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Abstract

Background: KSRP is a AU-rich element (ARE) binding protein that causes decay of select sets of
transcripts in different cell types. We have recently described that phosphatidylinositol 3-kinase/
AKT (PI3K-AKT) activation induces stabilization and accumulation of the labile -catenin mRNA
through an impairment of KSRP function.

Results: Aim of this study was to identify additional KSRP targets whose stability and steady-state
levels are enhanced by PI3K-AKT activation. First, through microarray analyses of the AU-rich
transcriptome in pituitary oT3-1 cells, we identified 34 ARE-containing transcripts upregulated in
cells expressing a constitutively active form of AKTI. In parallel, by an affinity chromatography-
based technique followed by microarray analyses, 12 mRNAs target of KSRP, additional to [3-
catenin, were identified. Among them, seven mRNAs were upregulated in cells expressing activated
AKT . Both steady-state levels and stability of these new KSRP targets were consistently increased
by either KSRP knock-down or PI3K-AKT activation.

Conclusion: Our study identified a set of transcripts that are targets of KSRP and whose
expression is increased by PI3K-AKT activation. These mRNAs encode RNA binding proteins,
signaling molecules and a replication-independent histone. The increased expression of these gene
products upon PI3K-AKT activation could play a role in the cellular events initiated by this signaling

pathway.
Background and growth factors [1]. Adenylate-uridylate-rich elements
Regulated mRNA decay is a key factor in determining the =~ (AREs), present in the 3'-untranslated region (3'UTR) of
expression pattern of many genes including those encod-  many inherently labile mRNAs, are the most widespread

ing for cytokines, proto-oncogenes, cell cycle regulators,  and best characterized destabilizing sequences [1,2].
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Impairment of the ARE-mediated mRNA decay results in
abnormal cell proliferation and angiogenesis, leading to
cancer insurgence and progression [3], as well as in
inflammatory diseases such as Crohn-like inflammatory
bowel disease and inflammatory arthritis [4].

The interaction of regulatory proteins, ARE-binding pro-
teins (ARE-BPs), with their target labile mRNAs deter-
mines the half-life (t1/2) of these transcripts. Some ARE-
BPs are decay-promoting factors (TTP, BRF1, KSRP) [1].
Others, such as HuR, are stabilizing factors, whereas AUF1
mainly promotes decay although certain isoforms might
be stabilizers of ARE-containing mRNAs [1,5,6]. Accord-
ing to the recently proposed recruitment model, destabi-
lizing ARE-BPs, recruit the enzymatic degradation
machinery to their target mRNAs [7-9].

We and others have recently reported that KSRP promotes
rapid decay of several ARE-containing mRNAs both in
vitro and in vivo and that extracellular stimuli regulate its
activity [7,10-13]. We have shown that activation of either
Wnt/B-catenin pathway in oT3-1 cells [10] or MAPK p38
signaling in C2C12 myoblasts [11] selectively regulates
the stability of specific sets of labile mRNAs targeting
KSRP. More recently, we demonstrated that phosphati-
dylinositol 3-kinase/AKT (PI3K-AKT) signaling activation
induces stabilization and enhances the steady-state levels
of B-catenin mRNA in pituitary olT3-1 cell line through
phosphorylation and functional inactivation of KSRP
[12]. PI3K-AKT signaling exerts a central role in metabo-
lism, cell survival, motility, transcription and cell-cycle
progression [[12] and literature cited therein].

It has been recently suggested that control of mRNA decay
is utilized by the cell to coordinate the expression of genes
involved in specific processes leading to the notion of
'post-transcriptional operons' [14]. This would allow mul-
tiple genes to be co-regulated by a similar array of RNA-
binding proteins in response to certain stimuli. On this
basis, we hypothesized that PI3K-AKT activation could
regulate the expression of transcripts additional to -cat-
enin by targeting KSRP. According to this hypothesis, a
subset of KSRP target transcripts should be stabilized in
response to PI3K-AKT signaling.

To verify this hypothesis, we systematically searched,
among the AU-rich transcriptome, for KSRP target tran-
scripts whose expression was upregulated by PI3K-AKT
signaling. We identified a set of labile mRNAs, stabilized
upon either KSRP knock-down or PI3K-AKT activation,
encoding signaling factors, RNA binding proteins, and a
replication-independent histone. These proteins could
play a role in the cascade of cellular events initiated by
PI3K-AKT activation.

http://www.biomedcentral.com/1471-2199/8/28

Results

Identification of KSRP target transcripts upregulated in
cells expressing constitutively active myrAKT|

We recently found by microarray analyses of the AU-rich
transcriptome that B-catenin mRNA is stabilized and
upregulated by PI3K-AKT signaling in oT3-1 cells in a
KSRP-regulated manner [12]. To systematically search for
inherently labile transcripts whose expression is induced
by PI3K-AKT activation, we compared RNA expression
profiles of mock-transfected oT3-1 cells (mock-oT3-1) to
those of oT3-1 cells expressing a constitutively active
AKT1 (oT3-1-myrAKT1 [12]) using the AU-rich element-
based cDNA microarrays [15]. This array system contains
approximately 2500 ¢cDNA probes for ARE-containing
mRNAs and over 1000 cDNA probes for non-ARE mRNAs
and control housekeeping genes (Additional file 1). For
each cell line we obtained expression profiles from two
independent RNA samples. As shown in Table 1, we iden-
tified 35 transcripts at least twofold overrepresented in
oT3-1-myrAKT1 when compared to mock-oI3-1 cells.
Among these, B-catenin mRNA has been previously
reported and characterized (see above, [12]). All the iden-
tified transcripts display AREs in their 3'UTR and encode
proteins belonging to distinct functional categories (Table

1).

In parallel, in order to identify mRNA targets of KSRP in
oT3-1 cells, we adopted the SNAAP technique (isolation
of specific nucleic acids associated with proteins) devel-
oped by Kiledjian and coworkers [16] using GST-fused
KSRP as the affinity chromatography matrix. This tech-
nique allows to isolate only those mRNAs for which the
fusion protein of interest has a high affinity at the physio-
logical salt concentrations in the context of a ribonucleo-
protein complex [16]. The identification of KSRP-bound
mRNAs was performed by screening the AU-rich element-
based ¢cDNA microarrays [15]. Sequence analysis per-
formed on 314 KSRP-interacting mRNAs identified by
SNAAP (transcripts upregulated by at least 1.8-fold in
KSRP-bound samples), demonstrated over-representation
of ARE motifs when compared to 314 non-KSRP target
transcripts (Additional file 2). Eighty genes whose mRNAs
interacted with KSRP (log, ratio > 1.5, see Additional file
3) were identified. Thirteen of these mRNAs (including
previously characterized B-catenin mRNA [12]) displayed
a more than 3 fold enrichment (our arbitrary cutoff) over
the control GST matrix and were considered for further
analysis (Table 2). In order to select KSRP target tran-
scripts whose expression is induced by PI3K-AKT activa-
tion, we performed a comparative analysis of the results of
the two screenings. We sorted out seven unanticipated
mRNAs that were both enriched upon SNAAP isolation
and over-represented in oT3-1-myrAKT1 cells (typed in
bold in Table 1). These transcripts encode three distinct
RNA binding proteins, hnRNPA1, hnRNPF, and hnRNPA/
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Table I: Transcripts whose levels are increased by at least 2 fold in o T3-myrAKT| when compared with mock-aT3. Transcripts
identified as KSRP targets (see Table 3) are typed in bold.

10
11

13
14

16
17
18
19
20

21

22

23
24

25

26
27
28
29

30

31

32

33
34

35

Transcript name

CDP-diacylglycerol-inositol 3-
phosphatidyltransferase
(phosphatidylinositol synthase)

SNAP9I, synaptosomal-
associated protein, 91 kDa
homolog

Solute carrier organic anion
transporter family, member 1Cl

Heterogeneous nuclear
ribonucleoprotein F
(hnRNPF)

Fibroblast growth factor 5

Tankyrase, TRFI-interacting
ankyrin-related ADP-ribose
polymerase 2

Fibroblast growth factor 19

Heterogeneous nuclear
ribonucleoprotein A/B
(hnRNPA/B)

Microtubule-associated protein
RP/EB family member |

Protocadherin beta 9

H3 histone, family 3A
(H3.3A)

Thyroid hormone receptor
interactor 4

ELL associated factor 2

RUN and SH3 domain
containing |

Cytochrome c oxidase subunit
Vllc

Zinc finger protein 192

Notch homolog 3

PHD finger protein 12

GNAS complex locus (Gsa)
Nascent-polypeptide-associated
complex alpha polypeptide
Protein phosphatase |, catalytic
subunit, beta isoform

Sorbin and SH3 domain
containing | (SORBIN)

Phosducin-like

Immunoglobulin mu-binding
protein 2

ornithine decarboxylase
antizyme |

Septin 5

epidermal growth factor
Fibrosin |

Peath-associated protein kinase

Caveolin 2

Dual specificity protein
phosphatase 4

Brix domain-containing protein

Catenin beta (CTNNB) *

Protein phosphatase 2
(formerly 2A), catalytic
subunit, alpha isoform
(PP2ACA)
Heterogeneous nuclear

ribonucleoprotein Al
(hnRNPALI)

Accession number

NM_006319

NM_014841

NM_017435.2

NM_004966

NM_004464
NM_025235.2

NM_005117
M65028
NM_012325

NM_019119
NM_002107.3

NM_016213

NM_018456
NM_014328

NM_001867

NM_006298
NM_000435
NM_001033561
NM_000516
NM_005594

NM_002709
NM_001034955

NM_005388
NM_002180.1

NM_004152

NM_002688
NM_001963.2
NM_022452
NM_004938

NM_001233
NM_001394
NM_018321

NM_007614.2
NM_002715

NM_002136

Protein function

Catalyzes the biosynthesis of phosphatidylinositol.

Component of clathrin-coated vescicles.

Mediates the Na(+)-independent high affinity transport of organic anions such as the thyroid
hormones thyroxine (T4) and rT3.

RNA binding protein, splicing.

Oncogene, can transform NIH 3T3 cells.
Involved in the regulation of telomere length.

Has a role in brain development, overexpressed in colon adenocarcinoma cell line.
RNA binding protein.

Component of the microtubule cytoskeleton.

Calcium-dependent cell-adhesion protein.
Replacement histone, replication independent protein.

Transcriptional coactivator of nuclear receptors.

Transcriptional transactivator of ELL and ELL2 elongation activities.
Signaling adapter.

Component of cytochrome ¢ oxidase.

Transcriptional regulator.

Forms a transcriptional activator complex.

Transcriptional repressor.

Guanine nucleotide-binding protein.

Prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum.

Ser/Thr phosphatase, essential for cell division.
Involved in insulin receptor signaling.

G protein modulator.
DNA binding protein.

Destabilizes and promotes degradation of ornithine decarboxylase.

Involved in cytokinesis.

Growth factor.

Fibrogenic lymphokine.

Pro-apoptotic calcium/calmodulin-dependent serine/threonine kinase.

Scaffolding protein within caveolar membranes. Interacts directly with G-protein alpha subunits
and can functionally regulate their activity.

Regulates mitogenic signal transduction by dephosphorylating both Thr and Tyr residues on
MAP kinases ERK| and ERK2.

Biogenesis of the 60S ribosomal subunit.

Wht signaling, cell transformation
Dephosphorylates several Ser/Thr kinases.

RNA binding protein.

Fold increase

3.74

3.71

3.39

3.20

3.20
3.15

312
3.1

3.10

3.00
2.96

2.90

2.87
2.86

2.68
2.66
2.65
2.60
2.58

2.44
2.40
231
2.29

2.28

2.07

2.05
2.02

*The regulation of Catenin beta by PI3K-AKT signaling has been described elsewhere [12].

B, three proteins implicated in cell signaling, the alpha
stimulating subunit of guanine nucleotide binding pro-

tein (Gso, encoded by the GNAS locus, GNAS), the alpha
isoform of the catalytic subunit of the protein phos-
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Table 2: Transcripts whose levels are increased by at least 3 fold upon GST-KSRP chromatography when compared with control GST

chromatography.

Transcript name

RAVER2 NM_018211
GNAS| NM_000516
Protein phosphatase 2A catalytic subunit alpha Isoform (PP2ACA) NM_002715

Sorbin and SH3 domain containing | (SORBIN)

Histone 3.3A (H3.3A) NM_002107.3
hnRNPF NM_004966
Prothymosin alpha (28) NM_002823
hnRNPA2/BI NM_002137
ATP synthase mitochondrial FO complex subunit G NM_006476
hnRNPA/B M65028
hnRNPAI NM_002136
Ecotropic viral integration site 5 NM_005665
Catenin beta (CTNN) * NM_007614.2

Accession number

NM_001034955

Fold enrichment

3'UTR features

Protein functions

8.2 Il ARE pentamers ~ RNA-binding protein
77 2 ARE pentamers Guanine nucleotide -binding protein
6.9 6 ARE pentamers Protein phosphatase
6.5 I'l ARE pentamers  Insulin signaling

5.9 7 ARE pentamers Nucleosome formation
5.6 2 ARE pentamers RNA-binding protein
5.5 I ARE pentamer Transcription factor
4.7 4 ARE pentamers RNA-binding protein
4.1 4 ARE pentamers Mitochondrial ATPase
4.0 3 ARE pentamers RNA-binding protein
4.0 2 ARE pentamers RNA-binding protein
35 |15 ARE pentamers ~ Oncogene

3.1

U-rich regions

Transcription/Signaling

*The interaction of Catenin beta mRNA with KSRP and its decay control have been described in detail elsewhere [12].

phatase 2 (PP2ACA), and the SH domain containing pro-
tein sorbin (SORBIN), as well as the replication-
independent histone H3.3A (H3.3A).

The ARE-containing regions of the novel KSRP target tran-
scripts (Additional file 4) displayed a potent destabilizing
function both in vitro (Figure 1A) and in intact cells (see
below, Figure 3C). Purified recombinant KSRP was able to
bind, in a dose-response manner, to the AREs of the novel
KSRP targets in vitro (Figure 1B). To validate the interac-
tion of the endogenous KSRP with its target transcripts, we
performed immunoprecipitation experiments of ribonu-
cleoprotein complexes in o(T3-1 cells. As shown in Figure
1C, the seven transcripts were immunoprecipitated by
anti-KSRP antibody as well as by anti-hnRNPA1 antibody.
No KSRP target mRNA was detected in anti-AUF1 immu-
noprecipitates under standard experimental conditions
(Figure 1C). However, when the amount of cDNAs
obtained by retrotranscription and used in PCR reactions
was increased by 10-fold, bands corresponding to
hnRNPA/B and prothymosin oo (PTMA) mRNAs (both
already identified as AUF1 targets [17]) were detected
(Additional file 5). Interestingly, also anti-HuR antibody
immunoprecipitated the KSRP target mRNAs while anti-
TTP antibody immunoprecipitated only hnRNPF and
GNAS (Figure 1C) as well as GM-CSF mRNA which is a
typical TTP target transcript (data not shown). We
obtained similar results performing immunoprecipitation
of ribonucleoprotein complexes in C2C12 myoblasts
(data not shown).

KSRP associates with AUFIp45 and hnRNPAI in the
cytoplasm of aT3-1 cells

HPLC gel filtration of S100 extracts from oT3-1 cells fol-
lowed by anti-KSRP immunoblotting analysis, showed
that KSRP is present in fractions of molecular mass rang-
ing from 150 KDa to over-440 KDa (Figure 2A, top panel).
We have previously demonstrated that KSRP functionally

associates with components of the mRNA decay machin-
ery [7,9,18]. In order to identify KSRP molecular partners
additional to those already known, a yeast two-hybrid
screening using KSRP as a bait was performed. We identi-
fied several potential KSRP interacting proteins (listed in
Table 3) including the chaperone protein 14-3-3( whose
function in KSRP-dependent -catenin mRNA decay was
recently described by Gherzi et al. [12]. We found, among
others, the cDNAs encoding two bona fide ARE binding
proteins, the p45 isoform of AUF1 (AUF1p45) [6] and
hnRNPA1 [19]. Both AUF1p45 and hnRNPA1 elute
together with KSRP in gel filtration fractions ranging from
100 to 200 KDa (Figure 2A, middle and bottom panels
and data not shown). The interaction of either AUF1p45
or hnRNPA1 with KSRP was confirmed by anti-KSRP
immunoprecipitation of RNase A-treated oT3-1 cytoplas-
mic extracts followed by either anti-AUF1 or anti-
hnRNPA1 immunoblotting (Figure 2B). GST-fused KSRP
was able to pull-down both endogenous AUF1p45 and
hnRNPA1 from oT3-1 cytoplasmic extracts (Figure 2C).
These data, together with those presented in Figure 1C
suggest that KSRP target transcripts belong to a ribonucle-
oprotein complex including AUF1p45 and hnRNPA1.

We investigated whether either AUF1p45 or hnRNPA1 or
both directly interacted with KSRP target transcripts. UV-
crosslinking experiments failed to display high affinity
interaction of these ARE-BPs with the KSRP target tran-
scripts in vitro (data not shown). This finding suggest that
AUF1p45 and hnRNPA1 are part of the KSRP-containing
ribonucleoprotein complex but do not directly interact
with KSRP targets.

KSRP knock-down in oT3-1 cells stabilizes KSRP target
transcripts

To verify the relevance of KSRP in the decay control of its
target transcripts, stable knock-down of KSRP using a
short-hairpin vector was performed in oT3-1 cells (o(T3-1-
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KSRP associates with a set of unstable mRNAs overrepresented in myrAKT I-aeT3-1 cells. (A) In vitro RNA degradation assays
using S100 extracts from oT3-1 cells. Internally 32P-labeled, capped RNA substrates (see Additional file 4 for sequences) were
incubated with extracts for the indicated times and their decay analyzed as described in Methods. (B) The interaction between
32P_labeled RNAs (indicated on the right) and recombinant purified KSRP (30-300 nM) was evaluated by UV-crosslinking. (C)
Immunoprecipitation of ribonucleoprotein complexes containing different KSRP target mRNAs. The proteins were immuno-
precipitated from aT3-1 cell extracts using the indicated antibodies. RNA was extracted from the immune complexes and ana-

lyzed by RT-PCR as described in Methods.

shKSRP; Figure 3A). KSRP knock-down led to two- to five-
fold increase of the steady-state levels of KSRP target
mRNAs in oT3-1-shKSRP when compared to mock-trans-
fected cells (Figure 3B). No changes were seen with the
control f2-MG RNA levels (Figure 3B). Next, using actin-
omycin D, we analyzed the t1/2 of the identified KSRP tar-
get mRNAs in both mock-aT3-1 and oT'3-1-shKSRP cells.
Results presented in Figure 3C showed that KSRP knock-
down in oT3-1 cells strongly increased the t1/2 of all the
transcripts (from less than 60 min. in mock-aT3-1 to
more than 2 hours in oT3-1-shKSRP cells, see Additional
file 6).

Overall these data indicate that KSRP interacts with a sub-
set of mRNAs up-regulated in cells expressing constitu-
tively active AKT1 and regulates their stability and steady-
state levels in o'T3-1 cells.

PI3K-AKT activation stabilizes KSRP target transcripts

We recently showed that PI3K-AKT activation in oT3-1
cells stabilizes B-catenin mRNA and induces its accumula-
tion [12]. These events are mediated by KSRP phosphor-
ylation and functional inactivation [12]. To investigate
whether the activation of the pathway affects the stability
of the novel KSRP targets, we took advantage of oT3-1-
myrAKT1 cells [12]. As shown in Figure 4A, the kinase
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KSRP associates with AUF|p45 and hnRNPA in cytoplasmic extracts of aT3-1 cells. (A) SI00 extracts from aT3-1 cells were
subjected to gel filtration chromatography on a Superose 6 column. Aliquots of the eluted fractions were analyzed by Western
blotting using the indicated antibodies. (B) RNase A-treated S100 extracts from oT3-1 cells were immunoprecipitated with
preimmune (lane 2) or anti-KSRP (lane 3) sera and analyzed by immunoblotting with either anti-AUF| (top) or anti-HnRNPAI
(bottom) antibodies. The arrows mark the position of either AUF1p45 or hnRNPAI, while the asterisk marks a anti-AUF|
cross-reacting band. (C) GST-pulldown of either endogenous AUF|p45 (top) or endogenous hnRNPAI (bottom) from S100
extracts of T3-1 cells using either control GST or GST-KSRP. Proteins were analyzed by immunoblotting using the indicated
antibodies. The arrows mark the position of either AUFIp45 or hnRNPAI.
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Table 3: Molecular partners of KSRP identified by two-hybrid screening.

Protein name Protein function

Accession number

hnRNP-A| RNA binding protein P49312

hnRNP-A/B RNA RNA binding protein NP_034578
AUFI p45 ARE binding protein NP_031542
PABPNI Poly(A) binding protein XP_214172
elF2B beta subunit Translation factor NP_663420
14-3-3C Molecular chaperone NP_035870

activity immunoprecipitated with anti-AKT antibody was
~5 fold higher in oT3-1-myrAKT1 than in mock-oT3-1
cells thus demonstrating that active AKT kinase was
present in aI3-1 cells expressing myrAKT1. The steady-
state levels of KSRP target mRNAs were increased by 2.5-4
fold in intact o’T3-1-myrAKT1 cells (Figures 4B). In addi-
tion, the t1/2 of the KSRP mRNA targets was prolonged
above 2 hours as a result of AKT1 activation in oT3-1-
myrAKT1 cells (Figures 4C and Additional file 7).

Since PI3K-AKT signaling is known to be physiologically
activated by insulin treatment [[12], and literature cited
therein], we investigated the effect of insulin treatment on
the decay rates of KSRP target transcripts. Insulin treat-
ment of insulin receptor overexpressing HIRc-B cells pro-
duced a strong activation of immunoprecipitated AKT
activity (Figure 5A) and caused stabilization of KSRP tar-
gets in vitro (Figure 5B).

Notably, both the t1/2 and steady-state levels of some of
the KSRP targets (Table 2), as exemplified by PTMA, were
not affected by PI3K-AKT activation although increased by
KSRP knock-down in oT3-1 cells (Additional file 8).

Altogether, these data indicate that activation of PI3K-AKT
signaling increased both the t1/2 and the steady-state lev-
els of a subset of KSRP target transcripts.

Discussion

Here we report that KSRP controls the half-life and the
steady-state levels of a set of unanticipated labile mRNAs
in oT3-1 cells. The expression and the stability of the
majority of these KSRP target transcripts is increased upon
activation of PI3K-AKT signaling. Furthermore, we show
that KSRP forms a ribonucleoprotein complex together
with its target transcripts and the RNA binding protein
hnRNPAL.

Recently, we have shown that activation of PI3K-AKT
pathway induces KSRP-controlled regulation of B-catenin
mRNA in oT3-1 cells [12]. We hypothesized that PI3K-
AKT activation could prolong the t1/2 of ARE-containing
mRNAs additional to B-catenin by targeting KSRP.

In order to identify transcripts whose t1/2 and steady-state
levels are controlled by KSRP and respond to PI3K-AKT
activation, we performed a comparative analysis of the
AU-rich transcriptome of oT3-1 cells focusing our atten-
tion onto KSRP target transcripts which are overrepre-
sented in cells expressing a constitutively active AKT1.
Microarray-based methods have been successfully used to
study global patterns of transcript decay and comprehen-
sively identify targets of RNA-binding proteins thus pro-
viding unique insights into gene expression programs
[17,20-25]. We identified a set of mRNAs that interact
with KSRP and whose t1/2 and steady-state levels are con-
sistently increased by either KSRP knock-down or PI3K-
AKT activation. Among these transcripts, three encode
RNA binding proteins mainly implicated in pre-mRNA
splicing events (hnRNPA1, hnRNPF, and hnRNPA/B),
three encode signaling molecules (Gso, PP2ACA,
SORBIN), and one encodes the replication-independent
histone H3.3A. To our best knowledge, none of these tran-
scripts has been yet reported to undergo posttranscrip-
tional control of its expression through regulation of
mRNA decay rates.

Our present data (see Additional file 2) together with our
previous observations [7,10-12] indicate that KSRP inter-
acts with a rather broad array of ARE-like sequences. The
criteria used by KSRP to recognize its RNA targets remain
still unknown, and to date there are no reports that pro-
vide an explanation for its target recognition at the molec-
ular level. Our unpublished structural studies on KSRP
domains (M.F. Garcia-Mayoral et al., submitted) show a
modularity of the interaction between K-homology (KH)
domains 3 and 4 that can increase the adaptability to dif-
ferent RNA sequences/structures thus providing a possible
explanation for the ability of KSRP to recognize highly
heterogeneous RNA targets. These data indicate that KH3
and KH4 can adapt to different AU-rich sequences within
the ARE without being limited by a rigid, pre-existing pro-
tein-protein interaction (M.F. Garcia-Mayoral et al., sub-
mitted). This provides the protein with a flexible
recognition unit than can adapt to different RNA
sequences and can mediate interactions in the structural
environment of different 3'UTRs.

Page 8 of 15

(page number not for citation purposes)



BMC Molecular Biology 2007, 8:28 http://www.biomedcentral.com/1471-2199/8/28

A B

C e
X
'Q - % 5 T
T O s E k£
(o)) [ Vo
p & © S o g
=y ME '3 ME 3
- £ % -<hnRNPA1 -‘H33A
2 EE
T -<hnRNPA/B =4PP2ACA
o M
g K
<hnRNPF '<SORB|N
e H2B
«p2-MG
123 12 123
100 ) 100 100
o| 2 2
5 < £
E| £ £
[ o [
< | < <
F g Z
E| hnRNPA1 €| hnRNPA/B £ hnRNPF
° 0 30 60 90 120 time (min) v 0 30 60 90 120 time (min) 1o 0 30 60 90 120 time (min)
100, 100 100
2| 2 ]
o o 4]
E 3 £ PP2ACA
10 10 10

30 60 90 120 time (min) 30 60 90  120time (min)

0

— =l b4
g g 5

2 g
€ c |
= =

E El

4] 2

<

B z
o i

E E|p2-MG

o - - 10 . .
! [} 30 60 90 120 time (min) 0 30 60 90 120 time (min)

Figure 4

PI3K-AKT signaling stabilizes a set of KSRP-interacting mRNAs and increases their expression. (A) Either mock-oT3-1 or o/T3-
I-myrAKT] cells were lysed and total extracts were immunoprecipitated (Ip) with either anti-AKT antibody or control IgG
(clgG). Pellets were incubated (20 min at 30°C) with histone 2B (H2B) in kinase buffer in the presence of y[32P]JATP under gen-
tle shaking. Labeled proteins were separated by SDS-PAGE and detected by autoradiography. (B) Expression of KSRP-interact-
ing mRNAs and 32-MG (control transcript), monitored by RT-PCR, in either mock-0.T3-1 or oT3-1-myrAKTI cells. (C) Semi
quantitative RT-PCR analysis of both KSRP-interacting mRNAs and 32-MG (control transcript) in either mock-oT3-1 (red
lines) or aT3-1-myrAKT]I (blue lines). Total RNA was isolated at the indicated times after addition of Actinomycin D. The
amount of each transcript was quantitated by densitometry and plotted using a linear regression program. The values shown
are averages (+ SEM) of three independent experiments performed in duplicates. A quantitation of the transcripts' t(1/2) is pre-
sented in Additional file 7.
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Insulin stabilizes a set of KSRP-interacting mRNAs. (A) Serum-starved HIRc-B cells were treated for | h with either PBS (con-
trol) or insulin (106 M). Total extracts were immunoprecipitated with either anti-AKT antibody or control IgG (clgG). Pellets
were incubated (20 min at 30°C) with histone 2B (H2B) in kinase buffer in the presence of Y[32P]JATP under gentle shaking.
Labeled proteins were separated by SDS-PAGE and detected by autoradiography. (B) In vitro RNA degradation assays using
S100 extracts from either control or insulin (10-6 M)-treated HIRc-B cells. Internally 32P-labeled, capped RNA substrates (see
Additional file 4 for sequences) were incubated with S100 extracts for the indicated times and their decay analyzed as

described in Methods.

PI3K-AKT signaling has been reported to cause phosphor-
ylation and activation of the SR-family members of splic-
ing factors [26,27]. Interestingly, hnRNPA1 has been
shown to antagonize the splicing activity of SR proteins
[28]. Increased expression of hnRNPA1 could be viewed
as a mean by which PI3K-AKT signaling finely modulates
select splicing events. Intriguingly, hnRNPA1 transcript
interacts with KSRP in the context of a complex that
includes hnRNPA1 protein, thus suggesting the existence
of an auto-regulatory loop.

GNAS gene encodes the Gsa. that is required for hormone-
stimulated cAMP generation [29]. Recently, Chen et al.
demonstrated that GNAS gene deletion causes increased
insulin sensitivity targeting AKT [30]. Our data allow the
hypothesis that AKT could, in turn, regulate Gso. expres-
sion and activity operating a negative feed back-control
on insulin responsiveness.

Protein phosphatase 2A (PP2A) comprises a family of ser-
ine/threonine phosphatases, whose minimal component
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is a well conserved catalytic subunit [reviewed in [31]].
PP2A plays a prominent role in cell cycle regulation, cell
morphology and development [31]. We have recently
shown that PI3K-AKT activation increases the expression
of B-catenin by prolonging its mRNA t(1/2) through func-
tional inactivation of KSRP. Intriguingly, PP2A can de-
phosphorylate B-catenin thus preventing its degradation
and, therefore, it has been proposed as an activator of B-
catenin signaling [32,33]. Therefore PI3K-AKT, inducing
stabilization of the two KSRP target transcripts -catenin
and PP2ACA, could enhance the cellular levels of B-cat-
enin protein operating a combinatorial positive control.
On the other hand, either inhibition or disruption of
PP2A complexes leads to AKT activation [31]. Therefore, it
is possible that PP2ACA mRNA stabilization and
enhanced expression could operate a negative feed-back
on the effects of either exaggerate or inappropriate PI3K-
AKT signaling activation [34]. A potential model for
KSRP-mediated control of PI3K-AKT/f-catenin signaling
is presented in Additional file 9.

SORBS1, the human gene that encodes SORBIN, was
mapped to the locus which is a candidate region for insu-
lin resistance found in Pima Indians [35]. CAP, the mouse
homologue of SORBIN, is a cytoskeletal adaptor protein
involved in modulating adhesion-mediated signaling
events that lead to cell migration [36]. It has been shown
that stable cell lines overexpressing CAP exhibit a reduced
growth rate [37]. Recently, Katsanakis and Pillay showed
that AKT phosphorylates the APS protein, a key factor in
the signaling events that involve CAP [38]. Our data sup-
port the existence of an additional point of cross-talk
between PI3K-AKT signaling and the SORBIN/CAP path-
way in insulin signaling.

Variations in the expression of histone H3.3A, a cell cycle-
independent replacement histone, during differentiation
of murine erithroleukemia cells, has been hypothesized to
depend on post-transcriptional regulatory events [39].
Although histone H3.3A expression regulation has not
been reported to be controlled by PI3K-AKT signaling, it
has been correlated to cell transformation and differentia-
tion [40,41].

Further investigations will be necessary to elucidate the
functional role, if any, of the coordinated decay control of
the identified transcripts by PI3K-AKT signaling under dif-
ferent physiological and pathological conditions.

Our data indicate that KSRP interacts with AUF1p45 and
hnRNPA1 in the cytoplasm of T3-1 cells. Only one of the
PI3K-AKT-regulated KSRP targets, hnRNPA/B, is very
weakly immunoprecipitated by anti-AUF1 antibody (Fig-
ure 1C and Additional file 5). Conversely, anti-hnRNPA1
antibody efficiently immunoprecipitates KSRP target tran-

http://www.biomedcentral.com/1471-2199/8/28

scripts (Figure 1C). Both AUF1p45 and hnRNPA1 bind
very weakly to the same RNAs in vitro (data not shown).
hnRNPA1 has been implicated in many aspects of mRNA
maturation, transport, turnover and in telomere and tel-
omerase regulation [42,43]. Hamilton et al. [19] reported
that hnRNPA1 interacts with ARE-containing mRNAs and
suggested a role for this factor in ARE-mediated decay.
Our findings allow to hypothesize that AUF1p45 and
hnRNPA1 play some, yet unidentified, regulatory role in
the ribonucleoprotein complex that includes KSRP and its
target transcripts. We can hypothesize that, in response to
certain stimuli, the two KSRP-interacting ARE-BPs could
acquire high affinity binding for target mRNAs thus either
potentiating or terminating the decay-promoting activity
of KSRP on the same transcripts.

The mRNA stability promoting factor HuR interacts with
KSRP target transcripts both in vitro (data not shown) and
in intact cells (Figure 1C). We have previously reported
that the balanced interaction of KSRP and HuR to com-
mon sets of transcripts could allow a fine tuning of mRNA
decay regulation upon specific stimuli [10,11]. Similar
results were obtained by Linker et al. [13]. Our present
data further support the idea that complex interactions in
the ARE-BP network are required to ensure accurate regu-
lation of the t1/2 of select transcripts.

Conclusion

In conclusion, we have identified several KSRP target
mRNAs that are overrepresented upon activation of PI3K-
AKT signaling. The interaction of KSRP with these tran-
scripts was validated in vitro and in intact cells. Impor-
tantly, both KSRP knock-down and PI3K-AKT activation
were found to increase the stability and the steady-state
levels of these target mRNAs. Our findings provide com-
prehensive and valuable insight into the KSRP-containing
ribonucleoprotein complexes that govern gene expression
at the posttranscriptional level.

Methods

Yeast two hybrid screening

A cDNA fragment encoding amino acids 47-711 of
human KSRP was cloned into pDBLeu vector (Invitrogen)
and used as the bait. MaV203 yeast cells containing pDB-
Leu-KSRP constructs were tested for self-activation and the
concentration of 3-Amino-1,2,3,-Triazole required to
inhibit the basal endogenous expression of HIS3 gene was
determined. A e12.5 mouse embryo head cDNA library
was prepared using the pEXP-AD502 vector according to
manufacturer's (Invitrogen) instructions. pDBLeu-KSRP-
containing MaV203 yeast cells were transfected with the
library and selected according to the activation of the
three reporter genes HIS3, URA3 and LacZ according to
the manufacturer's (Invitrogen) protocol.
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Isolation of KSRP-co-purifying RNAs

To isolate mRNAs co-purifying with KSRP, the SNAAP
(isolation of specific nucleic acids associated with pro-
teins) technique described by Trifillis et al. [16] was used
with minor modifications. Briefly, both GST and GST-
KSRP fusion protein were expressed in Escherichia coli
BL21. Cells expressing either protein were resuspended in
lysis buffer (20 mM HEPES, pH 7.6, 1.5 mM MgCl,, 10
mM KCI, 0.5 mM DTT, 1X Complete protease inhibitors
(Roche)), disrupted by sonication, and insoluble material
removed by centrifugation. To eliminate bacterial RNAs,
the extract was treated with 200 U/ml micrococcal nucle-
ase (GE Healthcare) in the presence of 1 mM CaCl, at 30
C for 20 min, and the reaction was stopped with the addi-
tion of 5 mM ethylene glycol bis(2-aminoethyl ether)-
N,N,N'N'-tetraacetic acid (EGTA). Approximately 4 mg of
either GST or GST-KSRP were bound to 1 ml GST-beads in
a total volume of 5 ml in RNA binding buffer (RBB; 10
mM Hepes, pH 7.6, 3.0 mM MgCl,, 100 mM KCl, 2 mM
DTT, 5% glycerol, 0.5% Triton X-100, 1X Complete) at
4°C for 1 h. Unbound proteins were removed with ten 5-
ml washes in RBB. The washed beads were resuspended in
5 ml of RBB containing 50 ug/ml heparin (Calbiochem)
and 200 U/ml RNasin (Promega). Fifty mg of cytoplasmic
$100 extracts from oT3-1 cells were precleared with 2 ml
of glutathione Sepharose slurry (extensively washed in
RBB) to remove background RNAs that bind to the glu-
tathione Sepharose beads. Incubation of the precleared
S100 extracts to the above described washed beads was
carried out at 4°C for 1 h under rotation, followed by six
5-ml washes in RBB. The RNA was then extracted with
phenol/chloroform (1:1) and chloroform, ethanol precip-
itated with GlycoBlue (Ambion), and washed with 70%
EtOH. The dried RNA was resuspended in 50 ul DEPC-
treated H,O.

Microarray hybridization and computational analysis of
AREs

The glass microarrays contained cDNA probes represent-
ing more than 3000 ARE-cDNAs and control clones (their
identities were obtained from AU-rich element-contain-
ing mRNA database ARED 3.0 [2]). The microarrays were
hybridized with cDNA generated from total RNA (15 ug)
and labeled with either Cy5 or Cy3 (control). The utilized
hybridization protocol (Genisphere kit, Genisphere, Inc.,
Hatfield, PA) eliminated the possibility of signal contribu-
tion from genomic DNA [15]. cDNA microarrays scan-
ning, pre-processing, filtering of erroneous signals, and
normalization were performed as described in [15].

314 mRNAs enriched by at least 1.8-fold in KSRP-bound
RNA samples (KSRP targets) and 314 mRNAs that were
not enriched in KSRP-bound RNA samples (non-KSRP
targets) were extracted from the microarray data. The
sequences of the 3' UTR of both groups were used as input

http://www.biomedcentral.com/1471-2199/8/28

for the MotifSampler algorithm. The MotifSampler algo-
rithms finds over-represented motifs in sequence regions
using Gibbs sampling that has been successfully applied
for both promoter and unstranslated regions [44]. This
strategy has been applied previously [45].

Cells, transfections

Murine oT3-1 pituitary cells and rat HIRc-B fibroblasts
were cultured in DMEM plus 10% FBS. oT3-1 cell trans-
fections were performed using Lipofectamine Plus (Invit-
rogen), G418 (Invitrogen) was used at 500 pg/ml for
selection. Cell pools of transfectants were used for experi-
ments. Both mock-oT3-1 and oT3-1-myrAKT1 cells were
starved in DMEM plus 0.5% FBS for 16 hrs prior to exper-
iments. HIRc-B cells were starved in DMEM plus 0.1% FBS
for 16 hrs prior to experiments or further treatments.

shRNA-mediated KSRP knock-down
pSUPER-Puro-shKSRP was previously described [11].
oT3-1 cells were transfected using Lipofectamine Plus
(Invitrogen). Transfectant pools were selected with 0.3 ug/
ml puromycin (Sigma).

Recombinant proteins and antibodies

Affinity-purified human KSRP, expressed using the Bacu-
lovirus system, was described in Briata et al. [11]. cDNA
fragments encoding the entire coding sequence of human
hnRNPA1, the entire coding sequence of murine
AUF1p45, and nt. 202-2136 of human KSRP were cloned
into the pGEX6 to generate GST-A1, GST-AUF1p45, and
GST-KSRP respectively. E. Coli-expressed GST-A1 protein
was digested by Prescission protease (GE Healthcare)
according to manufacturer's instructions. Anti-KSRP rab-
bit polyclonal antibody was previously [7] described.
Anti-AUF1 and anti-hnRNP-A1 monoclonal antibodies
were a kind gift from Dr. Gideon Dreyfuss. Anti-TTP (rab-
bit polyclonal H-120) was from Santa Cruz. Anti-o-tubu-
lin, and anti HuR (3A2) monoclonal antibodies were
from Sigma and Santa Cruz, respectively.

RNA in vitro degradation and UV crosslinking

32p-labeled RNAs were synthesized and used as substrates
for in vitro degradation assays as reported [46]. UV-
crosslinking experiments were performed as described
[46].

Immunoprecipitation of ribonucleoprotein complexes
Ribonucleoprotein complexes were immunoprecipitated
from oT3-1 cell lysates as previously described [46]. Total
RNA, extracted from either immunocomplexes or total
cell lysates (input) was subjected to RT-PCR reactions.
Primers are listed in Additional file 10.
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In vitro kinase assays
Kinase assays were performed using AKT kinase activity
immunoprecipitated from cell lysated and histone H2
(Roche) as the substrate. [y-32P]ATP (3000 Ci/mmol) was
from GE Healthcare.

Semi-quantitative RT-PCR

Cells under different culture conditions were treated with
5 pg/ml actinomycin D, harvested at the indicated times,
and total RNA was isolated using RNeasy mini kit (Qia-
gen) and treated with DNAsel (Promega) according to
manufacturer's instructions. ¢DNA first strand was
obtained with Transcriptor Reverse Transcriptase (Roche)
using 250 ng of total RNA and oligo-dT primer. PCR reac-
tions were performed using the sequence-specific primers
listed in Table 2 of the Additional Data. 32-microglobulin
was used as an internal control for normalizing transcripts
levels measured by RT-PCR. To optimize RT-PCR, prelim-
inary dose-response experiments were performed to deter-
mine the range of first strand ¢cDNA concentrations at
which PCR amplification was linear for each target mole-
cule essentially as reported in Briata et al. [11]. For each
species of RNA analyzed, the amount of RT-PCR product
(measured as densitometric units) was plotted against the
input of first strand cDNA.

Abbreviations
ARE, AU-rich element;

ARE-BP, ARE binding protein;
B2-MG, B2-microglobulin;

KH, K-homology;

myrAKT1, myristylated form of AKT1;
PI3K, phosphatidylinositol 3-kinase;
PP2A, Protein phosphatase 2A;

t1/2, half-life.
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Additional material

Additional file 1

Features of cDNAs probes present in the AU-rich element based microar-
rays. list of the features of cDNA sequences present in the AU-rich element
based microarrays.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S1.pdf]

Additional file 2

ARE-like motifs are prevalently represented among KSRP target tran-
scripts when compared to non-KSRP targets. the table provides consensus
motifs for KSRP target transcripts as derived from bioinformatics analysis
of AU-rich element based microarrays screenings.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S2.pdf]

Additional file 3

Distribution of average Cy5/Cy3 fluorescence ratios from two independent
microarray hybridizations. 1.5 log, has been chosen as the threshold
applied for defining 80 target genes (the inset shows a magnification of
the enriched region). Data represent average Cy5/Cy3 fluorescence ratios
from two independent hybridizations of the AU-rich element based micro-
arrays.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S3.tiff]

Additional file 4

Sequence of the ARE-containing 3'UTR regions of KSRP target transcripts
cloned into pCY vector. Canonical ARE pentamers are highlighted in yel-
low while U-rich stretches are underlied. the files provides the sequence of
the 3' UTRs of KSRP target transcripts.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S4.pdf]

Additional file 5

AUF1 interacts very weakly with PTMA and hnRNPA/B mRNAs in o/T'3-
1 cells. The figure shows representative immunoprecipitation experiments
of AUF1-containing ribonucleoprotein complexes containing either PTMA
or hnRNPA/B mRNAs.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S5.iff]

Additional file 6

KSRP knock-down prolongs the t(1/2) of KSRP target transcripts. Half-
lives are expressed in minutes and were calculated on the basis of data pre-
sented in Figure 3C. The table shows the half-lives (in minutes) of KSRP
target transcripts calculated on the basis of diagrams presented in Figure
3C. Data for both mock-transfected and shKSRP-transfected cells are pre-
sented.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S6.pdf]
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Additional file 7

PI3K-AKT signaling prolongs the t(1/2) of a set of KSRP-interacting
mRNAs. Half-lives are expressed in minutes and were calculated on the
basis of data presented in Figure 4C. The table shows the half-lives (in
minutes) of KSRP target transcripts calculated on the basis of diagrams
presented in Figure 4C. Data for both mock-transfected and myrAKT1-
transfected cells are presented.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S7.doc]

Additional file 8

Both the stability and the steady-state levels of prothymosin o (PTMA)
mRNA are regulated by KSRP while are unaffected by AKT1 activation.
The Figure shows that KSRP can regulate by itself both the stability and
the steady-state levels of PTMA while these parameters are not affected by

activation of AKT1 in the same cells. This suggests that not all KSRP tar-

get transcripts are controlled by PI3K-AKT signaling.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S8.iff]

Additional file 9
A working hypothesis for KSRP-mediated stabilization of PP2ACA mRNA

in response to PI3K-AKT signaling activation. The cartoon presents a spec-

ulation on the potential interplays existing in the PI3K-AKT signaling
pathway through the intervention of KSRP.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S9.tiff]

Additional file 10

Primers used for RT-PCR reactions. The table shows a list of the tran-
script-specific primers used in RT-PCR reactions in order to analyze the
expression of KSRP target transcripts.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-28-S10.pdf]
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