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Abstract

Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of
mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without
afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of
tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile
afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from
proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across
fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a
location where none has been delivered, we found that hand posture has a significant effect on the perception of the
illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical
and proprioceptive input and not purely from tactile interaction with the external environment.
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Introduction

Activity in the somatosensory cortex has been directly linked to

conscious tactile perception [1,2,3,4] in a similar manner to how

the visual cortex is linked to visual perception [5,6]. During the

chain of events leading to interpretation of tactile information in

S1, mechanical perturbation of the skin surface propagates

through the epidermis to the four main types of mechanoceptors,

each of which transduces a particular aspect of the perturbation

into neural signals. These signals are relayed through the afferent

peripheral neural network to the central nervous system. With few

exceptions, these mechanical-tactile signals project to and are

interpreted in the primary somatosensory cortex, S1 [7]. It may be

that tactile perception is based on an isomorphic mapping between

the skin and the S1 homunculus. However, the extent to which

proprioception affects tactile perception is an issue still under

debate in the literature [8,9,10,11,12]. Though the Cutaneous

Rabbit Effect (CRE) has been studied across both continuous and

non-continuous skin areas, posture plays an important role in

eliciting the CRE across non-continuous skin regions in some

situations (e.g. across crossed arms, [13]). However, the impact of

posture on the CRE is less obvious across the fingertips [14]

because the cortical region that is stimulated is located on one

hemisphere and its somatotopic arrangement is isomorphic to

continuous skin arrangements with no clear dependence on

posture. Here we investigate the role that finger posture

(proprioception) has on tactile perception of stimuli across the

fingertips.

The CRE is a perceptual phenomenon where rapidly applied

stimuli can induce the perception of a stimulus at a location where

none was applied [1,13,15,16,17,18,19]. This illusory phenome-

non has been identified in the auditory [20,21,22,23,24,25,26],

visual [27,28], and somatosensory systems [1,13,15,16,17,18,19].

Throughout its history several saltatory stimulation paradigms

have been used to induce the CRE in the somatosensory system.

One such paradigm, dubbed the reduced rabbit paradigm, utilizes

three rapid stimulations presented at two physical locations, such

that two stimuli are presented at the first location and a single

stimulus at the second location. In this paradigm, the first ‘locator’

stimulus establishes the spatial (and perhaps temporal) origin. This

stimulus is followed by the ‘attractee’ stimulus delivered to the

same physical site as the ‘locator’ stimulus but shortly after. The

third ‘attractor’ stimulus is presented at a different physical site

than the ‘locator’ and ‘attractee’ stimuli a short time after the

‘attractee’ stimulus. The location and timing of the ‘attractor’ shifts

the perceived location of the ‘attractee’ to a site closer to the

‘attractor’s’ location [15,16,17,18,19]. In this paradigm, the

perceived location of the ‘attractee’ can be manipulated using

several factors including the rate of stimulation, location of the

following ‘attractor’ stimuli, and overall stimulated body region

[15,16,17,29,30,31,32,33]. Recent studies have introduced an

additional modification to the reduced rabbit paradigm. In the

newer paradigm, the subject’s attention is directed to a specific site

between the ‘locator’ and ‘attractor’ sites and subjects are asked to

indicate if they perceived this site as being stimulated during

illusory trials [1,13].

Recently we used the newer reduced rabbit paradigm to

demonstrate that the CRE could be induced across the fingertips

with electrotactile stimuli [14]. By applying a train of electrotactile
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pulses to the index, index, ring, and little fingertips (the Illusory

Rabbit Train, Fig. 1), while all the fingers were extended (Fig. 1) we

were able to induce the perception that the middle fingertip was

stimulated though it received no stimuli under this train. To

determine that the CRE was responsible for mislocalization of the

stimulus onto the middle fingertip, and not another illusory effect

or error type, we compared the Illusory Rabbit to another similar

stimulus train (Motion Bias Train, Fig. 1). The Illusory Rabbit and

Motion Bias Trains are both prone to a perceptual bias due to the

anticipated velocity of the stimuli and stimulation of the sites

surrounding the illusory site (here the middle fingertip). However,

only the Illusory Rabbit Train should elicit the CRE due to

perceptual length contraction [34]. Therefore if the CRE is

elicited the Illusory Rabbit Train needs to have a higher

mislocalization rate onto the illusory site, the middle fingertip,

than the Motion Bias Train. We reported that the Illusory Rabbit

Train had a higher mislocalization rate onto the middle fingertip

than the Motion Bias Train, demonstrating that the CRE was

elicited [14]. Additionally a Negative Control Train (Fig. 1) was used

to verify that further breaking up the timing between pulses did

not influence the perceived location of the attractee stimuli due to

either anticipated velocity of stimuli or perceptual time contrac-

tion.

A recent study, demonstrated that the illusory stimuli activate

the same region within area 3b as analogous physical (not illusory)

stimuli on the associated skin region [1]. Similar results have been

shown for the fingertip representation using other tactile illusions

[3,35,36,37]. Area 3b of the somatosensory cortex processes input

from mechanical tactile sensory receptors from all over the body

[38] including the forearm, hand, and fingers [4,39,40,41,42,43],

and its constituent cells are known to have postural tuning

[44,45,46], but the impact of this postural tuning within a hand on

the tactile representation in area 3b and on conscious tactile

perception is not known.

Here we demonstrate that hand posture does in fact play a

significant role in the perception of the CRE across the fingertips.

Using the techniques and stimulus trains we previously developed

[14,47], we tested the effect of nine hand postures on the

perceptions of the four stimulus trains across the fingertips to

determine how hand posture affected perception of this illusion.

The nine postures were: (1) an Adducted posture (Figure 2(a)), where

all fingers were extended and adducted, (2) an All-Flexed posture

(Figure 2(b)) where all the fingertips were flexed and adducted, (3–

5) postures where the Index-, Middle-, or Ring- fingertips were

individually Flexed (Figures 2(h), (c), and (i) respectively) while the

remainder of the fingers were positioned in a similar manner to the

Adducted posture, (6) a Middle-Extended posture (Figure 2(d)) where

the middle finger was extended while the other finger were flexed

while adducted, (7) an Index-Abducted posture (Figure 2(e)) where

the index finger was abducted away from the middle, ring, and

little fingers which were touching, (8) a Vulcan posture (Figure 2(f))

where the index and middle fingers were touching but separated

from the ring and little fingertips which were also touching and all

extended, and (9) an All-Abducted posture (Figure 2(g)) where all of

the fingers were extended and abducted from each other. We

hypothesized that increasing the spatial distance between fingertips

while they remained coplanar (All-Abducted, Index-Abducted,

and Vulcan postures) would not change the mislocalization or

illusory effect observed in the Adducted posture. However, we

hypothesized that when one or more fingertips were not-coplanar

with other fingertips (Index-Flexed, Middle-Flexed, Middle-

Extended, and Ring-Flexed postures) the CRE seen in the

Adducted posture would not be observed, as postural cues would

eliminate the illusory effect.

Results

We asked subjects to assume the Adducted and two or three of

the other eight hand postures during testing. Subjects used a

computer interface to administer their testing session; here the

computer prompted the subjects that the next stimulus train was

ready to be delivered, allowed the subjects to control when they

were stimulated, and prompted them to record their response to

each trial (see Methods). The subjects were instructed to answer,

‘‘Did the previous stimulus train contain a stimulus on the middle

Figure 1. Schematics of stimulus sequences and electrode locations on fingertips. (a) Schematics of the four stimulus train types. All pulse
widths are amplitude modulated to subject perceptual threshold for a particular stimulation site. Color is indicative of the stimulation site and/or train
type. (b) Diagram of electrode locations on fingertips.
doi:10.1371/journal.pone.0018073.g001

Illusion and Tactile Perception

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e18073



fingertip?’’ in response to each train of stimuli. To compare

postures and stimulation trains across subjects we used a 2 factor

factorial design. We found that the effect of hand posture was

significant (ANOVA, a,0.05, p,0.0001). In this treatment of the

data we considered all 14 of the subjects across all measured

postures (9 postures in total). Subject responses for the 13

replicates of each stimulation train were averaged for each

posture. The ANOVA table for this data can be found in Table 1.

The data indicate that the subjects reported that their middle

fingertip was stimulated under the Illusory Rabbit Train more

often than the Motion Bias Train in five of the nine postures, but

not for the Index-Flexed, Middle-Flexed, Ring-Flexed, and All-

Abducted postures (Fig. 2, Individual Fisher LSD tests for each

posture type, a,0.05, Table 2.). In the five postures where the

Illusory Rabbit Train was reported to stimulate the middle

fingertip more often than the Motion Bias Train, the Illusory

Rabbit Train induced mislocalization onto the middle fingertip in

more than 40% of trials, whereas in the other three of the other

four postures the Illusory Rabbit Train induced mislocalization

onto the middle fingertip in fewer than 10% of trials (Fig. 2). In the

Middle-Flexed posture, one subject’s data was found to be an

outlier because of high Internally Studentized Residual values for

the Motion Bias (3.244), Negative Control (4.055) Trains. Because

this subject perceived that their middle fingertip was stimulated

more often than the rest of the population for these trains it is not

as clear whether the lack of difference between the Illusory and

Motion Bias Trains for this posture was due to the influence of this

subject or the posture. However, because the rate of mislocaliza-

tion onto the middle fingertip was greater under the Illusory

Rabbit Train than the Motion Bias Train in five postures, the

increased rate of mislocalization can be attributed to the CRE and

not other illusory effects in these postures. In the Index-Flexed,

Middle-Flexed, Ring-Flexed, and All-Abducted postures, the

Illusory Rabbit Train failed to increase the rate of mislocalization

Figure 2. Percentage of trials where subjects indicated their middle fingertip was stimulated. Mean percentage of responses where
subjects indicated that their middle fingertip had been stimulated; in response to, ‘‘Did the preceding stimulus train contain a stimulus on the middle
fingertip?’’ Error bars indicate the standard error (s.e.m.) of each stimulus train in each posture. * indicate significant differences in subject perception
of stimuli on the middle fingertip between the Illusory Rabbit and Motion Bias Trains for a particular posture as determined via Fisher LSD tests,
a,0.05, (a) All-Adducted (n = 14), (b) All-Flexed (n = 4), (c) Middle-Extended (n = 4), (d) Index-Abducted (n = 4), (e) Vulcan (n = 4), (f) All-Abducted
(n = 4), (g) Index-Flexed, (h) Middle-Flexed (n = 14), (i) Ring-Flexed (n = 4), where each n represents a subject response average of 13 trials per posture
and stimulus train.
doi:10.1371/journal.pone.0018073.g002

Table 1. Analysis of Variance for 2-Factor Factorial Design.

Mean F p-value

Source Sum of Squares df Square Value Prob.F

A. Train Type 2.006 * 105 3 66852.23 247.69 ,0.0001

B. Posture 12019.72 8 1502.47 5.57 ,0.0001

Interaction AB 9946.38 24 414.43 1.54 0.0644

Pure Error 39945.84 148 269.90

Cor Total 2.625 * 105 183

Each subject (n = 14) was tested in either 3 or 4 postures. Every subject was
tested in the Adducted posture as a preliminary check for influential subjects.
doi:10.1371/journal.pone.0018073.t001
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onto the middle fingertip above what was observed under the

Motion Bias Trains indicating that the CRE was not induced in

these postures. Together these findings indicate that hand posture

does significantly affect the perception of the CRE across the

fingertips.

Discussion

Posture dictates presence of the CRE across fingertips
We have quantified the effects of hand posture on the

perception of the CRE across the fingertips. When subjects’

attention was focused onto the presumed site of the mislocaliza-

tion/illusion (the middle fingertip) we found that hand posture

significantly affected the perception of a mislocalization onto this

fingertip. Specifically we found that in five of the nine postures in

this study that the CRE induced mislocalization of the attractee

stimulus onto the middle fingertip. However, in the remaining four

postures (Index-Flexed, Middle-Flexed, Ring-Flexed, and All-

Abducted) the Illusory Rabbit and Motion Bias Trains induced a

similar rate of mislocalization onto the middle fingertip, indicating

that the CRE was not induced and only the Tau effect was needed

to explain the mislocalization rate. Because of the differences in

the presence of the CRE across these 9 postures, five inducing the

CRE and four that were not susceptible to the CRE, we conclude

that posture can significantly affect the ability to induce the CRE

across fingertips.

The Bayesian perceptual model for spatiotemporal
illusions does not fully explain posture’s effect on the
CRE

Goldreich [34] proposed a Bayesian model that could be used to

predict the likelihood of mislocalization onto a particular location

based on three parameters: where attention was directed, the

expected speed of stimulation, and direction of stimuli. The model

predicts that the CRE and Tau effects would induce the expected

mislocalization, onto the middle fingertip, in postures where

motion of the illusory train of stimuli occurs along a line and the

site of the mislocalization was equidistant from its two adjacently

stimulated sites. The Tau effect occurs when the perceived

distance between three consecutive stimuli is more correlated to

the timing between the stimuli than the actual distance between

them. This results in the perception that the stimuli closer together

in time are separated by less distance than the ones that are

stimulated further apart in time [34]. In the above experiment,

three postures, the Adducted, All-Flexed, and All-Abducted, fit

these criteria yet only two of them exhibited mislocalizations due

to the CRE (Adducted and All-Flexed). The model further predicts

that postures where the desired site of the mislocalization was not

equidistant from the two stimulated sites should not exhibit the

CRE or Tau effects as often as the postures that exhibit this

arrangement, providing that the motion of the illusory train of

stimuli occurs along a line. However, the two postures that fit these

criteria (Index-Abducted and Vulcan) exhibited mislocalization of

the illusory stimulus due to the CRE as often as the other

(Adducted and All-Flexed) postures that exhibited the CRE. In the

four (of the five) postures where the motion of the illusory train

occurs along a line, we observed mislocalizations onto the middle

fingertip attributable to the CRE suggesting that the spacing

between the stimulated and unstimulated sites was not as

important as the Bayesian model indicates.

There are two possible explanations for the failure of the

Illusory Rabbit Train to induce the additional mislocalization of

stimuli onto the middle fingertip in the All-Abducted posture,

though the illusory and stimulated sites were collinear and

equidistant from each other: (1) tactile interactions between

stimulated fingertips and the presumed illusory fingertip aid in

inducing the CRE, as in the Index-Abducted and Vulcan but not

in the All-Abducted, and are absent in the All-Abducted; and/or

(2) the increased space between the ‘cutaneous rabbit hops’ may

lessen the CRE. Previous research has demonstrated that the

illusory strength of the CRE (rate of mislocalization) decreases as

saltatory area increases [17]. However, the present case is distinct

because coordinates in the internal frame of reference remain the

same (the stimulated skin sites), but the distance between these

coordinates in the external reference frame change with hand

posture. This suggests that the CRE is an illusory effect that takes

into account the external frame of reference, in addition to the

internal frame of reference and stimulated sites.

In postures where the perceived motion of the stimulus train

would not occur along a line, the Bayesian model predicts that

mislocalization due to the Tau or CRE should not occur (Index-

Flexed, Middle-Flexed, Middle-Extended, and Ring-Flexed pos-

Table 2. Fisher Least Significant Difference Table for Each Posture.

Adducted All-Flexed Middle-Extended Index-Abducted Vulcan Index-Flexed Middle-Flexed Ring-Flexed All-Abducted

Veridical Rabbit vs.
Illusory Rabbit Train

,0.0001 0.0008 0.0078 0.0040 0.0042 ,0.0001 0.0828 ,0.0001 ,0.0001

Veridical Rabbit vs.
Motion Bias Train

,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.0192 ,0.0001 ,0.0001

Veridical Rabbit vs.
Negative Control
Train

,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.0137 ,0.0001 ,0.0001

Illusory Rabbit vs.
Motion Bias Train

,0.0001 0.0323 0.0219 ,0.0001 0.0163 0.4537 0.4432 0.4222 0.1332

Illusory Rabbit vs.
Negative Control
Train

,0.0001 0.0015 0.0079 ,0.0001 0.0055 0.1474 0.3412 0.4222 0.2503

Motion Bias vs.
Negative Control
Train

0.1168 0.1196 0.5900 0.3022 0.5676 0.4537 0.8600 1.0000 0.6944

Each cell contains the p-value for the Fischer Least Significant Difference Test.
doi:10.1371/journal.pone.0018073.t002
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tures). Here, mislocalization of a stimulus onto the middle fingertip

would force the perceptual ‘rabbit’ to jump out of its expected

trajectory, along the line between the stimulated sites, and onto the

non-collinear middle fingertip. Because this should result in a

contradiction between the expectation of where the ‘rabbit’ should

jump to (based on the direction of the stimuli) and the spatial

location of the middle fingertip, the CRE and Tau effects are less

likely to occur. However this is not what we observed. We found

that mislocalization due to the CRE did not occur in the Index-,

Middle-, and Ring-Flexed postures, but in the Middle-Extended

posture the mislocalization attributable to the CRE was perceived

at similar levels to those where the fingertips were collinear. The

most likely explanation of this is that the collinearity of stimulated

sites is more important than the collinearity of the expected

trajectory of the illusory mislocalization, i.e. the posture of the

stimulated sites are more important to determining whether or not

illusory phenomena will influence the perception than the

posture/position of the unstimulated (expected illusory) site. In

the Middle-Flexed posture there was an overall high rate of

mislocalization of stimuli onto the middle fingertip due to the

Illusory Rabbit Train in comparison to the Index- and Ring-

Flexed. Though there was an influential subject in the Middle-

Flexed posture, the similar rates of mislocalization under Illusory

Trains suggest that this posture may be more similar to the

Middle-Extended posture than the Index- and Ring-Flexed

postures. Together these data indicate postures where the

stimulated sites are collinear are more likely to allow for

mislocalization of stimulus location onto the unstimulated

(expected illusory) site than postures where the stimulated sites

are non-linear regardless of the unstimulated site’s position relative

to the stimulated sites.

Though evidence exists that the perceptual basis for the CRE is

found in unimodal tactile maps located in area 3b of somatosen-

sory cortex [1], the evidence here suggests that the perception of

this illusory phenomenon must include information from cortical

areas that receive significant postural or proprioceptive input.

Currently area 3b of somatosensory cortex is not known to include

significant amounts of postural or proprioceptive input

[38,44,45,46,48,49,50,51,52] despite postural tuning of some 3b

neurons [44,46]. If tactile perception of these stimuli were to

directly arise from the cortical information processed in area 3b of

somatosensory cortex, changes in posture are therefore not likely

to affect the perception of these illusory stimuli. However, our

experiment demonstrated that changes in posture provide

proprioceptive input that can either turn on or off the CRE.

Therefore the perception of the tactile Cutaneous Rabbit and Tau

Effects, and likely other tactile spatiotemporal illusions, should

consider cortical processing from centers that include significant

input from tactile, postural, and proprioceptive centers.

Materials and Methods

Human Subjects
Subjects (n = 14) participated in this study. Subjects were

selected for participation from the greater Phoenix community if

they were without history of neurological disease or current

peripheral neurological injury (cut, burn, bruise, etc) that might

affect their ability to perceive stimuli on their right hands. All

subjects were familiar with experiencing electrotactile stimuli on

their fingertips from prior experiences in this laboratory or others.

However, none of the subjects were familiar with the CRE, the

electrotactile stimulation trains, or the stimulation paradigm used

in these experiments. Written informed consent documents were

reviewed and signed by all participants before the experimental

session began. These documents and procedures were previously

reviewed and approved by the Institutional Review Board at

Arizona State University, and were in accordance with the

Declaration of Helsinki.

Subject Electrode Interface
During the experiment, subjects were outfitted with a pair of

electrodes centered on the volar aspect of their index, middle, ring,

and little fingertips (Fig. 1). Each electrode pair consisted of two

3.2 mm diameter custom-made electrodes affixed to non-disten-

sible, clear tape in a similar fashion to our prior studies [47,53].

The electrodes had a center-to-center spacing of 10 mm along the

long axis of the fingertip. Each electrode had electrode cream

(Genuine Grass EC2TM Electrode Cream, Astro-Med, Inc., Grass

Instrument Division, W. Warwick, RI, USA) carefully applied

onto it in order to lower the skin impedance and provide a uniform

interface between the electrode and fingertip.

Electrical Stimulation Setup
Electrical stimuli, anodic half-rectified square waves, were

delivered to the skin surface via the custom made electrode pairs

described above [53]. The electrical current was provided to the

electrodes via constant current linear isolators (4, DLS100s, World

Precision Instruments, Sarasota, FL, USA) that were triggered by

a digital stimulator (DS8000 Digital Stimulator, World Precision

Instruments). We used the method of limits [54] to determine the

perceptual thresholds, the minimum current necessary to be

detectable in 10 consecutive stimulations. We then used those

stimulation levels, as determined for each digit, in the experiments.

The stimulus trains used in this experiment were comprised of 2

pulses per digit delivered 25 ms from onset to onset. A delay of

800 ms between the onset of the locator and attractee stimuli was

used to separate the temporal and spatial influences of the locator

stimulus (Fig. 1). The onset of the final two stimuli was 100 ms

after the onset of the second (attractee) stimulus. The digital

stimulator was controlled from a desktop computer through

LabviewH software (Labview 8.5, National Instruments, Austin,

TX, USA) created specifically for this purpose.

Electrical Stimulus Trains
LabviewH software was programmed to send one of the four

stimulus trains (Veridical Rabbit, Illusory Rabbit, Motion Bias, or

Negative Control Trains) at random to the digital stimulator and

onto the subject. Veridical Rabbit Trains consisted of two pulses

sent to the index, middle, ring, and little fingertip, ‘D2-D3-D4-

D5’, at the timing described above. Illusory Rabbit Trains

consisted of stimuli at ‘D2-D2-D4-D5’. The Motion Bias Trains

consisted of stimuli delivered to ‘D2-D4-D4-D5’and the Negative

Control Trains consisted of stimuli delivered to D2 at 0 ms and D4

at 900ms (Fig. 1).

Subject Setup
During setup and experimental trials, subjects were seated with

their elbow bent and arm comfortably resting on a desk in front of

them. Subjects were instructed that they could position their

forearm and hand in front of them in a comfortable position.

Throughout the trial subjects had full view of their hand and

fingertips and a reference figure noting the names of the fingertip

sites. The desk contained a computer monitor and a mouse, which

the subject used to send the stimuli and record their responses.

The monitor displayed a LabviewH user interface that prompted

subjects with appropriate controls to enter their responses, proceed

to the next trial and send the next stimulus train. After clicking the

Illusion and Tactile Perception
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button to deliver the next stimulus train, the program would select

a train from a randomized rubric and send the appropriately

timed train information to the digital stimulator. Once the subject

received the electrical stimuli, the proper response types would

appear on the screen allowing the subject recorded their response

and then continue on to the next frame, repeating the process.

Experimental Design
A two-factor factorial design with factors, stimulus train type

(Veridical Rabbit, Illusory Rabbit, Motion Bias, and Negative

Control Trains) and posture (Adducted, All-Flexed, Index-Flexed,

Middle-Flexed, Middle-Extended, Ring-Flexed, Index-Abducted,

Vulcan, and All-Abducted) was chosen to design and analyze the

data for this experiment. A factorial design was chosen instead of a

repeated measures design because there were few differences in

experience, training, or background of the subjects in this

experiment which makes it unlikely that real differences between

treatments would be confounded with inter-subject variance other

than their perception of the CRE, which could not be separated by

a repeated measure design. The experimental design was created

and analyzed using Design-ExpertH (Design-Expert v 7.0, Stat-

Ease Inc., Minneapolis, MN). Overall, 14 subjects were used in

this experiment, 10 of the subjects performed three experimental

postures while four subjects performed four experimental postures.

Each subject performed the Adducted posture to establish a

baseline for their perception of the CRE across their fingertips.

Factors
Stimulus Trains. The four stimulus train factor levels were

the train types previously described: Veridical Rabbit, Illusory

Rabbit, Motion Bias, and Negative Control Trains.
Postures. There were 9 factor levels or hand postures

considered in this experiment, Adducted, All-Flexed, Index-

Flexed, Middle-Flexed, Middle-Extended (all others flexed),

Ring-Flexed, Index-Abducted, Vulcan (index and middle

abducted away from the ring and little fingers, each pair

touching), and All-Abducted (from each other, Fig. 1). In the

non-flexed postures the subject’s fingers are extended at each

finger joint. In the All-Flexed and Middle-Extended posture each

of the flexed fingers were flexed at the metacarpo-phalangeal

(MCP), proximal interphalangeal (PIP), and distal interphalangeal

(DIP) joints. Because assuming some of these postures was difficult

for some, some minor digit flexion of the other digits was allowed,

providing that this flexion was less than or equal to 30 degrees

(visually estimated) from the adducted posture.

Experimental Protocol
Each experimental session began by placing the electrode pairs

onto the fingertips of the right hand and determining their

perceptual thresholds. Seated at the desk and in front of the

computer, each subject was exposed to the Veridical Rabbit Train

to ensure that the electrical stimuli on each fingertip were

approximately equal in perceptual intensity. Each subject’s

experimental session contained the adducted posture and either

two or three other randomly assigned postures. Subjects were

asked to assume a particular hand posture and respond to a

particular question during each block of 52 trials. Inside a block,

the stimulation trains were mixed randomly so that each was

replicated 13 times. The order these blocks were presented was

randomized so that each subject had to perform 3 or 4 blocks (one

for each posture) to complete the experiment, totaling either 156

or 208 total stimulus trains per subject. Most experimental sessions

took between 45 and 60 minutes to complete once electrodes setup

began.

Statistical Analysis
Data analysis was performed using Design-ExpertH using the

general factorial design described above using the percentage of

correct subject responses to ‘‘Did the preceding stimulus train

contain a stimulus on the middle fingertip, D3?’’ for analysis.

Analysis Of Variance (ANOVA) statistics were computed for the

two-factor factorial design (posture and stimulus train type).

Additionally ANOVAs and Fisher’s Least Significant Difference

(LSD) tests were performed on each posture to compare between

the stimulus train types within a posture because there were

significant differences between the postures. Detailed explanation

of factorial analysis can be found in, Design and Analysis of

Experiments [55].
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