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Microglial cells, the resident macrophages of the brain, are important players in the

pathological process of numerous neurodegenerative disorders, including tauopathies,

a heterogeneous class of diseases characterized by intraneuronal Tau aggregates.

However, microglia response in Tau pathologies remains poorly understood. Here, we

exploit a genetic zebrafish model of tauopathy, combined with live microglia imaging, to

investigate the behavior of microglia in vivo in the disease context. Results show that

while microglia were almost immobile and displayed long and highly dynamic branches

in a wild-type context, in presence of diseased neurons, cells became highly mobile

and displayed morphological changes, with highly mobile cell bodies together with

fewer and shorter processes. We also imaged, for the first time to our knowledge, the

phagocytosis of apoptotic tauopathic neurons by microglia in vivo and observed that

microglia engulfed about as twice materials as in controls. Finally, genetic ablation of

microglia in zebrafish tauopathy model significantly increased Tau hyperphosphorylation,

suggesting that microglia provide neuroprotection to diseased neurons. Our findings

demonstrate for the first time the dynamics of microglia in contact with tauopathic

neurons in vivo and open perspectives for the real-time study of microglia in many

neuronal diseases.

Keywords: microglia, tauopathy, Tau protein, zebrafish, in vivo imaging, Tau hyperphosphorylation,

pro-inflammatory cytokines

INTRODUCTION

Microglia, the resident brain macrophages, are highly plastic and multifunctional cells that
continuously monitor the health of neuronal networks (Kierdorf and Prinz, 2017). In a
physiological context, microglia display long cytoplasmic processes that constantly extend and
retract to contact neighbor neurons and check their physiology (Nimmerjahn et al., 2005; Peri
and Nüsslein-Volhard, 2008). Microglia also respond promptly to brain injury or infection, with
both immuno-protective and cytotoxic responses, including the secretion of a large set of cytokines
(Hanisch, 2002; Wake et al., 2013; Hu et al., 2015; Butovsky and Weiner, 2018) and increased
phagocytic capacities to eliminate pathogen debris and dead cells (Leong and Ling, 1992; Ling and
Wong, 1993; Brockhaus et al., 1996; Nakajima and Kohsaka, 2001; Hanisch and Kettenmann, 2007;
Thameem Dheen et al., 2007). However, in some disease contexts, such as tauopathies, microglia
also appear to have harmful activities (Bhaskar et al., 2010; Eyo and Dailey, 2013; Maphis et al.,
2015b; Laurent et al., 2018).
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Tauopathies are a family of neurodegenerative disorders
characterized by intra-neuronal fibrillary aggregates containing
abnormally hyperphosphorylated isoforms of the microtubule-
associated protein Tau (Spillantini and Goedert, 2013; Alavi
Naini and Soussi-Yanicostas, 2015;Wang andMandelkow, 2016).
While the causal role of Tau in the disease is supported by several
inherited tauopathies triggered by dominant missense mutations
in the protein, such as TauP301L, causing fronto-temporal
dementia with parkinsonism on chromosome 17 (FTDP-17)
(Hutton et al., 1998), the etiology of these disorders and the
contribution of microglia to their physiopathology remain poorly
understood (Hansen et al., 2018; Laurent et al., 2018; Perea et al.,
2018).

Because of their plasticity and well-established
neuroprotective activities, microglial cells are very promising
therapeutic targets for the treatment of neuron disorders,
including neurodegenerative diseases.

In an attempt to describe the behavior of microglial cells
in a tauopathy disease context in vivo, we used the transgenic
zebrafish Tg(HuC-hTauP301L:DsRed) tauopathy model (Paquet
et al., 2009) and live microglia imaging (Peri and Nüsslein-
Volhard, 2008). We observed that in the presence of hTauP301L-
expressing neurons, microglia display dramatic changes in
morphology and dynamics, with cells showing fewer and shorter
branches and amoeboid-like cell bodies alongside a markedly
increased mobility and phagocytic activity. We also imaged
the phagocytosis of dying neurons by microglia and showed
that these cells could phagocyte nearly twice as much as
in homeostatic brains. However, we also observed that these
microglial cells failed to phagocyte all dead neurons, highlighting
the limits of their phagocyting abilities.

RESULTS

Microglia Display Dramatic Changes in
Shape and Dynamics in the Presence of
hTauP301L-Expressing Neurons
To investigate the behavior of microglial cells in a
tauopathy disease context in vivo, we used the transgenic
Tg(HuC-hTauP301L:DsRed) zebrafish model of Tau-induced
neurodegeneration, combined with the transgenic Tg(ApoE-
eGFP) microglia marker line. As previously shown, in the optic
tectum (Figure 1Q) of Tg(ApoE-eGFP) embryos, microglia
displayed a ramified morphology, with a small cell body and
several elongated branches (Figures 1A,C). By contrast, in
Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) microglia displayed a
rounder morphology, with a larger cell body and fewer, shorter
branches (Figures 1B,B’,D). Quantifications of morphological
parameters confirmed these dramatic changes in microglia
morphology seen in the presence of diseased neurons, with
a smaller surface area (Figure 1E) and volume (Figure 1F);
and a greater sphericity (Figure 1G). However, alongside these
rounded microglia, a few branched cells were also observed in
the disease context (Figures 1B,B’).

Given that microglial cells are highly dynamic, we used
in vivo real-time confocal imaging combined with Imaris

software (Bitplane Inc.) image analysis to determine whether
the presence of hTauP301L-expressing neuronsmodifiedmicroglia
dynamics. In Tg(ApoE-eGFP) embryos, microglia displayed
dynamic processes that were constantly extending and retracting,
while their cell bodies remained almost immobile (Figures 1H,J,
Supplementary Videos 1, 5, Supplementary Figures 1A,C). By
contrast, in Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos,
microglia were highly mobile with their cell bodies traveling
over longer distances (Figures 1I,K, Supplementary Videos 1, 6,
Supplementary Figures 1B,D). Quantifications of microglia
dynamics confirmed that in the presence of hTauP301L-expressing
neurons, microglia displayed increased mean process speed
(Figure 1L) and mean process track displacement (Figure 1M),
and a much larger displacement of the cell bodies over a similar
time frame (Figure 1N).

To further characterize the phenotype of microglial cells
exposed to hTauP301L-expressing neurons, we analyzed the
expression levels of the pro-inflammatory cytokines, IL-1β,
IL-8, and TNF-α in the brain tissue of transgenic Tg(HuC-
hTauP301L:DsRed) and wild-type embryos. Unexpectedly, none
of these cytokines were overexpressed in the pathologic context,
the two tested groups displaying no significant differences in
expression levels of IL-1β, IL-8 (Figures 1O,P), and TNF-α (data
not shown).

Genetic Depletion of Microglia Worsens
Pathology in Tg(HuC-hTauP301L:DsRed)
Embryos
As a first attempt to investigate the function of microglial
cells in Tau pathology, we generated Tg(HuC-hTauP301L:DsRed)
embryos completely devoid of microglia following injection of
an antisense morpholino oligonucleotide targeting pU.1 (MO-
pU1) transcripts encoding a transcription factor essential for
proper differentiation of macrophage/microglia (Rhodes et al.,
2005), and then studied the consequences of such microglial
cell ablation on Tau phosphorylation, neuron apoptosis, and
expression of pro-inflammatory cytokines. Injection of the MO-
pU1 (Figure 2A) leads to a complete absence of microglial cells in
the brain of the embryos as shown by either Neutral Red staining
(Figure 2B), or immunocytochemistry using L-plastin antibody
(Figure 2C).

Using 5 dpf wild-type and transgenic Tg(HuC-
hTauP301L:DsRed) embryos and microglia ablation following
MO-pU1 injection, we first studied the consequences of the
absence of microglia on the expression of pro-inflammatory
cytokines IL-1β and IL-8. Results showed that while expression of
TauP301L did not stimulate overexpression of IL-1β (Figure 2D)
and IL-8 (Figure 2E) in embryos with microglia embryos,
microglia depletion in Tg(HuC-hTauP301L:DsRed) embryos
provoked a markedly increased expression of both these
pro-inflammatory cytokines.

As a first attempt to determine the effect of the absence of
microglia on Tau hyperphosphorylation in vivo, we quantified
and compared hTau phosphorylation levels at Ser396 site in
Tg(HuC-hTauP301L:DsRed) embryos with and without microglia
(Figure 2F). Interestingly, in Tg(HuC-hTauP301L:DsRed)
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FIGURE 1 | Microglia displays dramatic changes in morphology and dynamics in the presence of hTauP301L-expressing neurons. (A,B,B’) Dorsal views of the optic

tectum of 7 dpf Tg(ApoE-eGFP) (A) and Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) transgenic embryos (B,B’), showed the characteristic ramified morphology of

(Continued)
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FIGURE 1 | microglia in wild-type (A), while in the presence of hTauP301L-expressing neurons, microglial cells displayed shorter processes and larger cell bodies.

(C,D) Detailed morphology of microglial cells in Tg(ApoE-eGFP) (C) and Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos (D). (E–G) Measurements of microglia

morphological parameters; surface area (E, p < 0.0001), volume (F, p < 0.0001), and sphericity (G, p < 0.0001), in Tg(ApoE-eGFP) (n = 10) and Tg(ApoE-eGFP;

HuC-hTauP301L:DsRed) (n = 24) embryos, confirmed the cell shape changes observed in the presence of hTauP301L-expressing neurons. (H,I) Time-lapse sequences

of microglia dynamics in Tg(ApoE-eGFP) (H, Supplementary Video 1) and Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos (I, Supplementary Video 2). (J,K)

Merged images of two time points separated by 15min from Supplementary Video 1 (J) and Supplementary Video 2 (K). The merged images at t = 0min (cyan)

and t = 15min (red) highlighted the dramatic increased mobility of microglial cell bodies in the presence of hTauP301L-expressing neurons. (L–N) Measurements of

microglia dynamics; process speed (L, p = 0.0004), process track displacement (M, p = 0.0002) and cell body displacement (N, p = 0.0054), in Tg(ApoE-eGFP) (n =

3) and Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) (n = 4) embryos, confirmed the increased mobility of both microglia processes and cell bodies observed in the

presence of hTauP301L-expressing neurons. (O,P) Measurements of pro-inflammatory cytokine expression in the brain of 5 dpf Tg(ApoE-eGFP) (n = 6) and

Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) (n = 11) embryos. Comparison of the relative expression of IL-1β (O, p = 0.80) and IL-8 (P, p = 0.89) in both groups shows

no significant differences. (Q) Schematic dorsal view of a 7 dpf zebrafish embryo. The red square shows the region of interest that comprises the optic tectum. ***p <

0.001. Scale bar (A,B,B’,H–K) = 50µm, (C,D) = 10µm. A.U., arbitrary units.

embryos without microglia, we observed an increased
accumulation of hyperphosphorylated Tau when compared
to that seen in their siblings with microglia (Figure 2F).
Quantification of phospho-Tau to total Tau accumulation
ratio (pTau/Tau) confirmed that hTau hyperphosphorylation
levels were significantly increased in microglia-depleted
Tg(HuC-hTauP301L:DsRed) embryos (Figure 2G). To further
investigate the consequences of the absence of microglia on
Tau hyperphosphorylation, Tg(HuC-hTauP301L:DsRed; nlrc3-
likest73/73) mutant embryos, which are fully devoid of microglia
as the result of homozygous nlrc3-likest73 mutation (Shiau et al.,
2013), and analyzed hTauP301L hyperphosphorylation using the
antibody PHF1, targeting pathological phosphorylation sites
Ser396 and Ser404 of the hTau protein (Figures 2H,I). In good
agreement with Western blot analysis, a significant increase in
PHF1 labeling intensity was observed in the telencephalon of 6
dpf Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/73) mutant embryos
(Figure 2I) when compared to that observed in the brain of
their Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/+) siblings with
microglia (Figure 2H). Quantification of the signal ratio of
hyperphosphorylated hTau protein on brain sections from
Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/73) embryos confirmed
the significant increase of this ratio displayed in protein extracts
from Tg(HuC-hTauP301L:DsRed) embryos microglia-depleted
with morpholino (Figure 2J).

Microglia Phagocytic Activity Is Enhanced
in the Presence of hTauP301L-Expressing
Neurons
As phagocytosis is a main feature of microglial cells, we
first monitored the phagocytic activity of microglia in
Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos. We
observed the phagocytosis of hTauP301L-expressing neurons
by microglia, using confocal real-time imaging (Figures 3A,B,
Supplementary Video 3). A microglial cell in the optic
tectum (Figures 3B,C, 0min) sends one of its processes to
the pathological neuron (Figures 3B,C, 5min) to draw it
toward its cell body (Figures 3B,C, 9min) and execute the
digestion of the neuron and its debris until completion of the
process (Figures 3B,C, 18min). We also observed the detail
of a microglial cell engulfing three neurons simultaneously
(Supplementary Figure 2, Supplementary Video 7). We next
assessed the phagocytic activity of microglia by quantifying
the total engulfed volume, which was significantly increased in

Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos (Figure 3D).
Given the critical role of microglia in removing apoptotic
cells and other noxious elements, we next visualized neuronal
death in Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryos
using the apoptotic marker Acridine Orange. Data showed that
microglia specifically engulfed apoptotic neurons (Figures 3E–G,
Supplementary Video 4) but not non-apoptotic hTauP301L-
expressing cells, supporting the notion that microglia specifically
responds to signals sent by degenerating neurons that are
already apoptotic but not hTauP301L-expressing neurons per
se. However, quantification of the number of non-engulfed
apoptotic neurons in Tg(ApoE-eGFP; HuC-hTauP301L:DsRed)
and control Tg(ApoE-eGFP; HuC-RFP) embryos showed that
microglia failed to phagocyte all apoptotic hTauP301L-expressing
neurons (Figure 3I).

DISCUSSION

To date, few studies have been conducted in in vivo conditions
in healthy mice brains to show detailed morphological
characterization of microglia (Cătălin et al., 2017; Sun et al.,
2019). However, all studies aimed at investigating the physiology
of microglia or their interactions with neurons in rodent
models of neuronal diseases have relied widely on ex vivo and
in vitro approaches, which cannot accurately reproduce the
complexity of the physiological conditions observed in living
brains (Hickman et al., 2013; Maphis et al., 2015a; Bemiller et al.,
2017; Rustenhoven et al., 2018).

While these marker-based approaches remain useful to gather
prerequisite knowledge on immune cells, it is nonetheless crucial
to preserve the morphology and dynamics of these highly plastic
cells, which respond to very small changes in the CNS, and so to
study them in a living brain (He et al., 2018). Recent studies show
that time spent by microglia ex vivo is associated with a different
evolution of gene expression until their expression levels become
the reverse of the initial measures (Gosselin et al., 2017).

The present work is, to our knowledge, the first aimed at
characterizing the dynamic behavior of microglial cells in the
presence of pathological neurons expressing a humanmutant Tau
protein, hTauP301L, causing tauopathy.

Our results show that the presence of these hTauP301L-
expressing neurons caused dramatic changes to microglia,
with the cells displaying an amoeboid-like shape and higher
mobility. Although these morphological and dynamic changes

Frontiers in Neuroscience | www.frontiersin.org 4 November 2019 | Volume 13 | Article 1199

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hassan-Abdi et al. Imaging Microglia and hTauP301L-Expressing Neurons

FIGURE 2 | Genetic depletion of microglia worsens the pathology in Tg(HuC-hTauP301L:DsRed) embryos. (A) Outline of microglia depletion experiments. Embryos

were injected at the single cell stage with a solution of antisense morpholino oligonucleotide targeting pU.1 transcripts. At 5 dpf, injected embryos were incubated in

Neutral Red solution to sort microglia-depleted embryos. (B) Dorsal views of the optic tectum of 5 dpf wild-type microglia-depleted (B2) and untreated live embryos

(B1), following incubation in Neutral Red solution. (C) Dorsal views of the optic tectum of 5 dpf wild-type microglia-depleted (C2) and untreated fixed embryos (C1),

labeled with L-plastin antibody. (D,E) Measurements of pro-inflammatory cytokines in the brain of 5 dpf wild-type embryos with (n = 6), or without (n = 3) microglia;

and Tg(HuC-hTauP301L:DsRed) embryos with (n = 11), or without microglia (n = 7). Both relative expressions of IL-1β (D, p = 0.035) and IL-8 (E, p < 0.0001) display

(Continued)
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FIGURE 2 | a significant increase in the brains of Tg(HuC-hTauP301L:DsRed) embryos without microglia cells, compared to their siblings with microglial cells. (F,G)

Representative Western blots membranes of total protein extracts from 6 dpf Tg(HuC-hTauP301L:DsRed) embryos with (left) or without (right) microglia, hybridized with

antibodies against human total Tau (total Tau) or human phosphorylated Tau at Ser396 residue (pTau) (F); and quantification of corresponding pTau/total Tau ratio

(respectively, n = 4 and n = 4) (G, p = 0.01). The ratio of hyperphosphorylated hTau to total Tau protein is significantly increased in microglia-depleted

Tg(HuC-hTauP301L:DsRed) embryos. (H–J) Dorsal views of the telencephalon of 6 dpf Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/+ ) embryos (H) and

Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/73) embryos (I), labeled with an antibody directed against human phosphorylated Tau at Ser396 and Ser404 residues (PHF1);

and quantification of corresponding PHF1/hTauP301L-DsRed signal ratio (respectively, n = 4 and n = 6) (J, p = 0.0485). The quantification of the signal ratio of

hyperphosphorylated hTau protein on brain sections from Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/73 ) mutant embryos devoid of microglia confirmed the significant

increase of this ratio displayed in protein extracts from Tg(HuC-hTauP301L:DsRed) embryos microglia-depleted with morpholino. ***p < 0.001; **p < 0.01; *p < 0.05.

Scale bar (B,C,H,I) = 50µm.

are reminiscent of the classical microglial activation profile
seen in response to injury or disease (Nakajima and Kohsaka,
2001), these rounded microglial cells did not overexpress known
pro-inflammatory cytokines, IL-1β, and IL-8 showing that the
observed changes were non-inflammatory (Zhao et al., 2018).
However, genetic depletion of microglia in brains containing
hTauP301L-expressing neurons induced a markedly increased
expression of both pro-inflammatory cytokines. This increased
cytokine expression is reminiscent to that observed in a model
of prion-induced neurodegeneration in mice (Zhu et al., 2016).
One possible hypothesis is that astrocytes, the largest glial
group, can also produce pro-inflammatory factors and exhibit a
reactive state as it has been reported in tauopathy mice models
(Sidoryk-Wegrzynowicz et al., 2017). This neuroinflammation
could be exacerbated by the higher levels of pathological
hyperphosphorylated Tau protein (Martini-Stoica et al., 2018;
Perea et al., 2019).

In Tg(HuC-hTauP301L:DsRed) embryos, highly dynamic
microglial cells displayed an intense phagocytic activity,
specifically eliminating nearly twice as many apoptotic neurons
as microglial cells in healthy brains. However, the significantly
higher number of non-engulfed apoptotic neurons in tauopathic
brains suggests that these microglial cells are overwhelmed by
the excessive neuron death rate generated in this transgenic
model. One therapeutic approach might thus be to enhance the
phagocytic activity of microglia to slow the spread of the disease.

This study using intact zebrafish brain visualizes interactions
betweenmicroglia and hTauP301L-expressing neurons in real time
and sheds light on microglia activities exerting a protective role
mainly through specific phagocytosis of apoptotic hTauP301L-
expressing neurons, thereby limiting the spread of noxious
cell bodies or pathologic hyperphosphorylated Tau (Figure 4).
However, while displaying enhanced phagocytic activity toward
hTauP301L-expressing neurons and efficiently eliminating dead
neurons, microglial cells appeared overwhelmed, as evidenced by
the higher number of dead, albeit non-engulfed dead neurons
in transgenic embryo brains. These findings support therapeutic
approaches based on the modulation of microglial phagocytic
activity in a specific neurodegenerative context.

MATERIALS AND METHODS

Ethics Statement
All the animal experiments described in the present study
were conducted at the French National Institute of Health

and Medical Research (INSERM) UMR 1141 in Paris in
accordance with European Union guidelines for the handling of
laboratory animals (http://ec.europa.eu/environment/chemicals/
lab_animals/home_en.htm) and were approved by the Direction
Départementale de la Protection des Populations de Paris
and the French Animal Ethics Committee under reference
No. 2012-15/676-0069.

Zebrafish Lines and Maintenance
Zebrafish were maintained at 26.5◦C in 14 h light and 10 h
dark cycles. Embryos were collected by natural spawning and
to avoid pigmentation, 0.003% 1-phenyl-2-thiourea (PTU) was
added at 1 dpf (day post-fertilization). Transgenic Tg(HuC-
hTauP301L:DsRed) embryos (Paquet et al., 2009), showing mosaic
neuronal expression of hTauP301L mutan protein, linked to
FTDP-17, was used to reproduce key pathological features of
tauopathy. In order to simultaneously observe microglia, we used
the Tg(ApoE-eGFP) transgenic line (Peri and Nüsslein-Volhard,
2008) that allows live imaging of microglial cells with GFP. To
investigate the consequences of the absence of microglia, we used
the nlrc3-likest73/st73 mutants (Shiau et al., 2013), in which the
st73 recessive loss of function mutation in the non-canonical
NOD-like receptor (NLR) gene is responsible for the absence of
microglia in the brain.

Confocal Imaging
For in vivo imaging, 7 dpf larvae were anesthetized with
112µg/ml 3-aminobenzoic acid ethyl ester (tricaine, Sigma),
immobilized in 1.2% low melting-point agarose in the center
of a 35mm glass-bottomed dish (Corning R©), and covered
with E3 medium containing 112µg/ml tricaine. Images
were acquired using a Leica SP8 confocal scanning laser
microscope equipped with a Leica 20x/0.75 multi-immersion
objective or an Olympus 40x/1.1 water objective; or a Leica
DM6000FS Spinning disk L2 microscope equipped with a
Leica 25x/0.95 water immersion objective. All the images
were then processed using LAS-X (Leica), MetaMorph 7.8.9
(Molecular Devices), AutoQuant X3.1.1 (Media Cybernetics),
Fiji (Version 2.0.0-rc-65/1.52b) and Adobe Photoshop 7.0
(Adobe System).

Image Analysis

The surface area, volume, and sphericity (9 =
π

1
3 (6Vp)

2
3

Ap
) of

microglial cells were quantified using Imaris MeasurementPro
(Bitplane Inc.). The speed (distance traveled per unit
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FIGURE 3 | Microglia phagocytic activity is increased in presence of hTauP301L-expressing, but appears non-sufficient in eliminating all apoptotic neurons. (A)

Schematic illustration of 7 dpf embryo in dorsal view. The red square shows the region of the optic tectum where the time-lapse (B,C) was recorded. (B,C) Time-lapse

imaging of a microglial cell phagocyting a diseased neuron (yellow arrowhead) in a 7 dpf Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) embryo; (B,

Supplementary Video 3) merge of GFP and DsRed; (C) DsRed only. (D, p = 0.0262) Quantification of the engulfed neuronal volume in Tg(ApoE-eGFP; HuC-RFP) (n

= 7) and Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) (n = 9) embryos, showing a significantly increased phagocytosis level by microglial cells in the presence of

hTauP301L-expressing neurons. (E–H, Supplementary Video 4) Time-lapse image sequences from the optic tectum of a double transgenic Tg(ApoE-eGFP;

HuC-hTauP301L:DsRed) 7 dpf embryo, showing a detail of a microglial cell in the process of phagocyting a neuron labeled with an apoptosis marker, acridine orange

(merge: E, GFP and acridine: F, DsRed only: G, acridine only: H). The microglial cell filled with other dead tauopathic neurons extends its process to another dying

tauopathic neuron and draws it toward its body cell to complete the phagocytosis process. (I, p = 0.027), Quantification of the number of non-engulfed apoptotic

neurons in Tg(ApoE-eGFP; HuC-RFP) (n = 11) and double transgenic Tg(ApoE-eGFP; HuC-hTauP301L:DsRed) (n = 4) embryos in which there is a significantly higher

number of non-engulfed apoptotic neurons. ***p < 0.001; *p < 0.05. Scale bar (B,C,E–H) = 20µm.

time) and displacement (distance between first and last
positions) of microglial processes were analyzed using
Imaris Filament tracer (Bitplane Inc.) on 15min long

time-lapses. Microglial cell body displacements (distance
between first and last positions) were tracked with
Imaris MeasurementPro on 30min long time-lapses.
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FIGURE 4 | Summary illustration. (A,B) Brain illustrations of control embryo (A) and tauopathic embryo (B). In the control embryo brain, microglial cells (green) display

a highly ramified morphology, allowing them to scan the brain and monitor neighboring neurons (orange) and eliminate apoptotic ones (blue). However, in presence of

hTauP301L-expressing neurons (red), microglial cells (green) adopt an amoeboid morphology, that allows them to move faster throughout the brain in order to eliminate

tauopathic neurons undergoing apoptosis (blue). In spite of an increased phagocytic rate of microglial cells in the tauopathic brain, there is a higher number of

non-engulfed apoptotic neurons (blue), in comparison to the control brain; thus, suggesting a saturated phagocytic capacity of microglial in the tauopathic brain.

Three-dimensional cell reconstructions were created using
Imaris MeasurementPro.

Ablation of Microglia
Morpholino pU.1 (MO-pU1): 5′-GATATACTGATACTCCAT
TGGTGGT-3′ designed to inhibit pU1 mRNA translation,
was obtained from Gene Tools. 2 nl of a 0.5mM solution,
corresponding to 1 pmol of pU.1 morpholino was injected
into 1–2 cells stage embryos using standard protocols. After
injection, the embryos were incubated in E3 medium at 28.5◦C
until analysis at the desired stage. To select embryos in
which microglia differentiation was fully blocked, Neutral Red
staining was used to label microglia. Embryos were incubated
in Neutral Red diluted in E3 medium (2.5µg/mL) for 5–
8 h at 28.5◦C, and rinsed 10min before examination using a
stereomicroscope (Zeiss).

Apoptosis Labeling
To visualize apoptotic neurons, embryos were incubated in an
Acridine Orange solution (1:500, VectaCell) for 20min at 28.5◦C
in the dark, and rinsed twice for 10min in E3 medium. Although
both GFP and acridine orange have very close excitation and
emission spectra, their signals are easily distinguishable, with
acridine orange emitting a much more intense fluorescence.
Therefore, GFP channel (green) also shows Acridine Orange
staining (blue) (Figure 3F).

Immunohistochemistry
Six dpf Tg(HuC-hTauP301L:DsRed; nlrc3-likest73/+) and Tg(HuC-
hTauP301L:DsRed; nlrc3-likest73/73) embryos were anesthetized in
0.2% tricaine, fixed with 4% paraformaldehyde, cryoprotected
in 10% sucrose solution prior to flash freezing in isopentane.
Samples were stored at −80◦C until use. Embryos were
cut into 20-µm-thick sections on cryostat, mounted on
superfrost slides, and stored at −80◦C. Cryosections (20µm)
were fixed in 4% paraformaldehyde at room temperature
for 10min. After washing thrice with PBS, sections were
treated with 0.25% trypsin in 1X PBS for 2min at 25◦C.
Immunohistochemistry was performed as previously described
(Puverel et al., 2009). Briefly, sections were blocked and
permeabilized with 0.2% gelatin, 0.25% triton X-100 diluted
in 1X PBS for 1 h at room temperature and then incubated
overnight at room temperature with anti-PHF1 (1:100, mouse
monoclonal, gift of Dr. Peter Davies, Albert Einstein College
of Medicine, New York, USA). After several washes, sections
were incubated for 1 h with the donkey anti-mouse coupled
to Alexa Fluor 488 (1:500, Jackson Laboratories, West Grove,
PA, USA). Sections were counterstained for 10min with 0.1%
DAPI (Sigma-Aldrich) before being mounted with vectashield
mounting medium (Vector). Sections were analyzed using a
leica TCS SP8 confocal scanning system (Leica Microsystems).
Images were acquired using a Leica SP8 confocal scanning
laser microscope equipped with a Leica 20x/0.75 multi-
immersion objective. Images were processed with LAS-X (Leica),
Fiji (Version 2.0.0-rc-65/1.52b) and Adobe Photoshop 7.0
(Adobe System).
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For whole mount immunostaining, 5 dpf wild-type embryos
with or without microglia, were fixed in 4% formaldehyde in
PBS for 1 h 30min at room temperature, washed three times in
PBS (10min each) and permeabilized in cold acetone (−20◦C)
for 20min. After several washes, embryos were incubated
in collagenase solution for 1 h. Immunohistochemistry
was performed as described previously (Naini et al., 2018)
using rabbit anti-zebrafish L-plastin polyclonal antibody
(gift of Dr. Michael Redd, University College London,
United Kingdom), followed by Alexa-coupled secondary
anti-rabbit antibody (Molecular Probes) at 1:500 dilution.
After washing, the fluorescence was analyzed using a Leica
TCS SP8 confocal scanning system (Leica Microsystems).
Images were collected using a Leica 20x/0.75 multi-immersion
objective. Images were processed with LAS-X (Leica), Fiji
(Version 2.0.0-rc-65/1.52b), and Adobe Photoshop 7.0
(Adobe System).

RT-qPCR
Total RNAs were extracted from independent batches
of 15 embryos each, using the NucleoSpin RNA kit
(Macherey Nagel, Germany). Concentration of RNAs were
assessed by spectrophotometry using a NanodropTM device
(Thermoscientific, USA). Total RNA (1µg) samples were reverse
transcribed using the iScriptTM cDNA synthesis kit (Bio-Rad,
USA). RT-qPCR experiments were performed in triplicate
using SYBR Green Super-mix (Bio-Rad, USA) according to a
program of 40 cycles in three steps (denaturation of 5 s at 96◦C,
hybridization of 10 s at 60◦C and extension of 10 s at 72◦C).
Primers were designed manually following visual inspection of
gene sequences. Gene sequences and NCBI references are given
in Supplementary Table 1. Specific mRNA levels were evaluated
after normalization of the results with tubulin-α (tuba1) mRNA
as reference, and the results were indicated in arbitrary units
determined, respectively, to the levels of RNA determined in
wild-type embryos and assessed using a Welch two-sample t-test
or an ANOVA followed by a Tukey post-test.

Western Blot
Five dpf embryos were collected, anesthetized, and lysed on
ice with lysis buffer (50mM Tris-HCl, 320mM Sucrose, pH
7.4) supplemented with protease and phosphatase inhibitors
(Roche). Lysates were homogenized by sonication (thrice 10 s)
and centrifuged at 600 g for 10min. Samples containing 10
µg proteins were subjected to SDS-PAGE in 4–20% gradient
acrylamide gel. Primary antibody against phosphorylated tau,
Ser396 (1:1,000, mouse monoclonal, Ozyme); and anti-human
total tau antibody (1:1,000, rabbit polyclonal, Dako Cytomation)
were used. Subsequently, the blots were incubated for 1 h at room
temperature with the corresponding secondary antibodies (anti-
mouse or anti-rabbit, 1:5,000, Cell Signaling Technology) diluted
in bovine serum albumin solution and developed with ECL
RevelBlOt R© Plus (Ozyme) followingmanufacturer’s instructions.
All statistics were assessed using a Welch two-sample t-test and
all data are indicated as means± SEM.

Statistics
All statistics were assessed using a Welch two-sample t-test or an
ANOVA followed by a Tukey post-test. All data are represented
as means± SEM.
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