traffic, RNA localization, protein
interaction, and intracellular signaling, with feedback to
gene expression [7]. In addition, despite the high level
of conservation of cell polarity-associated proteins, the
interaction between the polarity proteins and other signaling
components varies from one cell context to another and from
one species to another, which complicates the task of dis-
secting cell polarization [7]. Thus, the understanding of cell
polarization still remains incomplete, and cell polarization is
still one of the hottest fields in biology.

On the other hand, cell polarization in myelinating glia,
especially in Schwann cells, has been less extensively studied.
The myelinating glia, oligodendrocytes (OLGs) in central
nervous system (CNS) and Schwann cells in peripheral ner-
vous system (PNS), form the myelin sheath, a multilayered
membrane system enabling salutatory nerve impulse con-
duction and maintaining axonal integrity. The myelin sheath
is a polarized structure, and there is some similarity between
Schwann cell polarity and epithelial apicobasal polarity [8,
9]. Thus, cell polarization in myelinating glia may be a
prerequisite for myelination to start, or progress coordinately
with myelination, at least. Studying the mechanism of cell
polarization in myelinating glia is therefore critically impor-
tant in order to elucidate the mechanism of myelination.

The ultimate goal of this paper is to provide insights
in the field of myelination by applying the information
obtained in polarity study in other types of cells, especially
in epithelial cells, to cell polarization of myelinating glia.
Thus, in this paper, recent progresses in the main aspects
of cell polarity in general are summarized. Then they will
be compared with the polarity specific to OLGs. Finally,
present status of cell polarization study in Schwann cells is
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summarized, and then the author will attempt to translate
the achievements obtained in polarization study for epithe-
lial cells, OLGs, and other types of cells into Schwann cell
biology. Extrinsic polarity cues from extracellular matrix
(ECM) focus on dystroglycan function and are separately
discussed at the final section. Reviewing all the aspects of cell
polarization in general is far beyond the scope of this paper,
and the interested readers are referred to other papers [1–6].

2. Polarity in Epithelial Cells (or in General)

2.1. Basic Themes in Cell Polarization Are Conserved. The
commonality of cell polarity reflects a fundamental require-
ment of localizing different activities to distinct regions
of cells. Diverse cell types exhibit diverse polarized phe-
notypes. However, despite the enormous morphological
diversities, fundamental machineries for establishing cellular
polarization seem to be largely conserved in the metazoa
[5, 10]. The fundamental themes in cell polarization can be
typically observed in the process of apicobasal polarization
in epithelial cells. First, the cells receive extrinsic cues from
adhesion receptors regulating cell-cell contact and receptors
for ECM. Second, these cues induce the localization of
three major polarity complexes that are highly evolutionally
conserved: the Par polarity complex, Crumbs complex, and
Scribble complex. These complexes seem to provide crucial
intrinsic membrane domain orientational cues directing
the formation of distinct cortical domains such as apical,
lateral, and basal. Third, these polarity complexes direct the
asymmetric localization of proteins in apical and basolateral
membranes by regulating polarized trafficking machinery.
This machinery sorts proteins by recognizing intrinsic
protein-sorting codes via cytoplasmic adaptor complexes
present in intracellular membrane compartments and then
transports specific proteins to the corresponding specific
plasma membrane domains, apical, or basolateral. This
machinery is present mainly in membrane compartments
including endoplasmic reticulum (ER), Golgi, and endo-
somes. All eukaryotic cells share common cellular machiner-
ies for posttranslational protein trafficking present in ER,
Golgi, endosomes, and plasma membrane [11], supporting
the idea that diverse cell polarities are based on the common
themes. Here we summarize the basic cellular machinery for
cell polarization.

2.2. Polarity in Epithelial Cells. Epithelial cells are densely
packed and form continuous sheets, protecting inner tissues
against the external environment, and also serve various
functions such as secretion, absorption, and transport.
To fulfill these functions, epithelial cells have evolved
characteristic apical and basolateral membrane domains.
The basolateral membrane contacts adjacent cells and the
underlying tissue, whereas the apical membrane faces the
lumen of an internal organ. Typically, the apical domain is
formed by the brush border of microvilli, which is underlain
by a terminal web of actin and spectrin filaments [3].
These are linked to the plasma membrane by the ERM
family proteins: Ezrin, Moesin, and Radixin. Since the apical

membrane is exposed to hostile environments such as high
osmotic pressure or the presence of digestive enzymes, it
needs to be particularly sturdy. That seems the reason why
the apical membrane is strongly enriched in sphingolipids
[12], which, together with cholesterol, have the propensity
to form tightly packed membrane microdomains called lipid
rafts. The high proportion of sphingolipids and cholesterol
in the apical membrane could make it a continuous raft
membrane in which nonraft domains are embedded [13,
14]. The basolateral domain is subdivided into a lateral
domain that mediates the adhesion between adjacent cells
and provides mechanical support for the epithelium and
a basal domain that contacts the subcellular tissues. The
two membrane domains are separated by tight junctions,
which help to prevent mixing of apical and basolateral
membrane components and seal the epithelium [15]. The
tight junctions contain a number of homophilic adhesion
molecules, such as Occludin, Junctional adhesion molecules
(JAMs), and the Claudins [3]. These proteins are all clustered
by the MAGUK (membrane-associated guanylate kinase-like
homology) proteins, ZO-1, and ZO-2, which bind to the
cytoplasmic tails of Claudin and Occludin through their N-
terminal PDZ domains. Adherens junctions are located just
below the tight junctions, providing the main mechanical
link between cells. Adherens junctions are characterized by
the presence of cadherins and their cytoplasmic adaptor
proteins, beta-catenin, and alpha-catenin, which mediate
homophilic adhesion with adjacent cells [16]. Another class
of homophilic adhesion molecules, the nectins, also localizes
to these junctions and links these junctions to the actin
cytoskeleton through the adaptor protein, Afadin/Af-6 [16,
17]. The basal domain contacts the ECM or basement
membrane, which is enriched in ECM receptors, such as
dystroglycan and integrins.

It is worth noting here that, near the apical surface,
there is a compartment which is variously termed the
subapical compartment (SAC), the apical recycling endo-
some (ARE), common endosome (CE), or the common
recycling endosome (CRE) [18]. This compartment seems
to ubiquitously exist in the polarized epithelial cells and
is morphologically typified by a branching tubulovesicular
network that is clustered in the apical region and extends to
the cell periphery. ARE and CE may be distinguished in SAC,
as CE recycle cargo from both apical and basolateral surfaces
through apical early endosome (AEE) or basolateral early
endosome (BEE), whereas ARE seems to be the most distal
subapical station relaying apical cargo from CE to the apical
membrane [18]. ARE is also biochemically distinguished as a
compartment to which Rab11 predominantly localizes.

2.3. Three Protein Complexes Controlling Protein Sorting and
Trafficking. Three classes of protein complexes have been
identified [19–21]: coatomer protein complex-II (COPII) is
involved in transport between the Golgi, the plasma mem-
brane, and endosomes. The COPII coat machinery includes
the small GTPase Sar1, its transmembrane GEF (guanidine
exchange factor) Sec12, and two protein complexes, Sec23/24
and Sec13/31 complexes [22]. COPI complexes are involved
in Golgi-ER trafficking and intra-Golgi transport. The
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COPI coat comprised seven subunits that assemble on the
Golgi membrane, generating COPI-coated vesicles [23]. The
adaptor protein-clathrin complex (the AP-clathrin complex)
is involved in transport between the Golgi, the plasma
membrane, and endosomes [5]. Each complex recognizes
and selectively recruits target proteins into transport vesicles
(nonrecognized proteins are excluded from vesicles), whereas
each complex also deforms and sculpts the membrane to
produce the membrane vesicle or a tubule. These generic
mechanisms are the core machineries of trafficking in all
cells and are modified in polarized cells to sort proteins into
separate plasma membrane domains.

2.4. AP Complexes. AP complex family regulates not only
protein sorting associated with endocytosis and exocytosis in
the Golgi complex, the plasma membrane, and endosomes,
but also the assembly of clathrin scaffolds, which sculpt
the membrane to vesicles. Four AP complexes (AP-1∼4)
have been identified [5]. Each AP complex is composed
of two large subunits (alpha, gamma, epsilon, delta, or
beta1-beta4; ∼100 kDa each), one small subunit (sigma1–
sigma4; ∼20 kDa), and one medium subunit (μ1–μ4;
∼50 kDa). Together with other proteins such as GGA,
AP180, epsin-1, epsin-2, EPS15, beta-arrestin, and ARH that
interact with clathrin, the AP subunits recognize and bind
specific amino-acid motifs in the cytoplasmic domain of
membrane proteins and cluster these proteins into patches
on the membrane by assembling a clathrin cage [24, 25].
AP-2 mediates endocytosis from the plasma membrane,
whereas AP-1, AP-3, and AP-4 mediate sorting at the trans-
Golgi network (TGN) and endosomes. One of the best
studied interactions is between the AP-2-clathrin complex
and the transferrin receptor (TfnR), which occurs on the
plasma membrane. The μ subunit of AP-2 (μ2) recognizes
a degenerate tetrapeptide cytoplasmic domain sorting motif
(YxxΦ, in which Φ represent any hydrophobic amino-acid
residue), resulting in the clustering of TfnR into clathrin-
coated pits on the plasma membrane [26]. These coated
pits then bud into the cytoplasm and are delivered to early
endosomes, where the sorting motifs including YxxΦ are
recognized by μ1A and μ1B subunits of AP-1A and AP-1B,
respectively, in endosomes [27].

2.5. Basolateral Sorting and Role of AP Complex. Basolateral
sorting is directed by Tyr-based motif (YxxΦ) or dileucine-
based motif in the cytoplasmic domain [5, 28]. Other
basolateral signals are constituted by single leucine/acidic
patch motifs as in CD147 [29] or by sequences not yet
resembling any other basolateral signal, for example, pIgR
[30], NCAM [31], EGFR [32], ErbB2 [33], and TGF-alpha
[34].

For example, LDLR has two Tyr-based motifs—a
membrane-proximal motif, NPXY, and a C-terminal motif,
YxxΦ—in its cytoplasmic domain, and these are required
for post-Golgi delivery and the maintenance of LDLR to
the basolateral domains [35, 36]. The membrane-proximal
motif, NPXY, is important for LDLR endocytosis, and the
C-terminal motif, YxxΦ, encodes a signal for sorting to the
basolateral domains. The AP complexes that are associated

with basolateral protein trafficking are either a ubiquitous
AP-1A expressing μ1A subunit or an epithelial specific
variant of the clathrin-associated AP-1 complex designated
as AP-1B, in which the ubiquitously expressed μ1A subunit is
replaced by a closely related μ1B subunit [37, 38]. Association
of AP-1B with Tyr-based signals was demonstrated as
the absence of μ1B leads to a nonpolarized or apically
localized protein, a similar effect to that of eliminating the
sorting motif. However, diLeu-based signals associated with
basolateral polarity are AP-1B-independent [37, 38]. ADP-
ribosylation factor 6 (ARF6) is suggested to play a role in
AP-1B-dependent sorting from recycling endosomes to the
basolateral membrane [39]. Recently, double-knockdown
study of AP-1A and AP-1B showed that AP-1A also plays
a role in basolateral sorting [27]. Since AP-1A localizes
predominantly to the TGN and/or early endosomes, and
AP-1B to recycling endosomes this suggests complementary
roles of AP-1A and AP-1B in basolateral sorting. AP-4 is also
suggested to have a role in basolateral targeting, whereas its
signal specificity remains unclear [40]. In addition, another
adaptor protein, ankyrins may be associated with E-cadherin
trafficking from the Golgi to the basolateral membrane
[41].

Recently, clathrin was shown to be required for basolat-
eral plasma membrane protein sorting [42]. Knockdown of
clathrin heavy chain in MDCL cells caused loss of basolateral
polarity due to a specific defect in the transport and sorting.
The affected proteins covered a broad range of basolateral
signals, including TfR (tyrosine-independent signal), VSVG
(tyrosine signal), E-Cadherin (dileucine motif), NCAM
(tyrosine-independent signal), and CD147 (single leucine
plus acidic cluster signal) [28].

2.6. Apical Protein Sorting and Transport. Rab GTPases play
crucial roles in defining apical trafficking routes. Rab4 and
5 are established regulators of early endosomal trafficking.
Rab5 is required for the fusion between endocytic vesicles
and early endosomes, whereas Rab4 is involved in directing
vesicular transport to the recycling endosome [43]. Rab11a
is present on the apical recycling endosomes (ARE), where it
interacts with myosin-Vb to modulate protein export to the
apical domain [44, 45]. Rab8 and Rab10 have been proposed
to participate in basolateral targeting from the common
recycling endosomes (CRE) and therefore might be involved
in the initial stages of the transcytic route to the apical surface
in MDCK cells [46, 47]. However, in intestinal cells, Rab8
has been found to regulate apical protein localization [48]
and indeed Rab8 also interacts with myosin-Vb [45]. Also
there is evidence that Rab13 and Rab14 are involved in apical
trafficking [49, 50].

In apical trafficking, fusion of the transport vesicles with
the plasma membrane is mediated by specific vesicle-soluble
NSF attachment protein (SNAP) receptors (V-SNAREs)
or vesicle-associated membrane proteins (VAMPs) in the
transport vesicles and target (t)-SNAREs in the plasma
membrane [51]. VAMP7 and VAMP8 seem to differentially
regulate membrane fusion of apically destined vesicles that
originate, respectively, from the vectorial and transcytotic
pathways [52].
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Apical sorting motifs are localized in the extracellu-
lar, transmembrane, or cytoplasmic domain of proteins
[53]. Extracellular domain motifs contain N- and O-linked
oligosaccharide chains such as those found in p75 [54] and
sucrose isomaltase [55]. The membrane-associated signal
can be the transmembrane domain itself as occurs in
some viral glycol-proteins, such as haemagglutinin and
neuraminidase, but the best described signal is the glycosyl
phosphatidylinositol (GPI) lipid anchor [56]. GPI-anchored
proteins are sorted into the apical pathway in the Golgi com-
plex. This occurs by GPI-anchored protein oligomerization
in lipid rafts [57], which are enriched in glycosphingolipids,
sphingomyelin, and cholesterol [56]. Finally, rhodopsin has
the cytoplasmic signal and dynein binding sites [43].

Now apical transport in epithelial cells is suggested to
be frequently mediated by endosomes. Endosomal compart-
ment is comprised of distinct populations of basolateral
early endosomes/basolateral sorting endosomes (BEEs/BSEs)
and apical early endosomes/apical sorting endosomes
(AEEs/ASEs), both of which receive internalized proteins
by endocytosis from corresponding membrane domain.
Common recycling endosomes (CREs) or apical recycling
endosomes (AREs) play a role in recycling of basolateral
proteins or apical proteins, respectively. At least, three
transport routes mediated by endosomal compartment are
suggested. First, GPI-anchored proteins, that are thought
to associate with lipid rafts, may be transported to apical
domain via AEEs/ASEs associated with Rab4/Rab8/Rab11
[58, 59]. Second, apical proteins reach apical membrane
via AREs. This route is raft independent but glycosylation
dependent, such as endolyn [58]. Third, the transcytotic
route is used by many apical proteins. For example, pIgR
is believed to be targeted from the TGN to the basolateral
membrane directly or via the BEE/BSE and then traverse the
CRE and ARE before arriving at the apical surface [60].

Basolateral (and somatodendritic) sorting signals are
often dominant over apical sorting signals. Transcytosis of
membrane proteins from the basolateral to apical domains
can occur if the basolateral signal is inactivated after newly
synthesized proteins are included into basolaterally directed
transport vesicles. For example, the adhesion-signaling pro-
tein neuronal-glial- (Ng-) CAM has a Tyr-containing, AP-
1B-dependent basolateral targeting signal that is inactivated
by phosphorylation on reaching the basolateral surface. In
the absence of a functional basolateral signal, Ng-CAM is not
captured by AP-1B in endosome after internalization and is
instead transcytosed to the apical membrane [61]. However,
there are also examples of recessive basolateral determinants
[62, 63], indicating that the hierarchy of sorting determi-
nants is more complicated or that their relative strength
depends on the protein in which they are present.

2.7. Role of Lipid Raft. Lipid raft is a small lipid-rich cluster
consisting of sphingolipids (including both sphingomyelin
and glycosphingolipids) and cholesterol. It is a membrane
microdomain distributed in a sea of phospholipids [64].
Lipid rafts are believed to play diverse roles in cellular
functions such as intra- and intercellular signaling, cellular
adhesion, cell entry, and molecular sorting and trafficking.

On the basis of previous observations that showed that
cholesterol and glycosphingolipids were enriched in the
apical domain, it was proposed that lipid rafts could act as
primary sorters of apical proteins at the Golgi complex [65].
Since all endogenous GPI-anchored proteins expressed by
polarized MDCK cells are apically localized [66] and GPI-
anchored proteins are incorporated into detergent-resistant
membrane domains as they reached the Golgi complex
before reaching cell surface [67], GPI-anchored proteins
are thought to be transported via lipid rafts. However,
whether this change of lipid environment is required for
accurate targeting is unclear. In these experiments, rafts were
defined as detergent-resistant membranes (DRMs), that is,
membranes that resist solubilization with mild detergents
such as Triton X-100. Also, the detergent insolubility method
was used to identify raft proteins [64]. However, these are
rather crude criteria to determine lipid raft as well as raft
proteins [53, 64]. Thus, a lack of suitable methods has
hampered to get conclusive evidence about raft association
[53]. Nevertheless, DRM fractionation remains a valuable
tool in the identification of potential raft constituents [64].

Amino acid sequence CRAC (cholesterol recognition/
interaction amino acid consensus domain) may mediate
interactions between proteins and lipid rafts. CRAC domain,
mediating interactions between proteins and cholesterol,
is generally located in the transmembrane domain and
is defined as a sequence pattern of L/V-(X1-5)-Y-(X1-5)-
R/K [68]. Raft proteins, caveolin and flotillin [69], have
CRAC domains [70]. In addition, roles of galectin-9, sorting
nexin 18 or FAPP2 in lipid raft clustering, and transport
carrier generation associated with apical transport have been
suggested [71–74].

2.8. Controlling Vesicle Fusion at Plasma Membrane Domains.
Rab family of small GTPases seem to control many stages
of vesicle docking and fusion, especially by having a role
in tethering vesicles to their target membranes [75]. At the
plasma membrane, the exocyst complex seems to regulate
the docking of a subset of vesicles, including basolateral
vesicles in epithelial cells [76, 77]. The exocyst is a large
complex of at least six proteins, some of which are localized
on the target plasma membrane and others are localized
to the transport vesicles, along with a Rab family GTPase,
which helps to control tethering-complex assembly of an
exocyst holocomplex. Another type of vesicle-tethering
complex comprises annexins and is present on other plasma
membranes, such as the apical membrane of epithelial cells.
Annexins bind to membranes in a phosphatidylinositol-
3,4-bisphosphage- (PtdIns(3,4)P2-) dependent and Ca2+-
dependent manners and self-aggregate. As with components
of the exocyst complex, annexins might be present on both
vesicles and target membranes [78]. The delivery of some
apical proteins in epithelial cells (e.g., the delivery of sucrose-
isomaltase [79]) requires annexin II.

Fusion of vesicles with a target plasma membrane is
mediated by the SNARE complex, which comprises vesicle
(v)-SNAREs such as vesicle-associated membrane protein
(VAMP) and target (t)-SNAREs such as syntaxins [80].
In polarized epithelial cells, apical and basolateral vesicles
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contain different v-SNAREs such as tetanus-insensitive (Ti)-
VAMP and VAMP8, respectively [52], and different t-
SNAREs are localized to the apical (syntaxin-3) and baso-
lateral (syntaxin-4) plasma membranes [81, 82]. Loss of
function of SNAREs leads to a concomitant disruption in
the delivery of apical or basolateral vesicles to the plasma
membrane [52, 83–85].

2.9. Intrinsic Membrane Domain Orientational Cues: Three
Complexes Regulating Polarity—PAR Complex, Crumbs,
and Scribble Complex. Intracellular complexes, partitioning
defective (PAR) and Crumbs and Scribble complexes, are
predominantly localized at the cell cortex, providing funda-
mental orientation cues to identify different regions of the
cell cortex.

2.9.1. PAR Complex. The par genes were identified as
maternal-effect genes, which are required for cytoplasmic
localization in early Caenorhabditis elegans embryos [86].
Seven genes were identified, and they are all necessary for
the first asymmetric cell division of the zygote. PAR1 and
PAR4 (LKB1) are serine/threonine kinases [87, 88]. PAR2
is a RING-finger domain protein that may function as an
E3 ubiquitin ligase [89]. PAR3 and PAR6 are PDZ-domain
proteins, which have scaffolding or adaptor functions [90,
91]. PAR5 is a 14-3-3 protein that binds to phosphorylated
serine and threonine residues [92]. PKC-3 is an atypical
protein kinase C (aPKC). Except PAR2, all of the Par proteins
and aPKC are conserved throughout the Metazoa [7].

Polarization in single cell and in multicellular organisms
can be induced by a pathway that involves tumor suppressor
LKB1 (the mammalian orthologue of PAR4). Activation of
LKB1 in epithelial cells results in apico-basal polarization of
single cells, even in the absence of cellular adhesion [93],
suggesting that LKB1 plays a central role in signaling pro-
cesses inducing the cell polarity. LKB1 is a master kinase that
phosphorylates the activities of at least thirteen downstream
effector kinases [94]. One of these effectors is AMP-activated
protein kinase (AMPK) family, which have also multiple roles
in cells, including regulation of energy production [95]. By
being a glucose or energy sensor, LKB1/AMPK pathway is
a molecular link between polarity and the metabolic status
of a cell. In addition, this pathway seems to play multiple
roles in cell, including formation of tight junction and E-
cadherin adhesion complexes as well as cell growth via
mTOR pathway [4]. Thus, inhibition of this pathway may
lead to carcinogenesis [4]. Interestingly, as described in detail
later, dystroglycan seems to regulate apico-basal polarity
via regulating LKB1/AMPK pathway [96]. AMPK members
have several function homologues: the kinase synapses of
amphids defective (SAD), the Ser/Thr kinase PAR1, and
the family of ELKL-motif kinases (EMKs; also known as
microtubule affinity-regulating kinases (MARKs)), which
destabilize microtubules [97]. These functional homologues
have important roles in the orientation of polarity in neurons
and epithelial cells [95].

Overexpression of PAR1b (EMK1, MARK2) in MDCK
cells results in the partial reorientation of the apical mem-
brane to intercellular lumens on the lateral membrane

domain, similar to the orientation of the apical (bile
canalicular) membrane in hepatocytes [98]. MDCK apical
plasma membrane reorientation is accompanied by a change
in microtubule organization, such that the minus ends of
microtubules localize to the intercellular lumens instead of
to the top of the cells. In addition, trafficking of post-Golgi
transport vesicles to the apical surface is redirected into
an indirect pathway (vesicles first appear at the basolateral
domain and then transcytose to the apical domain), as also
occurs in hepatocytes [98]. PAR1 homologues in budding
yeasts, Kin1 and Kin2, interact with the machinery for
vesicle tethering (the Rab proteins and the exocyst complex)
and membrane fusion (the SNAREs) [99]. Altogether, these
results suggested that PAR1 plays roles in multiple key
machineries generating cell polarity.

PAR3 and PAR6, which also bind active Cdc42 [100]
and atypical protein kinase C (aPKC), form a complex that
is localized to the apical junctional complex in polarized
epithelial cells [101–104]. PAR3-PAR6-aPKC seems to play
a central role for cell polarization ubiquitously including
epithelial cells, as described below in detail [102, 105].

2.9.2. Crumbs Complex. The Crumbs complex comprises
transmembrane proteins, Crumbs (Crb1-3 in vertebrates),
the PDZ-domain-containing proteins Stardust (PALS1/
MPP5 in vertebrates), PATJ (PALS1-associated tight junction
protein), and Lin7 [106–108]. Crumbs regulates the identity
of the apical membrane [105] and localizes to the apical side
of the junctional complex in polarized epithelial cells. Loss of
function of either the Crumbs complexes results in defects in
epithelial polarity that are due to the reduction of the surface
area of the apical plasma membrane domains [105].

2.9.3. Scribble Complex. The Scribble complex comprises
Scribble, lethal giant larvae (LGL), and discs large (DLG),
regulates the identity of the basolateral membrane, and is
localized below the apical junctional complex and along
the membrane at cell-cell contacts (lateral membrane in
epithelial cells) [102, 105]. Loss of any of these proteins
induces loss of cell polarity and usually overproliferates
[109].

2.10. Complex Interactions between the Three Polarity Com-
plexes and Small GTPase, Especially via aPKC Kinase Activity.
The three polarity complexes, Par, Crumbs, and Scribble,
regulate cell polarity through complex interactions between
them. It is worth noting that the localizations of these protein
complexes depend on not only anchoring to membrane pro-
teins or phospholipids but also active exclusion mechanism
between each other as described as follows.

First, PAR6 and aPKC colocalize with Crb, Stardust/
PALS1, and PATJ, and there is increasing evidence that PAR6
and aPKC are key components of this apical complex. PAR6
interacts directly with PALS1, PATJ, and the C-terminal
ERLI motif of Crb3, and both PAR6 and aPKC coprecipitate
with components of the Crb complex in mammals and
Drosophila [107]. aPKC can phosphorylate two conserved
threonine residues in the cytoplasmic tail of Crumbs in
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vitro, which are essential for Crumbs activity in vivo [110].
Genetic analysis showed that aPKC is required in early
D. melanogaster development to maintain the presence of
the Crumbs complex at the apical membrane, probably
by direct phosphorylation [110] or by Crumbs binding,
through its PDZ-interaction domain, to PAR6 [111]. Later
in development, Crumbs is required to stabilize the PAR3-
PAR6-aPKC complex at the apical junctional complex [102,
105]. aPKC has recently been shown to regulate Ezrin at the
apical side of polarized human intestinal cells in culture,
facilitating the formation of the apical cytoskeleton [112].
Thus, the activity of aPKC in association with the Crumbs
complex seems to be a key determinant of apical identity,
both through the recruitment and activation of downstream
apical complexes and through the inhibition of basolateral
determinants. The apical Crumb/PAR6/aPKC complex is
regulated by the binding of active Cdc42 to PAR-6. The
binding of Cdc42 to PAR-6 induces GTP-dependent switch in
PAR-6 conformation via a partial CRIB domain [113], reliev-
ing the inhibition of aPKC activity by PAR-6 [114]. Actually,
Crumbs, PAR-6, and aPKC delocalize when Cdc42 activity is
reduced, leading to defect in actin organization, endocytosis,
and adherens junction remodeling [115–118]. The function
of Crumbs maintaining apical membrane domain depends
on two conserved domains in the cytoplasmic tail of Crumbs,
a membrane proximal FERM-binding domain, and a C-
terminal ERLI motif [119, 120]. The FERM-binding domain
recruits betaH-spectrin to the apical side of the cell in
Drosophila. Also there is ample evidence that the Crumbs
complex plays a role in tight junction formation at the border
between apical and basolateral domains through recruiting
multiple tight junction proteins such as ZO-3, Claudin1, and
Angiomotin, which forms a complex with the Cdc42-GAP
and RICH1 [121–124].

Second, PAR3 localizes slightly basal to the Crumbs com-
plex, where it positions to establish the boundary between
the apical and lateral domains. aPKC can also phosphorylate
PAR3, decreasing the affinity of PAR3 for aPKC, suggesting
that the association of PAR3 with PAR6-aPKC is dynamic
[125]. In mammalian cells, PAR3 binds directly to the cell-
cell adhesion proteins JAMA [126] and nectin [127], both
of which colocalize with E-cadherin at the apical junctional
complex. The Drosophila PAR3 ortholog Bazooka plays a
similar role in the formation of the apical zonula adherens
through interaction with Armadillo, Drosophila Nectin-like
protein, Echinoid, Cadherin, PTEN, and Bitesize [128–130],
which in turn recruits ERM protein, Moesin, directing the
formation of continuous belt of actin around the apical
cell cortex [131]. PALS1 is also required for the trafficking
of E-cadherin to the plasma membrane and thereby the
localization of the exocyst complex to the plasma membrane
[132], indicating that complex feedback mechanisms are
involved in the organization of these protein complexes
at sites of cell-cell adhesion. Disruption of the exocyst
complex subunit, EXO84, results in the loss of Crumbs
from the epithelial surface of early D. melanogaster embryos
[133], suggesting that the exocyst complex has a role in
regulating the polarized organization of proteins at the apical
junctional complex. The function of PAR3 also depends

on Rac exchange factor, TIAM1 [134]. It is via binding
of the third PDZ domain and the C-terminal region of
PAR3 to the TIAM. Then PAR3 sequesters Tiam1 to prevent
inappropriate activation of Rac. PAR3 seems to regulate
locally the actin cytoskeleton through Rac or association
with LIM kinase2 [135, 136]. Both the Crumbs and Scribble
complexes are required to position Bazooka (PAR3) and the
adherens junctions between them.

Third, a member of the Scribble complex, LGL, is also a
target for aPKC phosphorylation, and LGL phosphorylation
inhibits its localization to the apical cortex [137]. The local-
ization of Scribble proteins also depends on Cdc42, Rac1,
cadherin, and actin [138]. Scribble complex may regulate
Rac1 via interaction with betaPIX and ADP ribosylation
factor GTPase-activating protein GIT1 [139]. Studies in
Drosophila indicate that mutual antagonism between the
apical Crumbs complex and the lateral Scribble complex
plays a central role in defining distinct apical and lateral
domains in epithelial cells [102, 105]. Overexpression of
Crumbs mimics the loss of function phenotype of mutation
in scribble group genes, and crumbs and stardust null mutants
are partially rescued by reducing the levels of any Scribble
complex component.

In addition, aPKC phosphorylates PAR1, causing PAR1
to bind to PAR5, resulting in the inhibition of the association
of PAR1 with the cortex at the apical membrane [140].
On the other hand, PAR1 phosphorylates PAR3 [141] and
destabilizes membrane association of PAR3. Thus, the two
kinases, aPKC and PAR1, exclude each other from their
respective regions of the cell cortex, and it seems that
one of the mechanisms is that PAR3/PAR6/aPKC complex
is often localized in a complementary pattern to that of
PAR1 [7]. Altogether, aPKC seems to be a key kinase
which phosphorylates proteins including members of all of
the three polarity complexes, interacts with small GTPase
signaling, and triggers downstream polarity signaling.

2.11. Association of Polarity Proteins with Wnt Signaling.
Planar cell polarity (PCP) is an asymmetry at the tissue
level rather than at the cellular level. Wnt signaling has
been implicated in the PCP [7]. PCP is induced by Wnt
ligands activating Frizzled receptor family [142]. Then,
adaptor protein, Dishevelled (Dvl), recruits a GEF to activate
RhoA [143], which activates the kinase ROCK. ROCK
phosphorylates PAR3, in addition to myosin light chain.
Dvl is itself phosphorylated by PAR-1 and can be associated
with aPKC [144, 145]. The Drosophila Frizzled receptor is
phosphorylated and inhibited by aPKC, which is recruited
to Frizzled through PATJ [146]. Also Scribble and Dlg were
shown to bind to components of PCP core machinery includ-
ing Frizzled receptors and Strabismus [147]. Interaction of
Lgl with Dvl has been reported [147].

2.12. The Role of Phospholipids in Defining Membrane
Domains. Local asymmetries in the phospholipid content
of plasma membrane domains also effect localization of
Cdc42 and cell polarity. Local changes in phosphoinosi-
tide synthesis are determined by the relative activities of
phosphoinositide 3-kinase (PI3K) phosphatase, and tensin
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homologue (PTEN). PI3K generates phosphatidylinositol-
3,4,5-trisphosphate (PtdIns(3,4,5)P3), and PTEN converts
PtdIns(3,4,5)P3 to PtdIns(4,5)P2. PI3K activity regu-
lates apico-basal polarization of epithelial cells (Gassama-
Diagne et al. 2006) [148]. In polarized epithelial cells,
PtdIns(3,4,5)P3 is enriched in the basolateral plasma mem-
brane [148] and recycling endosomes [149], but is absent
from the apical in which PtdIns(4,5)P2 is enriched [150].
Both Drosophila Bazooka and human PAR3 bind to both
PTEN and phosphoinositides [130, 151, 152], and this
interaction recruits PTEN to the apical junctions. In addi-
tion, PI3K may be recruited to and activated at the lateral
membrane by Dlg in response to Cadherin-dependent cell-
cell adhesion. Thus, PtdIns(4,5)P2/PtdIns(3,4,5)P3 asym-
metry is placed downstream of PAR3 or Scribble complex.
However, the strong effects of adding PtdIns(4,5)P2 or
PtdIns(3,4,5)P3 to the opposite membrane suggest that
this pathway may also feed back to regulate the polarity
complexes. For example, Annexin II, a putative scaffolding
protein that is required for the delivery of sucrose-isomerase
to the apical membrane [79], binds PtdIns(4,5)P2 [153].
Artificially induced accumulation of PtdIns(4,5)P2 on the
basolateral membrane causes apical membrane proteins
and annexin II to mislocalize to that membrane domain;
concomitantly, the former apical membrane is disrupted
[150]. Annexin II may in turn recruit other polarity-inducing
proteins, such as Cdc42 and aPKC (possibly through Cdc42
as part of the PAR3-PAR6 complex).

Rush localizes to endosomes via binding to PtdIns(3,
4,5)P3. Rush also binds Rab GDP dissociation inhibitor.
Rush overexpression study suggested that Rush controls
trafficking from early to late endosomes and from late
endosomes to lysosomes by modulating the activity of Rab
proteins [154]. Recently, a role of phosphatidylinositol 4-
phosphate (PtdIns4P) and related proteins, Vps74 and Sac1
in sphingolipid-dependent sorting in Golgi was suggested
[155]. In contrast, μ2 subunit of AP-2 binds to PtdIns(4,5)P2,
and this binding is necessary for endocytosis mediated by
AP-2 [156]. Also the mammalian exocyst subunit EXO70
and Sec3 interact with PtdIns(4,5)P2 and PtdIns(3,4,5)P3
[136, 157], suggesting that the polarized distribution of
phosphoinositides plays a role in exocytosis.

3. Polarity in Oligodendrocyte

3.1. Polarity in Oligodendrocyte: Comparison with Epithelial
Cells. During differentiation from oligodendrocyte precur-
sor cells (OPCs), OLGs form a large network of branching
processes, and eventually OLGs extend many processes, each
of which contacts and repeatedly envelopes a stretch of axon
with subsequent condensation of this multispiral membrane
forming myelin [158]. Thus OLGs develop quite a unique
and complicated cell morphology, and it is not always easy to
apply the apico-basal polarity in epithelial cells to these cells.
However, still the relationship between the two membrane
domains of OLGs, the cell body plasma membrane, and
the myelin sheath has some similarity with that between
apical domain and basolateral domain in epithelial cells
[159]. The myelin-membrane composition differs from that

of the plasma membrane. Myelin sheath is a multilayered
membrane system that is produced by and extends from
OLGs or Schwann cells in the CNS or PNS, respectively. The
myelin sheath is highly enriched in lipids. In CNS, cholesterol
the glycosphingolipids galactosylceramide (GalCer), and its
sulfated analogue sulfatide are main lipid components of the
sheath [160]. In addition, several hundreds of proteins have
been detected, as revealed by gel-based proteome analysis
[161]. The most prominently present are the two major
proteins (MBP 30%) and proteolipid protein (PLP 50%).
Also the myelin sheath is divided into two parts; compact
and noncompact regions that differ in protein composition.
In analogy to polarized epithelial cells, the myelin sheath
resembles the apical membrane because the myelin sheath is
enriched in GPI-anchored proteins, glycosphingolipids (such
as GalCer and sulfatide), and cholesterol. On the other hand,
the viral model protein HA of influenza virus, a marker
for vesicle-mediated transport to apical membrane involving
tSNARE syntaxin 3, localizes to the plasma membrane, and
VSVG, a basolateral marker involving syntaxin 4, localizes
to the myelin sheath. Tyrosine motif dictating basolateral
sorting via its association with the AP1B adaptor molecule
[26] is also used for myelin-directed targeting. Also in
OLGs, transcytosis, in which proteins or lipids to the
plasma membrane transported to plasma membrane are
transported again to the myelin sheath, seems to operate.
Thus the polarity in OLGs is complicated, and the idea that
myelin sheath in OLGs corresponds to the apical domain in
epithelial cells should be always viewed with some caution.

3.2. Myelin Protein Sorting and Transport in OLGs. Most
myelin proteins are transmembrane proteins and are thus
synthesized at the ER. From there, they are transported
by vesicular transport to the Golgi apparatus and further
to the plasma membrane. Similarly most myelin lipids are
most likely transported by vesicles to myelin membrane.
In analogy with epithelial cells, myelin proteins may follow
the way apical proteins are sorted and transported. Actually,
presence of many GPI-anchored proteins associated with
myelin sheath as well as detergent insolubility of several
myelin proteins suggests the similarities of myelin proteins to
apical proteins. Here, examples of myelin protein transport,
MBP, and PLP in OLGs will be reviewed.

3.2.1. MBP Transport. MBP is transported towards the
myelin in the form of its mRNA [162]. Thus, MBP mRNA
is mainly localized in myelin membrane domain, and locally
translated to MBP proteins, forming important part of cell
polarity in myelinating OLGs. Actually, RNA localization
and local translation are important in cell polarization in
several other situations. The mRNAs for Crumbs and Pals1
are enriched near the apical surface in Drosophila epithelial
cells [163, 164]. One of the reasons of mRNA localization
is to regulate translation quickly in response to extracellular
signals. In the case of MBP also, mRNA localization in myelin
sheath domain may enable timely translation of MBP mRNA
into proteins and insertion into myelin membranes during
myelination process. In addition, MBP protein is highly basic
and, hence, extremely adhesive. By transporting as mRNA, it
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prevents inappropriate or deleterious adhesive interactions
during transport. In addition to MBP, several other proteins
such as MOBP, CAII, and tau are also transported as mRNA
to the myelin membranes [165, 166].

MBP gene encodes two MBP families, classic MBP and
golli-MBP, containing 3 additional exons located upstream
of the classic MBP exons. Classic MBP are exclusively
expressed in myelin membranes, and consist of different
isoforms, mainly distinguished by the inclusion or exclusion
of exon 2. The different isoforms of MBP may localize to
different microdomains in the myelin membrane according
to distinct, isoform-dependent distribution in detergent-
resistant microdomains [167], suggesting multifunctionality
of this protein in myelin maintenance.

Targeting of MBP mRNA is a multistep process that
involves nuclear transport, assembly into transport particles,
trafficking and anchoring to the target site, and finally
activation of translation [162]. The first stepis that nuclear
export of MBP mRNAs is likely regulated by QKI RNA
binding proteins, which bind directly to the 3′ unrelated
region (UTR) of MBP mRNA [168, 169]. Interestingly, QKI
RNA binding consensus sequences are found in not only
MBP but also Krox-20, MAP-1B, and p27KIP1 [168, 170–
172]. QKI proteins function in not only MBP mRNA nucleo-
cytoplasmic transport but also mRNA stabilization of MBP
and p27KIP1. p27KIP1 plays a role in differentiating OLGs
and Schwann cells by inducing exit from cell cycle. Thus, QKI
proteins seem to have multiple synergistic effects promoting
myelination. Recently, it was reported that, in quaking viable
(qk(v)/qk(v)) mutant mouse, PLP was downregulated and
SIRT2 protein was reduced whereas SIRT2 mRNA was
unaffected [173], suggesting that QKI proteins still have
further functions on PLP and SIRT2, which remain to be
revealed.

In the cytoplasm, MBP mRNA is incorporated into
“granules”, along with protein synthetic machinery such as
ribosomal RNA and elongation factor [174]. This incorpora-
tion is mediated by the mRNA binding factor hnRNP A2 to
hnRNP A2 response elements in RNA [175]. During trans-
port, translation is suppressed by binding of the translational
inhibitor hnRNPE1 [176].

Whereas details of the final step, anchoring MBP mRNA
granules to the target site and activation of translation,
remain unclear, Kif1b is suggested to be required for the
localization in the processes of myelinating OLGs [177].
Also the roles of Fyn activation or TOG for the translation
have been suggested [178, 179]. ATPase N-ethylmaleimide
sensitive factor, a cofactor in SNARE-mediated membrane
fusion, and sec8, an exocyst component and a central player
in OLG vesicle transport, are required for MBP expression in
OLGs, suggesting that mechanisms of MBP mRNA transport
may be similar to that of vesicular transport [162].

3.2.2. PLP Transport. PLP is an integral membrane pro-
tein, composed of 276 amino acids and is predominantly
expressed in OLGs [162]. The PLP gene is alternatively
spliced during development to encode DM20 and PLP. Both
proteins consist of four transmembrane domains with one
intracellular loop and two extracellular ones. DM20 differs

from PLP by a hydrophilic internal 35 amino acid segment
deletion in the intracellular loop. PLP plays a major role
in the correct apposition of the extracellular leaflets of
the membrane, thereby stabilizing the multilayered myelin
membranes upon compaction.

PLP is synthesized in the ER and transported via vesicles
to Golgi. Then PLP is transported from the TGN to the
plasma membrane of OLG cell body. From there, PLP is
internalized and transported to late endosomes/lysosomes
by a clathrin-independent but cholesterol-dependent mech-
anism [180, 181]. Soluble signal from neurons induces
transport of PLP from late endosomes to the plasma
membrane [181], probably via regulation of Rho GTPase
activity [182]. Actually, MAG and PLP are localized in
endosomal compartment [181, 183, 184]. PLP is localized in
late endosomes/lysosome without colocalization with other
myelin proteins such as MAG and MOG [159, 184]. In
addition, when stably expressed in HepG2 cells, localization
of PLP at the apical membrane is followed by transcytosis
to the basolateral membranes [162]. Thus, PLP seems to
reach the myelin via a transcytotic pathway independent
from other myelin proteins. While the role of sulfatide is
suggested in PLP transport [185, 186], it remains uncertain
whether PLP can reach the cell surface of OLGs and other
nonpolarized cells in absence of sulfatide [187]. Interestingly,
in Oli-neu cell line and the human oligodendroglioma-
derived cell line HOG, a MAL-2 containing compartment
has been identified. MAL-2 is an ARE/SAC protein and is
thought to be an essential component of the basolateral-
to-apical transcytosis machinery. The MAL-2 containing
compartment in OLG cell lines shared main features of
ARE/SAC such as colocalization with rab11a, sensitivity to
microtubule disruption with nocodazole, and lack of inter-
nalized transferring, suggesting that the MAL-2 containing
compartment is a structure analogous to the ARE/SAC [188].
In addition, actually, PLP was shown to colocalize with MAL-
2 in vesicles and tubulovesicular structures in HOG cell line,
supporting the transcytotic model of PLP transport [189].

Also, evidence revealing the mechanisms of docking
and final insertion of PLP into the myelin sheath is now
emerging. OLGs express SNAP-29, a tSNARE containing
a binding domain for rab3A in its N-terminus, during
myelination [190, 191]. Overexpression of PLP and rab3A in
HEK293 cells promoted surface directed trafficking of PLP.
Therefore, SNAP29/rab3A system may play a role in PLP
trafficking during myelination. In addition, two independent
transport pathways of PLP associated with R-SNARE VAMP3
or VAMP7 were suggested in primary OLG [190, 192].
VAMP3 and its acceptor, syntaxin-4, seem to mediate PLP
transport to surface membrane via recycling endosome,
and VAMP7 and syntaxin-3 seem to mediate it via late
endosome/lysosome as part of a transcytosis pathway.

3.3. Membrane Rafts in OLGs. Unusually high concentration
of galactosphingolipids (GSLs) and cholesterol in myelin
sheath is reminiscent of the apical membranes of epithelial
cells [53]. In addition, the myelin sheath maintains a highly
specialized region known as the paranode, the portion of
each myelin segment that immediately flanks the node of
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Ranvier [193, 194], and the paranode is highly enriched in
putative membrane raft proteins [195–197]. Mice that lack
myelin sphingolipids do not form proper paranodes [198–
201]. These findings led to the analysis whether lipid rafts,
membrane microdomains characterized by the enrichment
in GSLs and cholesterol, are involved in the trafficking of
myelin proteins or paranodal proteins.

Incorporation of proteins into rafts depends predom-
inantly on lipid modifications such as palmitoylation or
the attachment of a GPI-anchor. Importantly, many myelin
proteins have such lipid modifications. For example, con-
tactin and NCAM120 are GPI-linked proteins, whereas the
palmitoylation of PLP at three cysteins in the N-terminus
is essential for its targeting to the myelin sheath [202].
Association of NF155 with lipid rafts was demonstrated by
a combination of in situ extraction with TritonX-100 or
hydroxylamine and fluorescent microscopy [64]. After treat-
ment of optic nerve with Triton X-100 (TX100), NF155 was
readily extracted at ages when rafts are absent but remained
clustered when rafts are present. Also spinal cord was
treated with hydroxylamine, which cleaves thioester bonds
that covalently attach palmitic acid to cysteine residues in
proteins. After treatment with hydroxyl amine, NF clustering
was specifically lost. These results suggested that NF155 was
associated with lipid raft probably through palmitoylation.

Several noncompact myelin proteins, notably the GPI-
linked proteins, contactin and NCAM [203], as well as
CNP, MOG [204], and NF155 [195, 205] are at least
partially resistant to TX100-extraction. In contrast, another
noncompact myelin protein, MAG, is soluble in TX100.
MAG is, however, resistant to extraction with lubrol WX
[206]. Major compact myelin proteins, PLP and MBP, are
soluble in TX100 [180, 207]. However, both proteins are
resistant to extraction with CHAPS, whereas GPI-anchored
proteins are CHAPS-soluble [167, 180]. Importantly, both
cholesterol and glycosphingolipids are required for the
CHAPS-insolubility of PLP, and PLP is CHAPS-soluble
in cells that do not express GalCer and sulfatide [180].
These results suggest that noncompact myelin proteins,
contactin, NCAM, CNP, and MOG; another noncompact
myelin protein, MAG; and compact myelin proteins, PLP and
MAG, are differentially associated with lipid raft, indicating
that the way of association of myelin proteins with lipid
raft may play a role in myelin protein sorting. The role of
CHAPS-rafts is exemplified by the experiment showing that
PLP is recovered from CHAPS-insoluble membrane fraction
enriched in myelin lipids [180]. The role of TX100-rafts in
the formation of noncompact myelin is exemplified by sev-
eral findings [159]. NF155 becomes TX100-resistant during
OLG differentiation in vivo and in vitro [195, 205]. Both the
association of NF155 to TX100 rafts and the localization of
NF155 in the paranodal junction are perturbed in ceramide
galactosyl transferase (CGT) KO mice, lacking GalCer and
sulfatide [195, 208]. Inhibitor of matrix metalloproteases
reduces the association of NF155 to TX100-rafts [159] and at
the same time impairs the transport of NF155 into the OLG
processes [209]. Actually, the establishment of paranodal
junction in the optic nerve coincides with the raft association
of NF155 [195]. Another myelin protein, proteolipid MAL,

may be associated with rafts, because MAL interacts with
sulfatide [210]. Interestingly, in epithelial cells, MAL is
required for the transport of proteins from the TGN to the
apical membrane [211]. In MAL KO mice, myelin sheath
is initially normal. However, the levels of several proteins,
in particular, MBP, L-MAG, and NF155 are reduced. In
addition, raft association and localization of NF155 in the
paranodes are perturbed later in life, indicating that MAL
may be important for the maintenance of the paranodal
junction [212].

In OLGs, there is an example showing that raft formation
forms a platform for intracellular signaling. Activity of
the Src family kinase fyn required raft association [213].
The prevention of raft formation strongly inhibits fyn
phosphorylation of tau [214]. Raft formation induced by
the MAG antibodies increased fyn phosphorylation with a
concomitant loss of beta subunit phosphorylation of the
heterotrimeric G-protein complex and lactate dehydrogenase
and the loss of actin polymerization possibly through a
calcium/calmodulin signaling cascade [215]. In contrast,
MOG antibodies did not effect signalings by fyn, focal
adhesion kinase, or MAP kinase, but the phosphorylation of
beta-tubulin and the beta subunit of the G-protein complex
were increased [216]. The results suggest that different types
of rafts can induce specific signaling cascade in OLG.

Lipid rafts also seem to play a role in sorting of myelin
components [159]. Rafts have been implicated in non-
clathrin-mediated endocytosis of OLGs [181, 182]. PLP is
internalized from the plasma membrane by cholesterol-
dependent and clathrin-independent endocytosis [181]. Also
there are several findings suggesting that plasma membrane
endocytosis/endosome system plays a role in sphingolipids
sorting [159]. Endosomes of polarized HepG2 cells sort
different sphingolipids into vesicles, which are destined to
the basolateral and apical membrane, respectively [217].
Sphingolipid probes, BODIPY-sulfatide, and BODIPY-
lactosylceramide, incorporated into the plasma membrane,
are internalized and differentially distributed to endosomes
most obviously in mature OLGs [218]. Altogether, these data
suggest that the plasma membrane endocytosis/endosome
system may play a role in raft-mediated sorting to the myelin
sheath. In addition, in mice lacking galactocerebroside and
sulfatide, NF155 associates with neither rafts nor clusters
in the paranode [194, 198, 208] and paranode stability is
lost with age [199], whereas, in mice lacking only sulfatide
(CST KO), are capable of clustering NF155 in the paranode
suggesting that galactocerebroside is essential for proper NF
sorting [201].

4. Polarity in Schwann Cells

4.1. Anatomical Polarity in Myelinating Schwann Cells.
Schwann cells myelinate a single axon with a relationship
of 1 : 1. Axons more than 1 μm in diameter are myelinated.
Myelin sheaths comprised of multiple wraps of compacted
Schwann cell membrane, is localized inside adjacent to axon,
with thin cytoplasm (adaxonal compartment) intervened.
The nucleus is located on the outside of the sheath. Most
of the cytoplasm is present on the outside of the sheath
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(abaxonal compartment). The rough ER and Golgi are
located in a perinuclear region, and newly synthesized
proteins are thought to travel in cytoplasmic channels on the
outside of the myelin sheath [219]. The Schmidt-Lanterman
clefts, cytoplasmic channels, spiral through the myelin
sheath and provide a conduit between the inner and outer
cytoplasm. On the surface of Schwann cell outer (abaxonal)
membrane, basement membrane is formed. Thus myelin
sheath is radially polarized. In the abaxonal membrane, ECM
receptors such as dystroglycan and integrin are expressed
[220], and the adaxonal membrane is enriched in adhesion
molecules that mediate interaction with the axon such as
MAG [221].

Myelinating Schwann cells also exhibit a striking longi-
tudinal polarity comprised of nodes of Ranvier, paranodes,
and internodes [8]. Nodes of Ranvier are gaps of about 1 μm
between each myelin segment where the axon is exposed
to the extracellular environment. The nodes are contacted
by hundreds of interdigitating microvilli that project from
the end of the Schwann cell to closely appose the nodal
axolemma.

Nodes are flanked on either side by the paranodes. At
the paranode, lateral edges of myelin sheath spiral around
the axon, forming the axoglial junction [8]. In longitudinal
sections, this structure has the appearance of a series of
loops, with the outermost loops closest to the node. The
paranodal region is the site of closest apposition between the
membranes of axon and myelinating Schwann cells. Based
on their morphologic similarities to invertebrate septate
junctions, the paranodal junctions are referred to as septate-
like. In addition, there are several types of junctions between
the paranodal loops themselves [222]. Tight junctions seal off
the ends of the paranodal loops from the periaxonal space.
Adherens junctions between Schwann cell paranodal loops
[223] provide structural integrity. Gap junctions facilitate
transfer of small-molecular-weight substances between the
paranodal loops of Schwann cells. Gap junctions are also
present in the SL incisures and are important for peripheral
myelin sheath maintenance. NF155, the 155 kDa isoform of
neurofascin, is expressed in the paranodes of myelinating
glia [224, 225]. NF155 is a likely ligand of Caspr-contactin
complex expressed on apposing axolemma.

4.2. Roles of Myelin Protein Trafficking in Myelination
Revealed by Studies for Demyelinating Charcot-Marie-Tooth
Disease. Over the last 15 years, mutations in a variety of
genes have been identified causing Charcot-Marie-Tooth
disease (CMT) [226]. Owing to studies pursuing to elu-
cidate how these mutations cause myelin defects in CMT,
ample evidence accumulated showing that myelin protein
is transported by intracellular membrane system: ER, Golgi,
and endosome/lysosome system in Schwann cells, as shared
by other cell types in polarized protein transport. Also
these studies showed that not only myelin protein transport
but also endocytosis or endosome recycling plays a role in
myelination.

4.2.1. MPZ/p0. MPZ is synthesized in the ER and seems to
be sorted in the specific vesicles on exit from the TGN and

targeted to the Schwann cell plasma membrane [227]. MPZ-
truncating mutation (producing truncated MPZ protein),
mutation of serine 204 to alanine or at a nearby presumed
PKC substrate motif (198RSTK201) and frameshift mutation
Q187PfsX63 cause retention of MPZ in ER, Golgi, or
TGN, suggesting that the cytoplasmic domain is important
in MPZ trafficking [228–230]. The finding by Xu et al.
[231] that calphostin C, a PKC inhibitor, abolished the
adhesion of cells expressing MPZ supports the contention
that PKC-mediated phosphorylation is necessary for MPZ
trafficking. In addition, PKCalpha specifically associates with
MPZ. Interestingly, curcumin, which is derived from the
curry spice turmeric, is capable of releasing mutated MPZ
protein from retention in the ER and abrogates aggregation-
induced apoptosis in cell culture [229]. MPZ was shown to
be abundantly present in late endosomes/lysosomes. Also
downregulation of Rab27a, a small GTPase required for
the trafficking of the secretory lysosomes to the plasma
membrane, largely blocked lysosomal exocytosis in Schwann
cells and reduced the remyelination of regenerated sciatic
nerve, suggesting that lysosomal exocytosis is also important
in remyelination [232]. Thus MPZ may exit the TGN
and reach plasma membrane via Rab27a-positive secretory
lysosomes. Actually during the first postnatal week, clathrin-
coated pits are prominently associated with rat myelin
membranes, indicating that active exocytosis or endocytosis
occurs during this maximal period of myelin formation
[227]. It is reported that MPZ required cholesterol for
exiting ER and reaching myelin compartment. Cholesterol
dependency of MPZ trafficking was mediated by CRAC motif
[233]. In addition, MPZ, MAL, and PMP22 were recovered
along with GPI-anchored protein CD59 from TX100 rafts,
suggesting that the transport of these myelin proteins is
associated with lipid rafts [234].

4.2.2. PMP22. In severe neuropathy-associated PMP22
mutant forms, these mutated proteins are retained in the
ER or in the intermediate component [235–240]. Overex-
pression of PMP22 induces the accumulation of PMP22 in
PtdIns(4,5)P2-positive pool of vacuoles [241].

4.2.3. MBP. Little is known about MBP transport in
Schwann cells. However, recently, Larocque et al. suggested
that QKI proteins play a role in myelination via multiple
functions including MBP and p27KIP mRNA transports
[242], suggesting that MBP is also transported as mRNA in
Schwann cells.

4.2.4. MTMR2. Myotubularin-related protein-2 (MTMR2)
or MTMR13/SBF2 genes are responsible for the severe CMT
disease. Myotubularin-related proteins (MTMRs) constitute
a large family of phosphoinositide lipid 3-phosphatasese with
specificity for Ptdins3P and PtdIns(3,5)P2 [243]. Interaction
of MTMR2 and SBF2 dramatically increases the enzymatic
activity. Because Ptdins3P and PtdIns(3,5)P2 are anchor sites
on membranes for effector proteins of early and late phases
of the endocytic process [244], it is suggested that MTMR2
plays a role in myelination through its function regulating
endocytosis.
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4.2.5. Dynamin 2. As a large GTPase, Dynamin 2 (DNM2)
belongs to a family of proteins that regulate membrane
trafficking from TGN and actin-based cytoskeletal dynamics
[245, 246]. DNM2 is recruited to cell membranes and
critically involved in “pinching” of newly formed clathrin-
vesicles using GTP hydrolysis to tighten and deform mem-
branes. Actually, recently, DNM2 CMT-causing mutants
were shown to cause not only dysmyelination but also
inhibition of clathrin-mediated endocytosis [247]. Also
all known CMTDIB-causing mutations are clustered in
the DNM2 pleckstrin-homology domain, which mediates
interactions with phosphoinositides [248]. The mutated
proteins show reduced binding to vesicles and reduction
of receptor-mediated endocytosis [249]. Altogether, DNM2
plays a role in myelination through its function regulating
protein trafficking, especially mediating endocytosis via
its function of “pinching” vesicles. Other genes encoding
proteins related to this function such as WASp, Arp2/3, and
Cip4 in Drosophila may be worth examining in CMT patients
[116].

4.2.6. Small Integral Membrane Protein of the Lysosome/Late
Endosome (SIMPLE). The dominant demyelinating neu-
ropathy CMT1C is caused by mutation in SIMPLE [250].
SIMPLE is thought to function in the overall process of
lysosomal sorting and the control of protein degradation.
SIMPLE interacts with the E3 ubiquitin ligase NEDD4,
which plays a role in targeting membrane proteins by
mono-ubiquitination for lysosomal degradation [251–253].
SIMPLE binds also via an N-terminal P(S/T)AP motif
to the tumor suppressor gene 101 (TSG101), which acts
downstream of NEDD4 and sorts ubiquitinated substrates
into multivesicular bodies, ultimately leading to degradation
in lysosomes [253]. SIMPLE has been found in association
with the plasma membrane, the Golgi apparatus, and
lysosomes [253–255]. Therefore, SIMPLE may play a role
in myelination through its function on protein trafficking,
especially through protein degradation in lysosome, while
mechanistic details are unclear.

4.2.7. FGD4/Frabin. In the subtype of CMT4H, autosomal
recessive demyelinating form of CMT, mutations were iden-
tified in FGD4, encoding FRABIN. FRABIN is a GDP/GTP
nucleoid exchange factor (GEF) specific to Cdc42 [256, 257].
In these mutations, PH and FVYE domains, involved in
interactions with different forms of phosphoinositides, were
suggested to be lost.

4.2.8. SH3TC2. Mutations in SH3TC2 are associated with
CMT4C. SH3TC2 was identified as a protein regulating
endosome recycling through interaction with Rab11 [258,
259], suggesting that endosome recycling plays a role in
myelination.

4.3. Localization of Polarity Proteins in Schwann Cells.
Recently Özçelik et al. reported the localization of polar-
ity proteins in myelinating Schwann cells of mature
mouse peripheral nerve [260]. Basolateral markers, Scrib/

LGL/DLG1/syntaxin4/sec8/PI3K/PH-AKT (PtdIns(3,4,5)P3
probe), are localized in the abaxonal domain and partially
colocalized with E-cadherin of adherens junctions at the out-
side edge of SL incisures. In paranodal loops, these markers
are localized in the outer region of the loops. On nerve cross
sections, the basolateral markers colocalized with integrin
beta1 in the abaxonal domain. Apico-junctional markers
PAR3/aPKC are found in SL incisures, where both PAR3
and aPKC partially colocalized with E-cadherin in adherens
junction. PAR3 and aPKC are also expressed in paranodal
loops, where they partially colocalized with E-cadherin.
Apical markers, PALS1/MUPP1 (PATJ homolog)/annexin
A2/PTEN/PH-PLC delta (PtdIns(4,5)P2 probe), are found
in SL incisures and the adaxonal domain. In paranodal
region, apical markers appear to localize in the inner part
of paranodal loops [260, 261]. These data indicate that
myelinating Schwann cells are polarized on a radial axis
and that this polarity is molecularly similar to the epithelial
cell polarity, suggesting common control mechanisms. In
analogy to epithelial cells, the abaxonal membrane is a
basolateral-like domain, and the incisura-adaxonal domain
is an apical-like domain. Interestingly, silencing of PALS1
resulted in a severe reduction of myelin sheath thickness
and length. In addition, PALS1 is required for the normal
polarized localization of sec8 and syntaxin4 and for the
distribution of E-cadherin and myelin protein PMP22 and
MAG at the plasma membrane, suggesting that PALS1 is
essential in the radial and longitudinal extension of the
myelin sheath and likely involved in membrane trafficking
of myelin proteins. The localization of apical markers in SL
incisures suggests that these structures are apical-like. Yet the
outside edge of SL incisures also contains basolateral mark-
ers, suggesting that adherens junctions, which are mainly
localized on the outside edge of SL incisures [262, 263],
form the boundary between abaxonal and incisura-adaxonal
domains, just as they form the boundary between apical
and basolateral domains in epithelial cells [264]. PMP22
and MPZ are expressed in tight or tight-like junctions of
the apical domain of epithelial cells [265–267]. In addition,
MBP binds to PtdIns(4,5)P2 [268], which is an apical marker
[150]. Altogether, adaxonal membrane domain including the
compact myelin and SL incisura may correspond to apical-
like domain and abaxonal membrane domain to basolateral-
like domain. Considering anatomical and molecular polar-
ity of Schwann cells described previously, Schwann cell
microvilli at nodal region may be included in apical domain.
Paranodal regions enriched in cell junctions including tight
junctions, septate junctions, and zona adherens seem to be
similar to lateral membrane domains.

5. Extrinsic Membrane Domain Orientational
Cues Provided by ECM

Cell adhesion, both to the substratum (ECM) and to other
cells, is important in establishing the polarized orientation of
cells. Individual epithelial cells that are grown in suspension,
in the absence of cell-cell and cell-ECM adhesion, do not
develop polarity, but instead undergo programmed cell death
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(anoikis). When grown on a surface, even single epithelial
cells develop an apico-basal axis of polarity. When this
surface has biological relevance, such as a surface of laminin-
containing ECM, neurons specifically form an axon [269],
single mammary epithelial cells selectively secrete beta-casein
from the apical surface [270], and 3D epithelial cysts polarize
correctly [271]. However, not only adhesion to the ECM
but also cadherin-dependent cell-cell adhesion are necessary
for MDCK cells to develop authentic apico-basal polarity
[272]. In general, cell-substratum adhesion is sufficient
to define a noncontacting apical membrane accumulating
apical markers, but is not sufficient to localize proteins at
the basolateral membrane [3]. Epithelial cell-cell adhesion
in suspension culture induces the segregation of basolateral
membrane proteins to the cell-cell contacts and induces the
trafficking of apical proteins to the free surface [273].

5.1. Role of Dystroglycan in Epithelial Cell Polarization. As a
major component of basement membrane, laminin plays a
role in generating and maintaining apico-basal polarity in
epithelial cells by providing extracellular cues [274]. As a
laminin receptor besides integrins, dystroglycan, a member
of dystrophin-associated glycoprotein complex (DGC), is
ubiquitously expressed in epithelial cells and is thought to
be associated with laminin signaling [275, 276]. Several
dystroglycan ligands such as laminin and perlecan are also
present in epithelial basement membrane [277]. Inside the
cell, the WW domain of dystroglycan binds to dystrophin,
which recruits most of the other DGC components, such
as syntrophins and dystrobrevin. Dystrophin also binds F-
actin. Mammals have two dystrophin paralogs, utrophin
and dystrophin-related protein 2 (DRP2), and partial
redundancy between these genes was reported [278]. Thus,
DGC provides the link between ECM and submembranous
cytoskeleton.

There is ample evidence showing association of laminin
or dystroglycan with cell polarization. Antibodies against
laminin alpha1 were shown to block epithelial polarization
in kidney organ culture [279]. Laminin was required for
normal localization of PAR3, PAR6, and normal generation
of polarity in pharyngeal precursor cells in C. elegans [280].
Also, the addition of laminin to cysts, which have already
polarized, can invert this polarity by binding to integrins
[271, 281]. It does this indirectly by activating small GTPase
Rac, which in turn is necessary for the deposition of laminin
[271, 272]. Interestingly, the reversal of polarity induced by
knockdown of Rac or integrins can be rescued by inhibiting
RhoA or its downstream effectors, Rho kinase I and Myosin
II [282], suggesting that integrin and Rac1 maintain cell
polarity at least partly via inhibiting RhoA-ROCK1-Myosin
II pathway. The association of small GTPase signaling
with dystroglycan is possible because the association of
dystroglycan with Rac1 and Cdc42 is reported in some
cell lines or other types of cells such as skeletal muscle or
oligodendrocyte [283–288]. However, it remains uncertain
whether dystroglycan plays a role in the cell polarization of
MDCK cells by mediating laminin-induced small GTPase
signaling. Interestingly, components of DGC are suggested
to interact with polarity protein PAR1. In MDCK cells, PAR1

interacts with DG complex and is required for the formation
of a functional DG complex [289]. In addition, the 8th and
9th spectrin-like repeats (R8 and R9) of utrophin, one of the
members of DGC, interact with PAR1b, and R9 is specifically
phosphorylated by PAR1b [290].

Dystroglycan plays a role in establishment of oocyte
polarity in Drosophila, and both putative SH3 binding site
and WW domain binding sites (binding sites for dystrophin)
located at the C-terminal end of dystroglycan are important
for this function [291, 292]. In cultured mammary epithelial
cells, dystroglycan was required in laminin-induced polarity,
beta-casein production, and laminin assembly at the step
of laminin binding to the cell surface [293]. In addition,
dystroglycan, or perlecan, was shown to be required for
apico-basal polarity under energetic stress in Drosophila
[96], including the polarized localizations of three major
polarity complexes, aPKC/PAR6 (apical), Crumbs complex
(apical), and Scribble complex (basolateral). Starved dys-
troglycan or perlecan null cells had a defect in Myosin
II activation by AMPK (the low-energy epithelial polarity
pathway). Dystroglycan was required both for activation
and localization of myosin regulatory light chain in starved
follicle cells. It seems likely that binding of perlecan to
dystroglycan controls epithelial polarity under low-energy
conditions by signaling through the SH3-binding domain.
There is also a possibility that localization of dystroglycan-
perlecan complex was induced by LKB1 (the mammalian
orthologue of PAR4)/AMPK signaling, and this positioning
may be a prerequisite for subsequent steps in the polarization
cascade [294]. AMPK is indeed required for the restriction
of dystroglycan to the basal surface of the basolateral plasma
membrane under conditions of energy stress [295].

Interestingly, expression level of alpha-dystroglycan cor-
related with the ability of breast tumor cell lines to polarize
in the presence of basement membrane. Overexpression
of alpha-DG enhanced the ability to polarize and reduced
their tumorigenic potential in nude mice [296]. Also,
in highly metastatic cancer cell lines, alpha-dystroglycan
frequently lacked laminin binding by silencing of the like-
acetylglucosaminyltransferase (LARGE) gene [297], and
exogenous expression of LARGE in these cells restored
the normal glycosylation and laminin binding of alpha-
dystroglycan, leading to reduced cell migration in vitro.
These results suggest that laminin-dystroglycan interaction
antagonizes the properties of cancer cells such as prolifer-
ation and migration probably via enhancing epithelial cell-
type polarity formation. In this context, it is worth noting
that epithelial-mesenchymal transition (EMT) generated
mesenchymal type-cancer stem cell-like cells from mammary
epithelial cells, suggesting that loss of epithelial cell apico-
basal polarity may be associated with carcinogenesis. Dys-
troglycan may antagonize EMT through keeping epithelial
cell polarity by providing extrinsic polarity cues. Actually,
involvement of dystroglycan in EMT was suggested [298].
Whereas the mechanism of how loss of apico-basal polarity
leads to carcinogenesis remains unknown, inhibition of
AMPK leads to carcinogenesis. Therefore, LKB1/AMPK may
be one of potential candidates linking cell polarity and
carcinogenesis. In addition, ΔN isoform of p73, a member
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of the p53 family implicated in tumor suppression, is
suggested to maintain mammary epithelial cell polarity via
suppressing EMT [299]. PTEN, a dual-function phosphatase
with tumor suppressor function, interacts with E-cadherin,
and the interaction plays a role in polarity formation and
growth arrest in human mammary epithelial cells [300].
Thus studying further how epithelial cells keep their own
polarity will provide clues to therapeutic methods to prevent
carcinogenesis or even make cancer cells back to normal
epithelial cells, or cells with a property of benign tumor, at
least.

5.2. Role of Laminin and Dystroglycan in OLG Polariza-
tion, Differentiation, and Myelination. Laminin-2 deficiency
causes peripheral myelination defects in human and mice
[301–303]. Also central dysmyelination, delayed OLG dif-
ferentiation, and increased death of OPCs were reported
in laminin-2 deficient (dy/dy) mice [304–306]. As laminin
receptors, OLGs express integrin alpha6beta1 and dystrogly-
can [307, 308]. In the absence of dystroglycan, primary OLGs
showed substantial deficits in their ability to differentiate
and to produce normal levels of myelin-specific proteins
[308]. By blocking the dystroglycan receptors, OLGs failed
both to produce myelin-like membrane sheets and to initiate
myelinating segments when cocultured with dorsal root
ganglion neurons [308]. The effects of dystroglycan may be
via IGF-1, because loss of dystroglycan led to a reduction in
the ability of IGF-1 to activate MAPK signaling, and dystro-
glycan interacted with the adaptor protein Grb2 and insulin
receptor substrate-1 (IRS-1) [286]. In addition, dystroglycan
promotes filopodial formation and process branching in
differentiating OLGs [288], suggesting that dystroglycan may
play a role in polarization of OLGs during development
before myelination process starts. In contrast, antibodies
against integrin beta1-subunit inhibit myelination in vitro
and in vivo [309, 310]. Enhanced OLG survival in response to
the ECM, in conjunction with growth factors, was dependent
on interactions with beta1 integrins and did not require
dystroglycan [308]. Also, in beta1-integrin transgenic mice
studies, beta1-integrin was shown to have a role in the axo-
glial interactions regulating myelination [311–313]. These
data suggest that integrin and dystroglycan play a differential
role in myelination in OLGs as these proteins do in Schwann
cells.

Laminin influences several signaling proteins in cultured
OLGs, including Fyn, FAK, MAPK, and PI3K [304, 305, 314–
317]. These laminin-induced signalings seem to be mediated
mostly by integrin. For example, laminin induces Fyn activa-
tion, probably via integrin, and then FAK may promote OLG
process outgrowth in a Fyn-dependent manner [305, 317].
Recently, localization of dystroglycan in focal adhesions was
reported [318]. Also interaction of dystroglycan with FAK is
suggested in OLG process [288] as well as in brain synapto-
somes [319]. Thus dystroglycan-FAK interaction may play a
role in OLG process outgrowth. However, it remains unclear
how laminin-induced signaling plays a role in specific aspects
of OLG polarization and differentiation, including process
formation and branching, localization of polarity proteins,
or myelin protein trafficking. One interesting candidate is

laminin signaling via Fyn or QKI. Relucio et al. reported that
laminin contact with OPCs suppresses p27 accumulation and
p27 is increased in laminin-deficient brains [306]. Integrin
has been shown to regulate p27 by activating signaling
which controls p27 protein degradation [320]. The RNA
binding protein, QKI, functions in MBP mRNA nucleo-
cytoplasmic transport as well as mRNA stabilization of
MBP and p27 [168, 321]. Fyn is known to phosphorylate
QKI and regulate its ability to stabilize and traffic MBP
mRNA [322]. In addition, QKI is suggested to regulate
PLP expression as well as Sirt2 [173]. Sirt2, atypical HDAC
playing multiple roles in cells, is now emerging as one of
the major components of the myelin proteome [161, 323,
324]. Sirt2 controls process arborization of differentiating
OLGs in vitro [323]. Sirt2 variant2 (v2) is localized in the
paranodal and compact myelin in proximity of PLP and
DM20 [161, 323, 324]. PLP/DM20 is suggested to regulate
SIRT2 transport into myelin [161]. It is worth noting that
Sirt2 modulates Schwann cell myelination via regulating
PAR3/aPKC signaling [325]. Thus, laminin signaling seems
to be mediated at least partly by Fyn, QKI, p27, and Sirt2, and
these complex interactions may promote OLG polarization
and myelination in multiple ways.

5.3. Role of Dystroglycan in Schwann Cell Myelination and
Polarity. In Schwann cells, alpha- and beta-dystroglycan
constitute a membrane-spanning complex, dystrophin-
glycoprotein complex (DGC), in abaxonal membrane, and
interact with various cytoplasmic and transmembrane pro-
teins and components of basement membrane, in particular,
laminin-2 [303]. The way that dystroglycan is expressed in
Schwann cells is strikingly different from OLGs. In Schwann
cells, dystroglycan appears in abaxonal membrane along
with the formation of basement membrane as well as the
expression of laminin-2 in perinatal period and continues to
be present in abaxonal membrane, interacting with laminin-
2, a major component of basement membrane, in mature
Schwann cells. In OLGs, there is no classic basement mem-
brane in mature cells, and localization of dystroglycan during
development of OLGs remains unclear [326]. Nevertheless,
functional roles of laminin-2 and dystroglycan are similar
between these two types of myelinating glia.

There is ample evidence suggesting that dystroglycan
plays a role in radial sorting and myelination in Schwann cells
through interaction with its ligand, laminin-2. First, expres-
sion of dystroglycan and laminin-2 dramatically increases
at the period of myelination in both development and
nerve regeneration [327, 328]. Second, conditional knockout
of dystroglycan in Schwann cells showed not only nodal
changes such as reduced sodium channel density and
disorganized microvilli but also abnormal myelin sheath
folding, suggesting dystroglycan is necessary for myelin
maintenance [329]. Third, mice phenotype of Schwann
cell-specific ablation of both alpha6beta4 and dystroglycan
was compared with that of alpha6beta4 ablation only. As
a result, the former showed more evident myelin folding
abnormalities as well as acute demyelination, suggesting that
alpha6beta4 integrin and dystroglycan cooperate to stabilize
myelin sheath [330]. Fourth, absence of dystroglycan in
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a specific genetic background causes sorting defects similar
to those of laminin-2 mutants. Whereas absence of beta1
integrin impaired proliferation and survival and arrests
radial sorting at early stages, absence of dystroglycan seemed
to arrest radial sorting at a later step [331]. Thus, the
functions of these two receptors in radial sorting are not
redundant, but sequential.

However, the molecular mechanism of how dystroglycan
regulates myelination remains unknown. Because dystrogly-
can is suggested to play a role in polarization of several types
of cells including OLGs as described previously, dystroglycan
may regulate myelination via its effects on Schwann cell
polarization. However, very little is known about whether
signaling induced by laminin-dystroglycan interaction or
DGC itself plays a role in Schwann cell polarization, or in
polarized localization of polarity complexes. As reported in
other types of cells [283–285, 288], dystroglycan may play a
role in Schwann cell polarization by regulating small GTPase
signaling, such as Rac1 and Cdc42, which also interacts with
polarity complexes.

6. Translation of the Achievements in Epithelial
Cells and OLGs into Polarization/Myelination
Process of Schwann Cells

6.1. A Model of Schwann Cell Polarization and Myelination.
Myelin sheath is a terminally differentiated structure of
Schwann cells closely associated with Schwann cell radial
polarity. In order to form myelin sheath, it is required that
myelin specific lipids such as sphingolipid, cholesterol, and
myelin-associated proteins are specifically transported to
abaxonal membrane domain. Actually, GalCer and sulfatide
are present on the surface of Schwann cells at least 1
day before myelination starts [332, 333]. It is, therefore,
plausible that Schwann cell polarization is a prerequisite
for myelination to start, or progresses coordinately with
myelination, at least.

Fundamental machineries for establishment of cellular
polarization seem to be highly conserved during evolu-
tion. Thus, translation of epithelial cell polarization into
the developmental process of Schwann cell will be useful
for elucidating the mechanism of Schwann cell polariza-
tion/myelination. (The readers interested in Schwann cell
developmental process are referred to other reviews [334–
337].) First, during development, Schwann cells proliferate,
migrate, and ensheath bundles of axons. Once these axons
are completely encircled by Schwann cells, basement mem-
brane is formed around each Schwann cell. Then, radial
sorting starts, and 1 : 1 relationship between Schwann cell
and axon is eventually established. Triggered by signals from
axons such as those induced by neuregulin1, polarization of
Schwann cells should start. Thus, Schwann cell polarization
may start when Schwann cells completed the ensheathment
of axon bundles. Adaxonal membrane domain is first
determined by contact with axon, and then abaxonal domain
is determined, commencing the formation of basement
membrane, which is a prerequisite for radial sorting to start
[338]. Concomitantly, intrinsic polarity complexes, such

as PAR, Crumbs, and Scribble, are recruited to their cor-
rect intracellular position. During radial sorting, Schwann
cells go through complicated morphological rearrangement.
When the polarized localization of the polarity complexes is
completed is unknown. It may be completed at the early stage
of radial sorting, and the polarity complexes may regulate
radial sorting by interaction with beta1-integrin/Rac1 and
dystroglycan [134, 139, 330, 331, 339, 340]. Or, at the
latest, when the 1 : 1 relationship is established, the polarized
localization of these polarity complexes may be completed,
and they are ready to provide intrinsic cues advancing the
polarization process further, such as sorting and transport
of myelin-associated lipid and proteins. When all kinds of
myelin components are transported to and accumulated
in adaxonal membrane, myelin membrane wrapping will
start.

6.2. Perspectives in Schwann Cell Polarization and Myelina-
tion. Understanding the roles of Schwann cell polarization
in myelination is just beginning. Overviewing the findings
accumulated so far in the polarization studies for myelinating
glia and other cells led the author to emphasize two aspects
of Schwann cell polarization. One is the polarization network
centered around polarity complexes and small GTPase
signaling. The other is the polarization regulated by myelin
protein trafficking including transport, exocytosis and endo-
cytic recycling. Each topic will be discussed separately first.

As for the former aspect, polarized localization of three
polarity complexes, PAR, Crumbs, and Scribble complexes
in Schwann cells, has been revealed. The three polarity
complexes are master regulators of cell polarization, and
cross-regulation with small GTPase signaling proteins, such
as Rac1 and Cdc42, has been suggested. On the other
hand, Rac1 and Cdc42 have been suggested to play an
important role in radial sorting and myelination in Schwann
cells and also are regulated by laminin signaling [341].
Thus, interactions between PAR complex and small GTPase
signaling seem to comprise one of the core parts of Schwann
cell polarization/myelination protein network. Recently, evi-
dence showing the importance of PAR3 in myelination is
accumulating. PAR3 was found to be localized at adaxonal
domain (axon-glia junction) at the onset of myelination.
There, PAR3-p75NTR interaction seems to play a role in
initiation of myelination process via Rac1 [342–344]. In
addition, overexpression of PAR3 or PAR6 as well as knock-
down of PAR3 inhibits myelination. Sirt2 was identified as an
essential regulator of PAR3 activity during myelin formation
in Schwann cells [325]. Thus, not only the expression
of PAR3, but also localization of PAR3 at the adaxonal
domain is necessary for myelination to start. Also PAR3
may regulate myelination by bidirectional interaction with
ROCK [345–347]. Extrinsic cues provided by laminin may
regulate myelination by modifying small GTPase signaling
[341]. Hypothetically, for example, PAR3 recruits PTEN
which produces PtdIns(4,5)P2 to adaxonal membrane. Then,
PtdIns(4,5)P2 recruits Cdc42 and Par complexes via scaffold
proteins such as annexins [150]. The recruited Cdc42 and
Par complexes in adaxonal membrane can regulate polarized
trafficking including endocytosis and exocytosis. Also it is
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Figure 1: Hypothetical protein network regulating Schwann cell myelination/polarization: complex interactions among Par complex, Dlg,
PI3K-signaling-associated components such as PTEN and small GTPase signaling proteins such as Cdc42 and Rac1 seem to play an important
role in regulating Schwann cell polarization/myelination. Red ellipse indicates proteins associated with CMT.

worth noting that Dlg1-PTEN interaction regulates myelin
thickness by inhibiting AKT activation induced by neureg-
ulin1 signaling from axon [348]. Also Dlg1 is suggested to
regulate myelin thickness by interacting with Kif13B, Mtmr2
(regulator of endocytosis), and Sec8 (exocyst component)
[349]. By those interactions, Dlg1 may regulate balance
between Sec8-mediated membrane addition and Mtmr2-
mediated negative control of membrane formation. Scribble
complex and Par complex colocalize at sites of membrane
remodeling in migrating epithelial cells. Thus, Scribble
localized at abaxonal domain in matured Schwann cells may
be recruited to adaxonal domain during myelination process.
Considering their antagonistic role and their interaction with
Rac1 [134, 139], a possibility was suggested that dynamic
switching of Rac activity may be regulated by the Scribble and
Par complexes [147]. Thus, neuregulin signaling from axons
mediated by PAR3/Dlg may play a role in regulating myelin
thickness in the similar way that Scribble and PAR complexes
regulate epithelial migration. Importantly, Dlg1-silenced
Schwann cells often failed to myelinate in vitro [348]. These
cells also showed migration defects and expressed less PAR3.
Altogether, Dlg may play roles in both initiating myelination
via interaction with PAR3 and regulating myelin thickness
during the process of myelination via interaction with
PTEN.

Based on the findings accumulated so far, includ-
ing those discussed previously, hypothetical Schwann cell
polarization/myelination network is shown in Figure 1. So
far, complex interactions among PAR complex, Dlg, and

PI3K-signaling-associated components such as PTEN and
small GTPase signaling proteins such as Cdc42 and Rac1
seem to play an important role in regulating polariza-
tion/myelination (Figure 1).

In addition, by analogy with epithelial cells, there are
many small questions to be answered. Does neuregulin
signaling direct the polarized localization of polarity com-
plexes and how? As PAR3 is recruited to tight junctions
through PAR3-JAM interaction [126], do the polarity pro-
teins interact with cell junctional proteins in Schwann cells?
As mRNA for Crumbs and Pals1 are enriched near the
apical surface, do mRNA of polarity proteins show polarized
localization in Schwann cells? As in other type of cells,
do polarity complexes actively exclude each other? Does
laminin or DGC have effects on polarized localization of
polarity proteins? When do polarity proteins show polarized
localization during development? How does the polarized
localization of polarity proteins change in axonal injury
inducing Schwann cell dedifferentiation?

Another important aspect is myelin protein traffick-
ing including transport, exocytosis, and endocytotic recy-
cling. Owing to the studies pursuing the pathomecha-
nisms of CMT, ample evidence accumulated showing how
myelin protein is transported to myelin membrane domain.
In summary, MPZ is abundantly present in late endo-
somes/lysosomes, and downregulation of Rab27a, required
for the trafficking of the secretory lysosomes to the plasma
membrane, blocked lysosomal exocytosis in Schwann cells
and at the same time reduced remyelination in regeneration
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[232]. Several types of Charcot-Marie-Tooth diseases are
caused by mutations of genes associated with membrane
trafficking system, MTMR2, which regulate endocytosis,
DNM2, regulating membrane trafficking from TGN, and
SIMPLE, regulating lysosomal sorting and protein degrada-
tion. Altogether, these results strongly suggest that myelin
protein transport is mediated by membrane trafficking
system which is also used in protein transport for cell
polarization and that myelin protein transport is critically
important for Schwann cell polarization, a prerequisite
of myelinogenesis. Especially, mutations of MTMR2 and
DNM2 in CMT suggest the importance of endocytic recy-
cling of myelin proteins. Actually, N-WASP, which is a
downstream effector of Rac1 and Cdc42 and regulates actin
polymerization or endocytosis via Arp2/3, is required in
Schwann cell myelination [350, 351] (Figure 1). Further
study is necessary to reveal detailed molecular mechanisms
of myelin protein sorting, transport, targeting to myelin
membrane domain, and endocytotic recycling. Considering
the fact that many GPI-anchored proteins including MPZ,
MAL, and PMP22 are present in myelin sheath, transport
associated with lipid raft may play an important role in
myelin protein transport in Schwann cells. Examining deter-
gent solubility of myelin proteins in various Schwann cell
developmental stages may help to clarify the role of lipid raft.

In this context, another important question is how
polarity complexes interact to cross-regulate the trafficking
machinery. Whereas it remains a mystery in general, Cdc42
is suggested to be the one candidate molecule integrating
these two networks [352]. Cdc42 regulates exocytosis in
secretory cells [353]. In cyst-forming MDCK cells in 3D
culture system, Cdc42 seems to regulate polarized trafficking
from TGN [354, 355]. In Drosophila, Cdc42 may regulate
apical trafficking and endocytosis at adherens junction via
interaction with Par complex or Crumbs [115, 116, 118].
Cdc42 along with Cip4 may regulate endocytosis at adherens
junction via interaction with WASp, Arp2/3, and dynamin
functioning in vesicle scission or “pinching” [115, 118].
Thus studying the functions of Cdc42 associated with vesicle
trafficking, exocytosis and endocytosis in Schwann cells will
provide important clues to not only the mechanism of
myelination but also the pathogenesis of CMT.

By analogy with OLGs, studying functions of QKI in
Schwann cells will provide important clues to Schwann cell
polarization and myelination. Although quaking viable (qkv)
mutant mice show only mild hypomyelination in PNS in
spite of significant reduction of all qkI mRNA isoforms
[356], it does not always mean that QKI proteins do not
play an important role in PNS myelination. There may
be different compensation mechanisms between Schwann
cells and OLGs. Studying QKIs will reveal whether MBP
is transported as mRNA also in Schwann cells, or whether
QKI mediates laminin signaling also in Schwann cells. In
addition, a bioinformatic analysis using QRE (QKI response
element) identified more than 1400 putative mRNA targets,
of which many encode proteins crucial for OLGs and myelin
development [170]. Studying functions of these proteins
in Schwann cells will reveal differences of myelination
machinery between Schwann cells and OLGs.

Finally, it is worth noting that overall mechanism of
cell polarization is just beginning to be understood and
further research for unknown components of polarity in
Schwann cells is necessary. Accordingly, systematic analysis
for transcriptome or proteome will be critically important
in identifying unknown components belonging to myelin
proteome or polarity proteome in Schwann cells. At the
same time, analyses dissecting protein interactions between
each component will reveal overall Schwann cell-specific
polarization/myelination network.

7. Conclusion

Understanding the Schwann cell polarization is just begin-
ning. Also understanding cell polarization process remains
incomplete even in the cells most extensively studied such as
epithelial cells, and the field of cell polarization remains to be
one of the hottest fields in biology. Translating the findings of
cell polarization in other cell types into Schwann cell biology
may be an efficient strategy for elucidating the mechanism
of Schwann cell polarization. So far, accumulating evidence
suggests that complex interaction among Par complex, Dlg,
and PI3K-signaling-associated components such as PTEN,
and small GTPase signaling proteins plays an important
role in regulating polarization/myelination in Schwann cells.
On the other hand, studies pursuing the mechanism of
CMT have suggested that myelin protein trafficking plays
an important role in Schwann cell polarization/myelination.
For revealing Schwann cell specific molecular network
of polarization/myelination, it is useful to combine sys-
temic approach identifying unknown components of polar-
ity/myelin proteome in Schwann cells and analyses dissecting
protein interactions between each of the components.
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[51] T. C. Südhof and J. E. Rothman, “Membrane fusion:
grappling with SNARE and SM proteins,” Science, vol. 323,
no. 5913, pp. 474–477, 2009.

[52] T. Pocard, A. Le Bivic, T. Galli, and C. Zurzolo, “Distinct
v-SNAREs regulate direct and indirect apical delivery in
polarized epithelial cells,” Journal of Cell Science, vol. 120, part
18, pp. 3309–3320, 2007.

[53] S. Schuck and K. Simons, “Polarized sorting in epithelial
cells: raft clustering and the biogenesis of the apical mem-
brane,” Journal of Cell Science, vol. 117, part 25, pp. 5955–
5964, 2004.

[54] C. Yeaman, A. H. Le Gall, A. N. Baldwin, L. Monlauzeur,
A. Le Bivic, and E. Rodriguez-Boulan, “The O-glycosylated
stalk domain is required for apical sorting of neurotrophin
receptors in polarized MDCK cells,” Journal of Cell Biology,
vol. 139, no. 4, pp. 929–940, 1997.

[55] N. Spodsberg, R. Jacob, M. Alfalah, K. P. Zimmer, and H. Y.
Naim, “Molecular basis of aberrant apical protein transport
in an intestinal enzyme disorder,” The Journal of Biological
Chemistry, vol. 276, no. 26, pp. 23506–23510, 2001.

[56] K. Simons and E. Ikonen, “Functional rafts in cell mem-
branes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997.

[57] S. Paladino, D. Sarnataro, S. Tivodar, and C. Zurzolo,
“Oligomerization is a specific requirement for apical sorting
of glycosyl-phosphatidylinositol-anchored proteins but not
for non-raft-associated apical proteins,” Traffic, vol. 8, no. 3,
pp. 251–258, 2007.

[58] K. O. Cresawn, B. A. Potter, A. Oztan et al., “Differential
involvement of endocytic compartments in the biosynthetic
traffic of apical proteins,” The EMBO Journal, vol. 26, no. 16,
pp. 3737–3748, 2007.

[59] C. I. Cramm-Behrens, M. Dienst, and R. Jacob, “Apical cargo
traverses endosomal compartments on the passage to the cell
surface,” Traffic, vol. 9, no. 12, pp. 2206–2220, 2008.

[60] P. S. Brown, E. Wang, B. Aroeti, S. J. Chapin, K. E. Mostov,
and K. W. Dunn, “Definition of distinct compartments
in polarized madin-darby canine kidney (MDCK) cells for
membrane-volume sorting, polarized sorting and apical
recycling,” Traffic, vol. 1, no. 2, pp. 124–140, 2000.

[61] D. Wisco, E. D. Anderson, M. C. Chang et al., “Uncov-
ering multiple axonal targeting pathways in hippocampal

neurons,” Journal of Cell Biology, vol. 162, no. 7, pp. 1317–
1328, 2003.

[62] G. Ihrke, J. R. Bruns, J. P. Luzio, and O. A. Weisz, “Com-
peting sorting signals guide endolyn along a novel route to
lysosomes in MDCK cells,” The EMBO Journal, vol. 20, no.
22, pp. 6256–6264, 2001.

[63] R. Jacob, U. Preuss, P. Panzer et al., “Hierarchy of sorting
signals in chimeras of intestinal lactase-phlorizin hydrolase
and the influenza virus hemagglutinin,” The Journal of
Biological Chemistry, vol. 274, no. 12, pp. 8061–8067, 1999.

[64] J. L. Dupree and A. D. Pomicter, “Myelin, DIGs, and mem-
brane rafts in the central nervous system,” Prostaglandins and
Other Lipid Mediators, vol. 91, no. 3-4, pp. 118–129, 2010.

[65] G. van Meer and K. Simons, “Lipid polarity and sorting in
epithelial cells,” Journal of Cellular Biochemistry, vol. 36, no.
1, pp. 51–58, 1988.

[66] M. P. Lisanti, M. Sargiacomo, L. Graeve, A. R. Saltiel, and E.
Rodriguez-Boulan, “Polarized apical distribution of glycosyl-
phosphatidylinositol-anchored proteins in a renal epithelial
cell line,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 85, no. 24, pp. 9557–9561,
1988.

[67] D. A. Brown and J. K. Rose, “Sorting of GPI-anchored pro-
teins to glycolipid-enriched membrane subdomains during
transport to the apical cell surface,” Cell, vol. 68, no. 3, pp.
533–544, 1992.

[68] N. Jamin, J. M. Neumann, M. A. Ostuni et al., “Character-
ization of the cholesterol recognition amino acid consensus
sequence of the peripheral-type benzodiazepine receptor,”
Molecular Endocrinology, vol. 19, no. 3, pp. 588–594, 2005.

[69] E. V. Vassilieva, A. I. Ivanov, and A. Nusrat, “Flotillin-1
stabilizes caveolin-1 in intestinal epithelial cells,” Biochemical
and Biophysical Research Communications, vol. 379, no. 2, pp.
460–465, 2009.

[70] R. M. Epand, “Proteins and cholesterol-rich domains,”
Biochimica et Biophysica Acta, vol. 1778, no. 7-8, pp. 1576–
1582, 2008.

[71] R. Mishra, M. Grzybek, T. Niki, M. Hirashima, and K.
Simons, “Galectin-9 trafficking regulates apical-basal polar-
ity in Madin-Darby canine kidney epithelial cells,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 107, no. 41, pp. 17633–17638, 2010.

[72] C. Willenborg, J. Jing, C. Wu et al., “Interaction between FIP5
and SNX18 regulates epithelial lumen formation,” Journal of
Cell Biology, vol. 195, no. 1, pp. 71–86, 2011.
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