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Abstract: Chemical investigation of the lipophilic fraction of Hyrtios erectus, a Red Sea sponge,
yielded a new pentacyclic nitrogen-containing scalarane; 24-methoxypetrosaspongia C (1), together
with the previously reported scalaranes sesterstatin 3 (2), 12-deacetyl-12-epi-scalaradial (3) and
12-deacetyl-12,18-di-epi-scalaradial (4). The compounds were identified using HRESIMS, 1D and 2D
NMR experiments. The isolated compounds showed growth inhibitory activity against hepatocellular
carcinoma (HepG2), colorectal carcinoma (HCT-116) and breast adenocarcinoma cells (MCF-7).
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1. Introduction

Marine organisms have always been an attractive source of natural products with novel and
exotic structures and useful biological activities [1,2]. Marine sponges of the order Dictyoceratida
have yielded many types of scalarane sesterterpenes [1]. Scalarane sesterterpenoids possess a
variety of biological activities, including anti-cancer [3–10], antimicrobial [11,12], antifeedant [13],
ichthyotoxic [14], anti-inflammatory [15,16] and platelet-aggregation inhibitory effects [17]. A wide
variety of structurally diverse substances with potentially useful biological activities have been isolated
from the Hyrtios genus, including terpenoids [3–9,18,19], macrolides [4,20–22], and tryptamine-derived
alkaloids [19,23–25].

In our pursuit of natural drug leads from Red Sea marine sponges, the chemical investigation
of the antiproliferative organic extract of the Red Sea sponge Hyrtios erectus, family Thorectidae was
carried out. The study resulted in the identification of four scalarane sesterterpenes including the
new compound 24-methoxypetrosaspongia C (1), and the previously reported scalaranes sesterstatin 3
(2) [4], 12-deacetyl-12-epi-scalaradial (3) [16] and 12-deacetyl-12,18-di-epi-scalaradial (4) [13]. Herein,
the purification, structure determination and growth inhibitory effects of compounds 1–4 will
be discussed.
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2. Results and Discussion

2.1. Purification of Compounds 1–4

The lipophilic extract of the marine sponge, H. erectus was subjected to a series of chromatographic
separations using silica gel column chromatography, followed by HPLC purification. The separation
procedures resulted in the isolation of the new compound 24-methoxy-petrosaspongia C (1), along
with three previously reported compounds: sesterstatin 3 (2), 12-deacetyl-12-epi-scalaradial (3) and
12-deacetyl-12,18-di-epi-scalaradial (4).

2.2. Structure Elucidation of Compound 1–4

Compound 1 (Figure 1) was isolated and purified as an amorphous solid. The molecular formula
C29H45NO5 was established from the positive HRESIMS (high-resolution electrospray ionization mass
spectrometry) pseudomolecular ion peak at m/z 488.3374 [M + H]+. The 1H-NMR spectrum of compound
1 (Table 1) displayed resonances for 45 protons, including five singlets belonging to five methyl groups (δH

0.80, 0.82, 0.84, 0.91 and 1.20), two methoxyls, (δH 3.20 and 3.39), one acetyl methyl (δH 2.12) seven
methylenes, six aliphatic methines, and an exchangeable broad signal at δH 5.78 for a NH moiety
(Supplementary Materials, Figure S1). The 13C-NMR spectrum (Table 1) showed signals for 29 carbons,
including eight methyls, seven methylenes, six methines , and eight quaternary carbons (Supplementary
Materials, Figure S2). Analysis of the 1H,1H-COSY and the HSQC NMR experiments led to the assembly
of the following structural fragments: C-1 to C-3; C-5 to C-7; C-9 to C-12 with an acetoxy group at C-12;
C-14 to C-16 with methoxy group at C-16 and C-16 to C-24 with methoxy group at C-24. These fragments
allowed identifying a 12-acetoxy-16-methoxyscalarane skeleton (Figure 2) based on the correlations of
H-12 and H-16 with neighboring protons and carbons in the COSY and HMBC (Supplementary Materials,
Figures S3–S5). The C-17/C-18 double bond was inferred by heteronuclear long range correlations between
H3-23 at δH 1.20 and the quaternary olefinic carbon at δC 144.7 (C-18) and between H-16 at δH 3.85 and
the olefinic carbon at δC 151.1 (C-17). Furthermore, the 13C chemical shifts of C-17 and C-18 indicated the
location of the amide carbonyl at C-25 [26].
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Figure 2. HMBC correlations (arrows) and COSY connectivities (bold bonds) of compound 1. 

Table 1. NMR data and HMBC correlations of compound 1 (CDCl3). 

Position δC δH (m, J in Hz) HMBC (H→C) a 
1 39.6, CH2 1.62, 0.83 (m) C-10 
2 18.4, CH2 1.59, 1.41 (m) C-4, C-10 
3 42.0 CH2 1.35, 1.11 (m) C-4 
4 33.2 qC   
5 56.3 CH 0.80 (m) C-4 
6 18.2 CH2 1.58, 1.42 (m)  
7 41.3 CH2 1.81, 0.95 (m) C-8 
8 36.7 qC   
9 57.5 CH 1.01 (m) C-10, C-12 

10 37.3 qC   
11 24.8 CH2 1.77, 1.54 (m) C-10, C-12 
12 75.3 CH 4.95 (dd, 10.8, 4.8) C-11, C-13, C-18, C-23, C-28 
13 42.1 qC   
14 50.0 CH 1.44 (m) C-8, C-9, C-13, C-16, C-18 
15 21.3 CH2 2.01, 1.55 (m)  
16 69.8 CH 3.85 (dd, 4.2, 1.2) C-17, C-18, C-26, C-24 
17 151.1 qC   
18 144.7 qC   
19 21.3 CH3 0.80 (s) C-4 
20 33.2 CH3 0.84 (s) C-4 
21 17.3 CH3 0.91 (s) C-7, C-8, C-9, C-14 
22 15.7 CH3 0.82 (s) C-1, C-5, C-9, C-10 
23 15.9 CH3 1.20 (s) C-12, C-13, C-18, C-14 
24 82.3 CH 5.3 (s) C-17, C-18, C-25, C-27 
25 170.5 qC   
26 57.1 OCH3 3.39 (s) C-16 
27 52.1 OCH3 3.20 (s) C-24 
28 171.4 qC   
29 21.9 CH3 2.12 (s) C-28 

NH  5.78 (br s) C-17, C-18 
a HMBC correlations are from proton(s) stated to the indicated carbons. 

The relative configurations at C-12, C-16 and C-24 were detected and confirmed by their coupling 
constants and NOESY correlations (Supplementary Materials, Figure S6). The diaxial coupling of H-12 
(δH 4.95; dd, J = 10.8 Hz) with H-11 indicates its α orientation. Moreover, NEOSY correlation with the 
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Table 1. NMR data and HMBC correlations of compound 1 (CDCl3).

Position δC δH (m, J in Hz) HMBC (HÑC) a

1 39.6, CH2 1.62, 0.83 (m) C-10
2 18.4, CH2 1.59, 1.41 (m) C-4, C-10
3 42.0 CH2 1.35, 1.11 (m) C-4
4 33.2 qC
5 56.3 CH 0.80 (m) C-4
6 18.2 CH2 1.58, 1.42 (m)
7 41.3 CH2 1.81, 0.95 (m) C-8
8 36.7 qC
9 57.5 CH 1.01 (m) C-10, C-12
10 37.3 qC
11 24.8 CH2 1.77, 1.54 (m) C-10, C-12
12 75.3 CH 4.95 (dd, 10.8, 4.8) C-11, C-13, C-18, C-23, C-28
13 42.1 qC
14 50.0 CH 1.44 (m) C-8, C-9, C-13, C-16, C-18
15 21.3 CH2 2.01, 1.55 (m)
16 69.8 CH 3.85 (dd, 4.2, 1.2) C-17, C-18, C-26, C-24
17 151.1 qC
18 144.7 qC
19 21.3 CH3 0.80 (s) C-4
20 33.2 CH3 0.84 (s) C-4
21 17.3 CH3 0.91 (s) C-7, C-8, C-9, C-14
22 15.7 CH3 0.82 (s) C-1, C-5, C-9, C-10
23 15.9 CH3 1.20 (s) C-12, C-13, C-18, C-14
24 82.3 CH 5.3 (s) C-17, C-18, C-25, C-27
25 170.5 qC
26 57.1 OCH3 3.39 (s) C-16
27 52.1 OCH3 3.20 (s) C-24
28 171.4 qC
29 21.9 CH3 2.12 (s) C-28

NH 5.78 (br s) C-17, C-18
a HMBC correlations are from proton(s) stated to the indicated carbons.

The relative configurations at C-12, C-16 and C-24 were detected and confirmed by their coupling
constants and NOESY correlations (Supplementary Materials, Figure S6). The diaxial coupling of H-12
(δH 4.95; dd, J = 10.8 Hz) with H-11 indicates its α orientation. Moreover, NEOSY correlation with the
α oriented H-9 and H-14 confirms α orientation of H-12 (Figure 3). While, lack of the diaxial coupling
of H-16 (δH 3.85; dd, J = 4.2, 1.2 Hz) with H-15 indicates the equatorial orientation of H-16 (Figure 3).
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Finally, NOESY correlations between H-16 and H-24 revealed its β orientation (Figure 3). Therefore,
compound 1 was identified as 24-methoxypetrosaspongia C.
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Compound 1 represents a further example of scalaranes containing nitrogen, a group which
which includes petrosaspongiolactams A-C [26], hyatelactam [27], and the pyrrole-terpenes molliorins
A [28], molliorins B [29], and molliorins C [30].

The known compounds 2–4 (Figure 1) were identified by extensive study of their spectral data,
including ESIMS, 1D and 2D NMR data, as well as by comparison with the available data in the
literature. Thus, the compounds were identified as sesterstatin 3 (2) [4], 12-deacetyl-12-epi-scalaradial
(3) [16] and 12-deacetyl-12,18-di-epi-scalaradial (4) [13].

2.3. Biological Activity of the Isolated Compounds

The growth inhibitory effects of compounds 1–4 (Table 2) against breast adenocarcinoma (MCF-7),
hepatocellular carcinoma (HepG2) and colorectal carcinoma cells (HCT-116) were evaluated using a
logarithmic best fit equation (Emax model Equation). Compound 4 was the most potent against all tested
cell lines with IC50 3.3, 1.7 and 3.4 µM in MCF-7, HepG2, and HCT-116 cell lines, respectively. Both
compounds 1 and 3 showed intermediate activities with IC50 55.4, 25.4 and 26.5 µM for compound 1
and 36.0, 23.4 and 27.1 µM for compound 3 against MCF-7, HepG2, and HCT-116 cell lines, respectively.
On other hand, compound 2 showed no growth inhibitory effects against all tested cell lines.

Table 2. Growth-inhibitory activity of compounds 1–4 (in vitro IC50 (µM) growth-inhibitory values)
against three human solid tumor cell lines.

Cell Type Cell Line Doxorubicin a 1 2 3 4

Breast MCF-7 0.41 55.4 >100 36.0 3.3
Hepatocellular HepG2 0.85 25.4 >100 23.4 1.7

Colorectal HCT-116 0.11 26.5 >100 27.1 3.4
a positive cytotoxic control.

Furthermore, the morphological changes induced by compounds 1, 3 and 4 were carried
out against HCT-116 cells using computer-assisted phase-contrast microscopy [31–33]. In addition,
the effect of compounds 1, 3 and 4 on cell membrane integrity was quantified using a lactate
dehydrogenase leakage assay (LDH leakage assay).

The results illustrated in Figure 4 reveal that among the three active compounds against HCT-116
cells (Table 2), compound 4 induced apparent morphological changes suggesting a cytotoxic effect
(cell killing). These morphological abnormalities attributed to cell exposure to compound 4 were not
observed after treatment with the other two compounds. Moreover, LDH leakage assay was used
to confirm the ell killing effect of compound 4 against HCT-116 cells. Treatment with compound 4
(10 µM) for 72 h significantly increased LDH leakage from HCT-116 cells by 2-fold compared to the
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control cells (Figure 5). On the other hand, compounds 1 and 3 did not induce any significant cell
membrane damage in HCT-116 cells at 10 µM concentration after 72 h exposure. Thus, compound
4 possesses cytotoxic properties while compounds 1 and 3 possess antiproleferative effects, which
could be attributed to cytostatic effects. However, further biochemical and molecular biology-related
experiments are currently underway to define the mechanism of action of compounds 1, 3 and 4 as
cytostatic or cytotoxic agents.
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3. Experimental Section

3.1. General Procedures

Optical rotation was measured on a 241 polarimeter (Perkin Elmer, MA, USA). UV spectra were
measured on a Hitachi 300 Spectrophotometer (Hitachi High-Technologies Corporation, Kyoto, Japan).
High-resolution ESIMS data were recorded with an Ultra-High Resolution (UHR) TOF spectrometer
(Impact, Bruker, Bremen, Germany). NMR spectra were obtained in CDCl3 on a Bruker Avance DRX
600-MHz spectrometer at 600-MHz for 1H-NMR and 150 MHz for 13C-NMR. NMR chemical shifts
were expressed in parts per million (ppm) referenced to residual CDCl3 solvent signals (δH 7.26 for
1H and δC 77.0 for 13C). Precoated SiO2 60 F254 plates (Merck, Darmstadt, Germany) were used for
TLC. For column chromatography, SiO2 (70–230 mesh, Merck) was used. HPLC purifications were
performed on HPLC column (5 µm ZORBAX Eclipse XDB-C18, 250 mm ˆ 4.6 mm, Agilent, CA, USA).

3.2. Biological Materials

The marine sponge, Hyrtios erectus (Keller, 1889) (Figure 6) was collected off Sharm el-Sheikh, Red
Sea, Egypt, using scuba diving at a depth of 11 m.
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Figure 6. Underwater photograph of the Red Sea sponge Hyrtios erectus.

The collected material was immediately frozen and kept at´15 ˝C until investigation. The sponge
was identified by Dr. R. van Soest (Institute of Systematic Population Biology, Amsterdam University,
Amsterdam, The Netherlands) to be Hyrtios erectus (class Demospongiae, order Dictyoceratida, family
Thorectidae) under the number ZMAPOR19761. A voucher specimen has been deposited in the Red
Sea invertebrate’s collection at the Faculty of Pharmacy, Suez Canal University, under the registration
number SAA-59.

3.3. Purification of Compounds 1–4

The frozen sponge material (900 g, wet wt.) was thawed and extracted at room temperature with
MeOH (3 ˆ 2 L). The successive extracts were combined and evaporated under reduced pressure to
afford a crude extract (85 gm) which was fractionated on a silica gel column using vacuum liquid
chromatography (VLC) with gradient elution (n-hexane–CHCl3–MeOH) to yield nine fractions (Fr.1 to
Fr.9). Fr.4 (2 g) which was eluted with 25% n-hexane in CHCl3 was fractionated on silica gel column
using n-hexane–CHCl3–MeOH gradient eluent, affording eight subfractions (Fr.4-1 to Fr.4-8).

Fr.4-5 (136 mg) was further subjected to silica gel column chromatography (CC) eluted with
n-hexane/CHCl3 gradient to give nine subfractions (Fr.4-5-1 to Fr.4-5-9). Fr.4-5-6 (34.3 mg) was
purified on HPLC (XDB-C18 Zorbax, 5 µm, 250 mm ˆ 4.6 mm) using 90% CH3CN/H2O at a flow rate
of 1.5 mL/min and UV detection at 220 nm to yield compound 1 (1.8 mg) and 2 (1.3 mg).
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Fr.4-3 (700 mg) was further subjected to silica gel column chromatography (CC) eluted with
n-hexane/CHCl3 gradient to give 6 subfractions (Fr.4-3-1 to Fr.4-3-6). Fr.4-3-5 (31 mg) was purified
on HPLC (XDB-C18 Zorbax, 5 µm, 250 mm ˆ 4.6 mm) using 80% CH3CN/H2O at a flow rate of
1.5 mL/min and UV detection at 220 nm to yield compound 3 (3.5 mg) and 4 (2.3 mg).

3.4. Characterization of 24-Methoxy-petrosaspongia C (1)

Yellow amorphous solid (1.8 mg); rαs25
D +8.7 (c 0.15, CHCl3); UV (λmax, MeOH) (log ε): 226 (4.31),

285 (2.54) nm; NMR data: see Table 1; ESI-MS: m/z 488.3 [M + H]+. HRESIMS: m/z 488.3374 (calculated
for C29H46NO5 [M + H]+, 488.3376).

3.5. Biological Activity of Compounds 1–4

The effects of the compounds 1–4 on breast adenocarcinoma cells (MCF-7), hepatocellular
carcinoma cells (HepG2) and colorectal carcinoma cells (HCT-116) were evaluated using the
sulforhodamine B (SRB) assay as previously described [34].

3.5.1. Cell Culture

Breast adenocarcinoma cells (MCF-7), hepatocellular carcinoma cells (HepG2) and colorectal
carcinoma cells (HCT-116) were obtained from the National Cancer Institute of Egypt (Giza, Egypt).
Cells were maintained in RPMI-1640 supplemented with 100 mg/mL streptomycin, 100 units/mL
penicillin and 10% heat-inactivated fetal bovine serum in a humidified, 5% (v/v) CO2 atmosphere at
37 ˝C. Exponentially growing cells were collected using 0.25% Trypsin-EDTA and plated in 96-well
plates at 1000–2000 cells/well. Cells were exposed to serial concentrations of test compounds for 72 h
and subsequently fixed with TCA (10%) for 1 h at 4 ˝C. After several washings, cells were exposed to
0.4% SRB solution for 10 min in dark place and subsequently washed with 1% glacial acetic acid. After
drying overnight, Tris-HCl was used to dissolve the SRB-stained cells and color intensity was measured
at 540 nm. Doxorubicin was used as a positive control. The dose response curve of compounds was
analyzed using a logarithmic best fit equation (Emax model Equation).

% Cell viability “ p100´Rq ˆ
ˆ

1´
rDsm

Kd
m ` rDsm

˙

`R

where (R) is the residual unaffected fraction (the resistance fraction), (D) is the drug concentration
used, (Kd) is the drug concentration that produces a 50% reduction of the maximum inhibition rate and
m is a Hill-type coefficient. IC50 was defined as the drug concentration required to reduce absorbance
to 50% of that of the control (i.e., Kd = IC50 when R = 0 and Emax = 100 ´ R) [35].

3.5.2. Cell Membrane Integrity Assessment

The influence of compounds 1, 3 and 4 on cell membrane integrity was assessed in colorectal
adenocarcinoma cells (HCT-116) by LDH leakage assay [36,37]. Briefly, exponentially growing cells
were plated in 24-well plates (1 ˆ 104 cells/well). Cells were exposed to 10 µM of tested compounds
and compared to untreated cells (control) for 72 h. LDH concentrations were determined in each well
using a colorimetric assay (Biosystems, Barcelona, Spain).

4. Conclusions

The investigation of the antiproliferative lipophilic extract of the Red Sea sponge H. erectus
yielded the new metabolite 24-methoxypetrosaspongia C (1), along with sesterstatin 3 (2),
12-deacetyl-12-epi-scalaradial (3) and 12-deacetyl-12,18-di-epi-scalaradial (4). The structures of the
isolated compounds were determined by HRESIMS, 1D and 2D NMR data, as well as by comparison
with the available data in the literature. The compounds displayed variable growth inhibitory activity
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against hepatocellular carcinoma cells (HepG2), colorectal carcinoma cells (HCT-116) and breast
adenocarcinoma cells (MCF-7) using SRB assay.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
1/82/s1.
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