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. this end, we introduce and analytically characterise a model of time-varying networks with tunable
Published online: 05 February 2018 : modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR,
* models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly,
we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS
phenomena. In this case, we observe that modular structures induce a reduction of the threshold with
respect to time-varying networks without communities. We confirm the theoretical results by means
of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal
network.

Network thinking has become a prominent and convenient paradigm to unveil the properties of complex systems.
Such a paradigm has been rapidly enriched, giving rise to variants that account for inherent features of real com-
plex systems inferred by the availability of large, often time-resolved datasets'~. Three are the main features that
have captured the attention of researchers in the area. The first is heterogeneity in the statistical distributions of
key topological properties such as the number of connections per node (degree) and the intensity of interactions
(weight)>*. This property is one of the hallmarks of complexity and is linked to a range of non-trivial dynamics®°.
For example, heterogeneity in the connectivity patterns makes networks extremely fragile to the spreading of
infectious diseases and malicious attacks®”. The second feature regards the presence of modules and communi-
ties®. Available datasets have highlighted that real networks are organized in modules, or communities, whereby
the density of links within the community is much greater than the density of links between communities. On the
one hand, communities can be treated as fairly independent entities within a large network, like the behaviour of
different organs within the same body. On the other hand, from time to time, phenomena originating in a com-
munity may involve a huge portion, if not all, of the network. This is for example the case of pandemics originat-
ing from local outbreaks®*-'!. Nevertheless, the role played communities is still ambivalent. For example, the
presence of communities might slow down or speed up the propagation of a disease and facilitate the spreading
of social norms'?-%. Detecting communities in a real system is not a trivial task, due to their fuzzy, vanishing, and
overlapping nature. Also, in most of the available datasets communities are not explicitly labeled, so the validation
of community detection algorithms cannot often be rigorously carried out®?!. Finally, networks are characterised
by non trivial temporal dynamics**?. The propensity of nodes to initiate and to attract interactions per unit time
is typically heterogeneously distributed****. The same applies to the duration and the time interval between con-
nections'*?°. Furthermore, the creation or renewal of interactions might be correlated, and the dynamics driving
the temporal evolution of networks are function of the time-scale considered?”**. However, the large majority of
studies on dynamical processes unfolding on networks have been conducted under the hypothesis of time scale
separation which effectively neglects all such features. In particular, the evolution of the process and the evolution
of network are considered to take place at well-distinct time scales. Within this paradigm two opposite limits have
been considered. In the first case, the dynamical process is assumed to be much faster than the evolution of the
network. This is the limit of quenched/static networks?. Here, networks are fully characterised from an adjacency
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matrix, A; whose entries are non-zero for all connected pairs i — j°. The second case instead, is the opposite limit
where an annealed version of the network can be considered and averaging (mean-field) techniques can be
applied®-*2. Annealed networks are fully characterised by an average adjacency matrix A Kok, describing the prob-

ability of connection for nodes of degree k; and degree k;*. In our case instead, the time scale regulating the
dynamical process and the evolution of the network are comparable, the time scale approximation is not valid.
This is the regime of time-varying networks?. Interestingly, the temporal nature of interactions might inhibit or
facilitate spreading processes evolving at comparable time-scales!***+%¢_ The effects introduced by communities
and time-varying connectivity patterns on dynamical processes have been mostly scrutinised separately. However,
as few recent works pointed out, the two attributes are connected and their interplay introduces non-trivial
effects, such as segregated behaviours and formation of hierarchical structures*’; or the intricate competition
between topological and temporal correlations*®. The presence of groups, think for example the interaction net-
work of students in a school, introduces specific dynamics that deeply affect spreading processes. A thorough
modelling and study of these phenomena may be useful to define prioritisation of interventions and containment
strategies in epidemic spreading®.

Altogether, these observations call for a general modelling framework aimed at characterising both features
and single out their effects on real networks. The model presented in this paper leverages on the paradigm of
Activity Driven Networks (ADNSs) to model realistic temporal networks where the node and link dynamics coev-
olve at comparable time scales?** and includes the modularity phenomena, whereby connection patterns can be
set to preferentially occur within a given community, rather than outside the community toward the rest of the
population. While the coevolution of node and link dynamics is inherently considered in ADNs by construction,
modularity is here modelled by a single parameter that regulates the interplay between the link formation within
and outside of the community. In the context of epidemic processes on time-varying networks, our model is first
characterised analytically. Then it is used to study the behaviour of different contagion processes on synthetic
networks, and on a large, time-resolved dataset of scientific collaborations. Results and methods are discussed in
detail in the following sections.

Results

Here, we study the effect of modularity (i.e., the presence of communities in the network) on time-varying net-
works. To this extent, we introduce a model of time-varying networks with tunable modularity, able to capture
several features of real temporal graphs. We derive an analytical characterisation of the model, and we study the
behaviour of the Susceptible-Infected-Recovered (SIR) and the Susceptible-Infected-Susceptible (SIS) epidemic
processes unfolding on its fabric®'. Remarkably, while the presence of tightly connected clusters inhibits SIR pro-
cesses, it favours the spreading of SIS-like diseases lowering the epidemic threshold. Interestingly, similar results
have been recently obtained in models of time-varying networks characterised by correlated topological features
induced by reinforcement of specific ties*2. We confirm the theoretical picture emerging from synthetic networks
by means of extensive simulations on a real word dataset of scientific collaborations within the American Physical
Society (APS). Our results contribute to characterise the mechanisms, and their interplay, behind the complex,
and often contradictory, behaviour of dynamical processes unfolding on real networks.

Modular activity driven networks. The system under investigation is composed by N nodes. Each node i
is characterised by an activity rate a;, that describes its propensity to engage in social interactions with other
nodes. To capture empirical observations performed in a wide set of systems ranging from R&D to online inter-
actions networks?>*%52%% we consider activity rates heterogeneously distributed, and extracted from a continuous
functional form F(a) = Ba™", where a € [¢, 1] and e =10 to avoid divergence in the distribution. Furthermore,
each node is assigned to only one group/community. To take into account empirical evidences, the size of each
community is extracted from a heavy-tailed distribution, i.e. P(s) = Cs~“ with s € [s,,;,» AN 13°*. Therefore, we do
not limit ourselves in studying a fixed number of modules®®, whilst their number is driven from the model’s
parameters. The assignment of nodes to communities is done as follow. A community of size s is extracted. The ID
of s nodes is progressively assigned to the community. The processes is repeated until all N nodes are assigned to
one community. Very rarely, all nodes can be perfectly assigned to the extracted community sizes. Indeed, in the
last extraction we might have available only a fraction of the nodes necessary to fill the community. However, the
average value of s is much smaller than the total number of nodes, thus the actual size of the last community can
be only slightly smaller than the extracted value. The empirical distribution of community sizes in the network
will then follow P(s). Given these settings, a generative network model is defined by the following steps (see
Fig. 1).

o Ateach time t, the network, G, starts with N disconnected nodes.

«  With probability a;At each vertex i is active and willing to create m connections.

o Eachlink being generated points with probability 1 within the node’s community, and with probability 1 —
to one of any other groups. In both cases, the target node j of the link is randomly selected in the target
community.

o Atthe next time step t+ At all the edges in G, are deleted.

All the interactions have a constant duration At. In the model, neither self-loops nor multiple edges are
allowed. In the following, without loss of generality, we fix At= 1. Furthermore, we consider the case m=1.

Given an heterogeneous distribution of activity, at each time step, the model generates a random, structureless
network in which few nodes are active. The modular features of the network emerge integrating connections in
time. Such time-integrated properties, at different time regimes, can be computed analytically. In the following,
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Integrated

Figure 1. Schematic representation of the model. In red, we show active nodes. Straight lines and arcs describe
links connecting nodes in the same or in different communities respectively. In the bottom right panel we show
the integrated network obtained as the union of G, G,, G;.

we will report the results for the evolution of the average number of connections of each node (k;(t)) (aver-
age degree) and the overall degree distribution p(k). The complete set of results is shown in the Supplementary
Information (SI).

To solve the average degree’s dynamics, let us introduce the effective activity @, = a; + (a) (where (a) is the
average value of the activity distribution) and the mixing parameter pi/ =1 — ;1. We refer to the degree of node i at
time t as k(a,, s, t), where s is the node’s community size. By defining an activity class as the group of nodes featur-
ing similar activity values a, we set the average in-community degree (k.(a, s, t)) to be the average number of
connections that nodes belonging to the activity class a and falling in communities of size s have toward nodes of
their same community. The latter grows as

(k(a,s, )y =(s—1)

1- — ,
exp[ 7(a, s)]] (1)

where 7(a, s) is the characteristic time that it takes for the degree k.(a, s, t) of nodes of activity a belonging to a
community of size s tobek_(a, s, t) ~ (s — 1), being s — 1 the maximum value of the in-community degree (see
the Supplementary Information for the evaluation of (g, s)).

Similarly, we can define the average out-community degree (k,(a, t)) as the number of connections that nodes
of activity class a have outside of their communities at time t. We expect this quantity to be independent of the
nodes’ community size s so that, for large networks, we can write:

(k(a, 1)) = pat )

The average total degree (k(a, s, t)) can be computed as the simple sum between the two previous equations,
obtaining

at t < 7(a,s) (3a)

(k(a, s, 1)) = (k(a, s, 1)) + (k,(a, 1)) = {p/at + (s — 1) t~ 7(a,s) (3b)

wat t > 7(a,s) (3¢)

Three regimes are readily identified: an initial growth in which both the in-community and the out-community
degrees are growing linearly in time, followed by the slowing down of the in-community degree, which saturates
to s — 1, and then a further linear regime driven only by the out-community degree growth. Figure 2 shows that
the numerical simulations perfectly match with the theoretical formulas (see the SI for details).

Noticeably, the long time evolution of the node degree is linear in time and proportional to its activity class 4,
so that we find the asymptotic degree distribution of the system to feature the same functional form of F(a) xa~",
as found in non-modular activity driven networks***:

k(a,t)xa-t

F(a)da————p(k)dk x k™"dk. (4)

In Fig. 3, we integrate the network for T=10° and we plot the three degree distributions. As expected, the
out-community p(k,) and the total p(k) degree distributions fall as power laws with exponent —v. On the other
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Figure 2. Time evolution of the average total degree, (k(a, s, t)), for different activity classes and compared with
the theoretical function of Eq. 3a,b,c and, evaluated considering a community size equal to the average (i.e.
s=(s)). The rescaled time ist — @t and (k(at)) is plotted. Parameters used are: N=10°, w=2.1,v=2.1,
Smin=10, 1= 0.9 and T'= 10 evolution steps. Each point is an average of 10? simulations.
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Figure 3. Plot of the three degree distributions and the theoretical prediction, given in Eq. 4. Parameters used
are: N=10%, w=2.1,v=2.1,s,,;,= 10, 1= 0.9 and T= 10’ evolution steps.

hand, the in-community degree p(k,) saturates to the community size distribution P(s), as all the nodes reach
their maximum in-community degree value (s — 1), being that the modules’ size is far smaller than the network
SIZ€ (Spay = JN < N }- On the contrary, the out-community degree takes longer times to saturate to its maxi-
mum value N — s > s.

It is worth stressing that the results presented in this section apply to the networks obtained integrating links
over time. A process unfolding on such networks, in general, will be affected by the time-aggregated features of
the graph. The extent to which this is true, is function of the interplay between the time-scale describing its evo-
lution, 7, and the various 7(a, s). In the limit 7, < 7(a, s) the process would effectively evolve on the instantane-
ous, annealed networks that are characterised by a small average degree and modularity. In the opposite limit
instead, the process would effectively unfold on static networks obtained integrating links over longer time char-
acterised by high average degree and low modularity. Indeed, the average degree in this regime will be dominated
by out-community links that make the connections between different communities increasingly stronger, thus
increasingly destroying the identity of communities. In the limit 7, ~ 7(a, s) the process would effectively evolve
on maximally modular networks (for a given set of parameters). Arguably, this is the most interesting regime that
we will consider in the following.

Epidemic processes on modular activity driven networks. Let us turn our attention on the dynamical
properties of SIR and SIS processes (see the Methods section for a detailed definition of the two) unfolding on the
proposed model. Although similar, the two processes are intrinsically different***’-°. Indeed, SIR processes are
always characterised by the so called disease-free equilibrium, provided 4N =0. The illness eventually disappear,
i.e., =0 for t — oo. SIS models instead allow the existence of an endemic state where a finite and constant frac-
tion of infected individuals permanently colonise the population, i.e., I >0 for t — co. Here, we focus on a central
concept of contagion phenomena: the epidemic threshold. This quantity defines the conditions necessary for the
spreading of the illness. In annealed networks, the threshold is determined by the moments of the degree distri-
bution p(k). In static graphs the expression is given by the principle eigenvalue of the adjacency matrix®”**¢1. In
time-varying networks instead, the threshold is determined by the interplay between the time-scales of the conta-
gion and network evolution processes*41:4>5062-6% Tp the case of SIR models, we also consider another important
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quantity: the epidemic size R, which is defined as the final ratio of recovered nodes. This describes the fraction
of nodes affected by the disease.

To develop a deeper understanding, let us derive the mean-field level dynamical equations describing the con-
tagion process in modular activity driven networks. We define the activity block variables S, , I, , and R, as the
number of susceptible, infected and recovered individuals, respectively, in the class of activity a and community
of size s at time ¢ (to enhance readability, we omit to notate the dependence on time). This allows us to write the
mean-field evolution of the number of infected individuals, for a SIR process, in each group of nodes with activity
aas:

dtJa,s = _ryIa,s + Asu,s

I I
a= + (1 — p)a—
K s K N

S S
/,I/Ia/’s :S + (1 - l’l’)Iu/,S IL:}S >

+>\Ea’

5)

where I, and I are the number of infected in communities of size s and in the whole network, respectively. The first
term in the r.h.s. accounts for the recovery of infected individuals. The other four terms account for the probabil-
ity that a Susceptible node in a community of size s connects to an Infected node inside (first) or outside (second)
its community acquiring the infection, and for the probability that an Infected node of class a’ connects to a
Susceptible node inside (third) or outside (forth) a community of size s, contracting the disease. For simplicity,
we consider that N— s~ N and, at least initially, I — I, ~ I. Summing over all the activities and community sizes, and
considering only the first order terms in g, I, ;, R, ; and their products, we obtain

dI = —7I + Na)l + 20 + A\ud_ ((a), — (a)I,

(6)
4O = —10 + \a’)I + \Na)©
+/\/J‘Z[(<a2>s - <a2>)Is + (<a>s - <a>)@s]: (7)
where we defined © = Y° al, and ©, = ¥ al, .. The term (a"), = 3" N, (a"/s describes the moments of the

activity distribution in any community of size s. The second, auxiliary, equation is obtained from the first by mul-
tiplying both sides by a and summing over all s and a. The epidemic threshold, in principle, can be derived evalu-
ating the principle eigenvalue of the Jacobian matrix of the system of differential equations in I and @2*41:4550:670,
In general, a closed expression for the threshold does not exist. However, we can point out some interesting
observations.

First of all, the terms associated to R, vanish, implying that, at the first order, the thresholds of both SIR and
SIS are equal®. Furthermore, the terms in ; weight a comparison between the moments of the activity distribu-
tion in the network with the corresponding quantities evaluated inside each community. If fluctuations of these
terms are negligible, due for example to very large community sizes or to narrow distribution of activity, the
equations become equivalent to the case ;= 0. In the limit ;t — 0 the network has no modular structure, and the
threshold, for both SIR and SIS, becomes 3/ > 2/(1 + .[x) as derived with different approaches in refs?4L45.71
We defined y = (a%)/(a)? where the moments are evaluated over the whole network. As expected, the spreading
condition is determined by the interplay between the time-scale of the contagion process and the time-scale of the
network. Furthermore, the threshold is significantly larger with respect to the case in which the disease would
spread in static or annealed networks generated integrating connections over time?*. Indeed, the concurrency of
contacts in the two time scale separation regimes drastically facilitates the spreading of diseases?*”2 It is impor-
tant to notice how the threshold is not function of m even in the case of m > 1. This is due to the fact that we
absorbed the contact rates in the definition of 3. As detailed in the methods section, this is defined as the per
capita rate of infection. By adopting such definition, we are able to estimate the spreading power of a disease
independently of possible differences in contacts rates. The expression could be easily changed to explicitly

account this aspect obtaining \/y > ﬁ”’“’”. In the opposite limit ;¢ — 1 networks are extremely mod-
ma X
ular, fluctuations become important antf the symmetry between SIR and SIS breaks. In order to understand this

limit, let us consider first a SIR process started from a single infected node in a community of size s. The large
majority of connections are towards a small number of vertices in the same group. As soon as the disease start to
spread within the community the number of infected and then recovered nodes grows, thus the probability of
links I — I and I — R increases. Such connections cannot help the spreading of the disease. In fact they hamper the
contagion process. In case instead of a network characterised by smaller values of modularity the growth of
infected and recovered nodes has a much smaller effect. Indeed, the connectivity between communities would
guarantee access to larger pool of susceptible nodes to sustain the spreading. From these simple observations we
can expect that SIR processes are inhibited by highly modular connectivity patterns. Except for few exceptions in
particular topologies', this is the case on static and annealed graphs'*-'7. As we will show below, the same argu-
ments hold also in time-varying connectivity patterns. On the other hand, in case of SIS processes, the repetition
of contacts does not lead to such “pair annihilation™ contacts between infected nodes do not help the spreading
of the disease, but they are only temporary (eventually, all infected nodes become susceptible again). Thus, we
expect that modularity plays a different role in SIS dynamics. This is what has been found also in the case of one
annealed network model'®. Below we will show how this applies also in the case of time-varying networks. In
order to numerically characterise SIR models, we study the epidemic size, R, as a function of 3/. This quantity
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Figure 4. Panel (A) R, as a function of 3/, for selected values of 1 and s, = 10. Vertical black line represents
the theoretical value of the epidemic threshold for pt =0 as derived in refs?*”!. Panel (B) R,,,,,, i.€. the max value
of R, as a function of u. In red curves we set s,,;, = 100, in blue curves s,;, = 10. In solid curves, we draw
community sizes directly from the community size distribution P(s). In dashed curves, we fix the community
sizes as equal to the average value of P(s) for all communities. The 95% confidence interval is in grey. Each point
is an average of 10? independent simulations.
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Figure 5. Panel (A) Lifetime of the disease L as a function of 3/, for selected values of 1 and when s,,;, = 10.
Vertical lines are the epidemic threshold. Panel (B) Ratio 5= /7 in correspondence of L, as a function of
. In red curves we set s,,,;, = 100, blue curves s,,;, = 10. Each point is an average of 10> independent simulations.
Note that we avoid to simulate ;= 1 because the criterion we follow for the estimation of the threshold does not
hold for a network with many connected components.

acts as the order parameter of a second-order phase transition®. For SIS processes instead, the order parameter is
the final fraction of infected individuals, I..°. The numerical estimation of this quantity is challenging, since it
requires the precise determination of endemic states. For these reasons, we follow ref.”4, measuring the life time
of the disease, L, that acts as the susceptibility in phase transitions”*”>. This quantity is defined as the average time
it takes for the disease to either die out or reach a macroscopic fraction, Y, of the populations. Without loss of
generality, we start our simulations by setting 1% of randomly selected nodes as initial infected seed. Other
parameters are set as: y=0.01, m=1,v=2.1,w=2.1, N=10° and Y= 0.5 (see SI for similar plots obtained fixing
w=1.5).

Results obtained from SIR models are represented in Fig. 4A,B, whilst results from SIS models are shown in
Fig. 5A,B. In Figs 4B and 5B we study different community structure, either by considering a constant community
size (dashed curves) or by drawing community sizes directly from the community size distribution P(s) (solid
curves). In general, red curves represents a network with bigger communities than the one represented with blue
curves.
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For SIR models, Fig. 4A tells us that, as expected, the higher 3/ the higher the epidemic size. The figure also
confirm the intuitions about the threshold. Indeed, we observe a dependence on fi: the higher y the higher the
threshold. However, it is important to notice how such dependence is weak especially when compared with the
SIS case (see below). Moreover, the higher the fraction of links created between pair of nodes sharing the same
community (i.e. the higher 11), the lower the epidemic size. This second observation is confirmed studying differ-
ent community structures, as done in Fig. 4B, in which we plot the maximum epidemic size (corresponding to the
largest value of 3/ in our settings), R ..., as a function of . In the limit 1+ — 0, we observe that the disease impact
is the same: the networks behave as if no community structure was present. Instead, when ;1 — 1, the modular
structure influences the spread of the disease. As mentioned before, repeating contacts within communities sig-
nificantly narrows the chances of having new infected individuals. Indeed, in SIR models, once a node recovers,
it cannot be infected again. Repeating contacts with nodes already recovered does not favour the spread of the
disease. Overall, the main observations are four. (i) Increasing the modularity reduces the epidemic size. (ii) A
network with, on average, larger modules is likely to yield a higher epidemic size. (iii) The larger the modules the
weaker the dependence on y of the epidemic size. (iv) In case of small modules, the distribution of community
sizes seems to influence the spreading of the disease. In particular, a network organised in small groups of con-
stant sizes leads to smaller epidemic size respect to a network in which the average community size is the same,
but individual sizes are extracted from a power-law distribution.

For SIS models, the lower y, the lower the life time L (see Fig. 5). Inter-community links speed up the disease
spreading and an endemic state, i.e. Y=0.5, is reached faster. Moreover, the higher 1, the lower the epidemic
threshold. This last observation, which implies that increasing values of modularity favour the survival of the
disease, is confirmed in Fig. 5B where we also test the effects of different community structures. In the limit i — 0,
there is no community structure and the curves converge to the same epidemic threshold. On the contrary, when
(1 — 1, the community structure becomes increasingly important and influences the spreading. Qualitatively,
higher levels of modularity diminish the epidemic threshold. This is due to the repetition of the same contacts
within a community which becomes increasingly more likely. Indeed, in SIS models, reinfection is allowed and
nodes can become infected many times: communities act as a reservoir for the disease and favour the contagion
process pushing the epidemic threshold to smaller values. Besides this last point, there are two main observations.
(i) A network with larger modules is likely to have an higher epidemic threshold. (ii) In case of communities
with smaller average sizes and high values of modularity, having the community size extracted from a power-law
seems to slightly increase the threshold. Thus, the disease is able to spread more easily in modular networks with
communities of similar or equal sizes. With the exception of one data point, this is observed for ;1> 0.5 (see the
dashed blue line in Fig. 5B).

Real networks. Although the modelling framework presented captures realistic activity and community size
distributions of real networks, it neglects other important features such as burstiness”®-%’, and more complex tem-
poral/structural correlations® =%, It is then crucial grounding the picture emerging from synthetic models with a
real world system. To this extent, we consider a temporal and modular network about scientific collaborations in
the American Physical Society (APS). We study 96940 scholars connected by 692667 links (see the Supplementary
Information for more details). We focus on ten years of data (January 1997-December 2006) coarse-grained at
a time resolution of one month. To single out the effects introduced by communities on contagion processes, we
consider also a randomised version of the dataset. Here, the interactions at each time are shuffled, destroying the
community structure, but the sequence of activation times for each node and the degree distribution at each time
step are preserved®. In order to make sure that the randomisation process removes topological structures, we
integrate the two networks over all time steps and we use OSLOM?®® to find the communities. The modularity® of
the real APS network is Q= 0.6685, and of its randomised counterpart Q =0.0937. As expected, the degree pre-
serving randomisation reduces the modularity significantly. Using these two networks, we study the dynamical
properties of SIR and SIS processes unfolding on their structure. In Fig. 6A,B we present the results. The modular
properties of the real network do not influence the threshold of SIR models. Considering the weak dependence on
the modularity observed in synthetic networks this results is not surprising. Even more, in this case the maximum
value of modularity is defined by the data. We cannot increase it manually as done in our model. Nevertheless, the
presence of communities reduces the impact of the disease, i.e. lowers the epidemic size. In the case of SIS pro-
cesses instead, communities have a larger effect shifting the threshold to smaller values. These results qualitatively
confirm what observed in synthetic systems.

Discussion

Real networks are characterised by heterogeneous statistical distributions of crucial topological features; they are
organised in modules/communities; they are subject to non trivial temporal dynamics®>%2>2 It has long been
acknowledged that such attributes have critical effects on contagion processes evolving on systems’ fabric®. In
particular, the heterogeneity in the connectivity patterns makes static/annealed networks extremely fragile to the
spreading of infectious diseases®. Moreover, the presence of communities in static/annealed graphs might either
slow down or facilitate the propagation of a disease'?"'8. In particular, community structures are most likely to
inhibit SIR-like processes'*"'”. However, in particular networks, such as Autonomous System Graphs, peculiar
topological properties might have the opposite effect!’. The study of SIS processes in the context of modular net-
works has received much less attention. However, at least in the case of one artificial network model, modularity
has been found to help the spreading'®. A note of caution is however important. Indeed, in this paper, modular
networks are compared with random graphs of different degree distribution. Thus, it is hard to disentangle the
real effect of modularity on SIS processes in this case. The temporal features of networks have been found to either
facilitate or hamper the spreading of contagion processes. We refer the reader to ref.” for a recent compendium
of epidemic spreading on time-varying networks. The study of the effects of modularity on epidemic spreading
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two networks. Each point is the average of 10* independent simulations started from 1% of random seeds. We
fix y=0.05.

unfolding on time-varying networks has been very limited. At the best of our knowledge only one paper so far
tackled directly this issue®. In this work, an activity-driven network organised in two communities of equal size
has been considered. In these settings, the threshold is not function of the modularity as each community is a
good representation of the full network, thus the critical behaviour is the same independently of the number of
connections between the two modules. Furthermore, the authors found a weak correlation between modularity
and epidemic size. Starting from all these results, here we aimed to characterise the interplay between modular-
ity and temporal dynamics of networks considering realistic community structures. To this end, we proposed a
model of temporal networks with tunable modularity and heterogeneous activity distributions. We provided an
analytical description of time-aggregated properties of such networks, and studied the impact of modular and
temporal features on epidemic spreading processes. In synthetic networks, we found that modularity reduces
the epidemic size and threshold in SIR models, slowing down the spreading process. The effect of modularity on
the threshold is weak and appreciable only for large values of it. In SIS models, modularity reduces the epidemic
threshold making the system more prone to disease spreading. The dependence on modularity is in this case
much stronger. The repetition of the same contacts between nodes belonging to the same community acts as a
reservoir for SIS-like diseases and allows the pathogen to reach an endemic state more easily. Our work is not
exempt by caveats. The most important limitation, perhaps, is represented by the adoption of Poissonian activa-
tion dynamics, which has been shown to be unrealistic in empirical temporal networks which are characterised
by bursty behaviours (heterogenous inter-event time distributions)?. Furthermore, not only links are dynamical
entities being created and terminated, but also nodes may appear and disappear during the dynamics®. Our
model of modular activity-driven networks does not capture all these aspects of real temporal networks. Thus,
we confirmed the picture emerging in synthetic graphs by numerical simulations of SIR and SIS models on real
network, characterised by both modular and temporal features. We selected a co-authorship network in which
nodes describe authors and links between them capture scientific collaborations. Clearly, such network is not of
direct epidemiological relevance. Unfortunately, datasets more suitable for the study of the behaviour of spreading
processes on temporal networks, such as face-to-face interactions, are scarce and quite small in size. Thus, they
are not the optimal choice to study how temporal and topological properties affect epidemic thresholds which
are analytically defined in the limit of N — co. However, it is important to notice that social networks, in many
different contexts, are characterised by the wide range of features missing in our simple model**. Thus, in the
spirit of a qualitative comparison, studying the behaviour of contagion processes on co-authorship networks is
a meaningful exercise. In conclusion, our findings show that on time-varying networks modularity can have
opposite effects on different classes of spreading processes. Dynamical processes unfolding on real networks have
been show to exhibit a rich and complex phenomenology, depending on the topological and temporal properties
of the underlying substrate as well as on the characteristics of the process under investigation. Such complexity
may be addressed by both the definition of proper generative models, that allows to control the desired features,
and the study of the processes behaviour in real-world network. Our work is set within this framework, and it
contributes to shed light on the impact of modular and temporal properties of real networks on epidemic spread-
ing dynamics.

Methods

SIS and SIR models. In both processes nodes are divided in different classes according to their disease sta-
tus. In SIR models nodes are either Susceptible (S), Infected (I) or Recovered (R). Susceptible nodes describe
healthy individuals. Infected nodes contract the disease and are infectious. Recovered nodes are no longer
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infected and acquire complete immunity to the illness. The model is fully characterized by two transitions:

S+1 2 2TandI 2> R.The first describes the infection propagation and (3 is the capita infection rate. This quan-
tity is defined by the average contacts per node (k) and by the per contact probability of transmission A, i.e.
B=X(k). The second transition describes the recovery process. Infected individuals recover spontaneously and
permanently with rate . In SIS models instead we have just Susceptible and Infected nodes. While the contagion
process is equivalent to the SIR case, the recovery is different and described by the following transition: I — S.
Infected nodes spontaneously return in the susceptible compartment with rate .
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