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Abstract: It has tremendous values for both drug discovery and basic research to develop a solid bioinformatical

tool for guiding peptide reagent design. Based on the physical and chemical properties of amino acids, a new strat-

egy for peptide reagent design, the so-called AABPD (amino acid based-peptide design), is proposed. The peptide

samples in a training dataset are described by a series of HMLP (heuristic molecular lipophilicity potential) parame-

ters and other physicochemical properties of amino acid residues that form a three-dimensional data matrix where

each component is defined by three indexes: the first index refers to the peptide samples, the second to the amino

acid positions, and the third to the amino acid parameters. The binding free energy between a peptide ligand and its

protein receptor is calculated by a linear free energy equation through the physicochemical parameters, resulting in a

set of simultaneous linear equations between the bioactivity of the peptides and the physicochemical properties

of amino acids. An iterative double least square technique is developed for the solution of the three-dimensional

simultaneous linear equation set to determine the amino acid position coefficients of peptide sequence and the

physicochemical parameter coefficients of amino acid residues alternately. The two sets of coefficients thus obtained

are used for predicting the bioactivity of other query peptide reagents. Two calculation examples, the peptide

substrate specificity of the SARS coronavirus 3C-like proteinase and the affinity prediction for epitope-peptides with

Class I MHC molecules are studied by using the peptide reagent design strategy.
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Introduction

The elucidation of the human genome has revitalized the interest

in using proteins or pieces of proteins (peptides) for the treat-

ment of presently incurable diseases.1–3 Human diseases for

which the peptide-based drug therapies are applied include

osteoporosis (calcitonin), diabetes (insulin), prostate cancer and

endometriosis (gonadotropin-releasing hormone), acromegaly

and ulcers (somatostatin), as well as hypothyroidism (thyro-

tropin-releasing hormone, TRH).1,4 The brain, as a major control

center, is an important target for many pharmaceutical drugs,

such as opioid peptide analogues designed for the treatment of

pain, neuropeptides and growth peptides for the treatment of

neurological disorders. One of the recently most remarkable

examples of peptide drugs is the HIV fusion inhibitor T-20,

which is a 36-peptide derived from the structure of gp41 and

practically used in clinical treatment for AIDS patients.5 HIV

entry inhibitors6 are the first antiretroviral drugs in widespread

clinical evaluation to target HIV replication at sites other than

reverse transcriptase or protease as focused previously (see, e.g.,

Refs. 7–14). The HIV fusion inhibitors have received the fast-

track designation by the United States Food and Drug Adminis-

tration because of the resistance of HIV to the drugs targeting

on reverse transcriptase and protease. The successful implication
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of diverse peptides with special physiological activity in medici-

nal treatment has also increased the interest in exploiting pepti-

des, peptide analogues, and peptide mimetics as therapeutic

drugs.15–20

Peptide reagent design may be one of the most challenging

research topics in life science owing to the extremely large

amount of possible arrangements. For example, for an octapep-

tide sample, the number of possible sequence arrangements13,21

are 208 ¼ 2.56 � 1010; for designing a peptide regent of 36

amino acids, the number of possible amino acid sequence

arrangement would be 2036 ¼ 6.87 � 1046. This is an astronom-

ical number! Therefore, it is vitally important to develop a com-

putational method to guide us for efficiently designing peptide

reagents. The present study was initiated in an attempt to de-

velop a rational peptide reagent design method on the basis of

the physical and chemical properties of amino acids, particularly

their heuristic molecular lipophilicity potential (HMLP) parame-

ters.22–24 Unlike the purely statistical techniques in drug design

that only pursue the statistical results without physical and

chemical rationale, the HMLP approach has a solid theoretical

foundation. Moreover, the prediction equations not only can

indicate the bioactivity of a query peptide reagent but also can

reveal the physical and chemical features for each of the subsites

along the peptide sequence.

Theory and Method

The calculation of interaction free energy between two peptides,

or between a peptide and a protein, is a fundamental problem in

protein science and medicinal chemistry. In this study, the pep-

tide–protein interaction is simplified as the interaction between a

peptide reagent Pi and a target peptide P0, which is a segment of

a protein receptor, or a set of amino acid residues at its active

sites. The main idea of peptide–protein interaction is schemati-

cally illustrated in Figure 1, where panel A shows the peptide

fusion inhibitors interacting with a part of the HIV-1 gp41 enve-

lope glycoprotein, and panel B shows the amino acid residues of

peptide substrates interacting with the active sites of SARS coro-

navirus main protease.

The binding free energy DG0
i between peptide Pi and its

target peptide P0 is considered as the summation of interactions

from all residue pairs of two peptides at the corresponding

sequence positions; i.e.,

�G0
i ¼

XM
�¼1

b��gi;� (1)

where Dgi,� is the interaction free energy of residue pair at posi-

tion � of peptide Pi and target peptide P0, and M is the total

number of residue pairs involved. The binding free energy Dgi,�
from different residue pairs may have different weights to the

total free energy DG0
i due to their different microenvironments

and different roles in bioactivity. We use a set of sensitive coef-

ficients {b�} to describe their microenvironments of residues.

The binding free energy Dgi,� of residue pair � is described by

a series of physical and chemical properties of amino acids. In

this study we use the heuristic molecular lipophilicity potential

(HMLP) parameters of amino acids through the following linear

free energy equation22–24:

�gi;� ¼ H0;�Hi;�

ðR0;i;�Þ� þ L0;�Li;�
ðR0;i;�Þ� þ

SH0;�S
H
i;�

ðR0;i;�Þ� þ
SL0;�S

L
i;�

ðR0;i;�Þ� þ � � � (2)

where R0,i,� is the distance between peptide Pi and peptide P0 at

residue position �, and � is an exponent. In eq. (2), Hi,� and

Li,� are respectively the hydrophilic parameter and lipophilic pa-

rameter of residue � in peptide Pi; S
H
i;� and SLi;� are the surface

areas of residue � with hydrophilic potential and lipophilic

potential, respectively. Similarly, H0,�, L0,�, SH0;�, and SL0;� are

the HMLP parameters of target peptide P0. The HMLP parame-

ters of amino acids were derived from the quantum chemical

electrostatic potential with the ability to reflect the hydrophilic

and lipophilic interactions of amino acid residues.25–27 The first

term in eq. (2) describes the hydrophilic interactions, including

the hydrogen bond interaction, ionic interaction, and dipole

interaction; the second term describes the lipophilic interaction

Figure 1. Protein and peptide targets of peptide reagents. (A) C

peptides derived from the C-region of gp41, such as C34, bind to

the N-region in its trimeric coiled-coil state; the proteins NCCG-gp41

and 5-helix, which expose either the complete or a portion of the N-

region trimeric coiled-coil in a stable form, bind to the C-region. N

peptides may target a vulnerable C-helix region of gp41. Alterna-

tively, the N peptides could intercalate with the N helices of gp41

to form a heterotrimeric coiled-coil and interfere with the coiled-coil

formation of gp41. (B) Interaction between peptide substrate and

SARS coronavirus main protease. The amino acid residues of pep-

tide substrates interact with the active sites of SARS coronavirus

main protease. Figure 1B was adapted from Figure 2 of Chou (Ref.

13, with permission from Academic Press). [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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between amino acid residues; while the third and fourth terms

describe the free energies from the solvation and dissolvation of

amino acid residues, respectively. In eq. (2) we can add other

terms that can affect the interaction or recognition between

peptide ligand and protein receptor.

Actually, peptide P0 is a virtual target peptide, and we do not

need to know its real chemical structure. If the HMLP parame-

ters H0,�, L0,�, S
H
0;�, and SL0;� of the virtual target peptide P0 and

the distance R0,i,� are assumed to be constants, eq. (2) will be

reduced to a linear equation of the HMLP parameters of peptide

Pi; i.e.,

�gi;� ¼ a1Hi;� þ a2Li;� þ a3S
H
i;� þ a4S

L
i;� þ � � � � � � ¼

XL
l¼1

a�vi;�;l

(3)

where vi,�,l denotes the l-th HMLP parameter of peptide Pi of

amino acid residue at peptide position �. The role of the coeffi-

cients {al} is the same as in traditional 2D-QSAR. Inserting the

Dgi,� of eq. (3) into eq. (1) and transferring the binding free

energy DG0
i to bioactivity pki ¼ �logki ¼ DG0

i of peptide Pi, we

obtain the following simultaneous linear equations,

XM
�¼1

b�
XL
l¼1

alvi;�;l

 !
¼ pki ði ¼ 1; 2; . . . . . . ;NÞ (4)

where N is the number of peptide samples, M is the number of

amino acid residues in the peptides, and L is the number of

physicochemical parameters of amino acid residues. In a training

set of peptide reagents, the physicochemical parameters form a

three-dimensional data matrix, VN�M�L, as shown in Figure 2.

Although the transformation from eq. (1) to eq. (4) is not a

rigorous theoretical derivation, it can be used to explain the

physical implication of the linear free energy equation and the

functions of HMLP parameters and some theoretical considera-

tions in our model. Like all other QSAR approaches, the linear

free energy equation is not unique. However, we can refine the

binding free energy by utilizing other linear free energy equa-

tions and including more parameters.

In eq. (4) there are two sets of coefficients: {al} are sensitive

coefficients of the physicochemical parameters, and {b�} are the

sensitive coefficients of amino acid residue positions in peptides.

An iterative double least square (IDLS) technique was developed

to determine the values of the coefficient sets {al} and {b�}
alternately by solving the three-dimensional simultaneous linear

equations. By using a set of initial values of coefficients {a
ð0Þ
l },

the three-dimensional data matrix VN�M�L is reduced to a two-

dimensional data matrix D
ð1Þ
N�M with the elements given by

d
ð1Þ
i;� ¼

XL
l¼1

a
ð0Þ
l vi;�;l (5)

Thus, the set of three-dimensional simultaneous linear equations

[eq. (4)] is reduced to a set of two-dimensional equations, i.e.,

XM
�¼1

d
ð1Þ
i;�b

ð1Þ
� ¼ pki ði ¼ 1; 2; . . . . . . ;NÞ (6)

The above equation set can be solved by using the least square

approach, yielding the first solutions of the sensitive coefficients

fbð1Þa g. Then the values of fbð1Þa g are used to reduce the three-

dimensional data matrix VN�M�L to a two-dimensional data ma-

trix T
ð1Þ
N�L with the elements given by

t
ð1Þ
i;l ¼

XM
�¼1

bð1Þ� vi;�;l (7)

Similarly, the set of three-dimensional simultaneous linear equa-

tions [eq. (4)] is reduced to a set of two-dimensional equations

by eq. (7), as given by

XL
l¼1

a
ð1Þ
l t

ð1Þ
i;l ¼ pki ði ¼ 1; 2; . . . . . . ;NÞ (8)

The above equation can be solved by using the least square

approach, leading to the solution of sensitive coefficients {a
ð1Þ
l }.

Then the values of {a
ð1Þ
l } are used for the new solutions of the

sensitive coefficients {bð2Þ� } of amino acid residue positions. The

above procedure is performed iteratively for n steps, i.e., until

reaching the converged solutions as denoted by {a
ðnÞ
l } and

{bðnÞ� }. Now, the values of {a
ðnÞ
l } and {bðnÞ� } can be used to pre-

dict the bioactivities pk
ðpredÞ
i of the i-th peptide reagent through

the following equation:

Figure 2. Schemetic illustration of the three-dimensional data

matrix and iterative double least square (IDLS) solution. N is the

number of peptide samples, M is the number of amino acid residues

in peptide, and L is the number of physicochemical parameters of

amino acid residues.
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pkpredi ¼
XM
�¼1

bðnÞ� �gi;� ¼
XM
�¼1

bðnÞ�

XL
l¼1

a
ðnÞ
l vi;�;l

 !
(9)

where the term bðnÞ� Dgi,� is the contribution of amino acid � of

the i-th peptide reagent to the bioactivity. The convergence

criterion for the iterative procedure is given by the following

equation

Qðnþ1Þ � QðnÞ�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
l¼1

pkexpti � pk
ðnþ1Þ�pred
i

� �2vuut
������

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

pkexpti � pk
ðnÞ�pred
i

� �2vuut
������ � " ð10�6Þ ð10Þ

where Q(n) represents difference between the square root of the

summation of squared differences between experimental bioac-

tivities and the predicted bioactivities in the nth step, and Q(nþ1)

that in the (n þ 1)th step.

Calculations and Results

In this section two calculation examples are used to prove the

predictive power of AABPD. The HMLP parameters of the 20

natural amino acid residues are taken from our previous work22

and listed in Table1 with the secondary structural potency indi-

ces. One of the merits of the HMLP approach is that it can

provide a lipophilic index and a hydrophilic index for every

amino acid side chain, describing its lipophilic moiety and

hydrophilic moiety, respectively. In the first example the 22

octapeptides in training set is taken from Ref. 28, which was

originally used in the substrate specificity study for the SARS

coronavirus 3C-like proteinase.29,30 In Table2, the notation ;
indicates the cleavage site in octapeptides. From ; to left side,

the amino acid residues are numbered as R1, R2, R3, R4, and

R5; from ; to right side, the amino acid residues are numbered

as R10, R20, and R30. The first octapeptide S12 (SAVLQ;SGF-
CONH2) is the parent of other octapeptides in the training set. It

is a naturally cleavable peptide of 3C-like proteinase, derived from

polyprotein pp1ab of SARS coronavirus, covering the first cleavage

site of pp1ab.31–34 Other octapeptides are mutated from octapeptide

S12, in which one or more residues are replaced. In Table 2 the

mutated residues are indicated with bold letters. The names of

octapeptides used in this study are the same as in Ref. 28.

The iterative double least square (IDLS) technique described

in the second Section is used in the peptide substrate specificity

study for the SARS coronavirus 3C-like proteinase based on the

experimental data listed in Table 2. The initial values of sensi-

tive coefficients of physicochemical parameters {a
ð0Þ
l } are

assigned to be 1.0. In the first calculation only four HMLP pa-

rameters are used, which yields the correlation coefficient R ¼
0.9375 and average predictive residue Q ¼ 60.4804. Q is the

average square root of the summation of squared differences

between predicted bioactivities and experimental bioactivities.

Its definition can be found in eq. (10). In the second calculation

total of 7 parameters are used, which gives better results than

the first calculation (R ¼ 0.9705 and Q ¼ 60.2305). The other

Table 1. HMLP Parametersa and Secondary Structural Potencies of 20 Amino Acids Side Chains.

A.A. SL (Å2) SH (Å2) L H bP�
bP�

bPc

Leu (L) 84.5476 0.0000 1.2906 0.0000 1.21 1.30 0.68

Ile (I) 88.6055 0.0000 1.1046 0.0000 1.08 1.60 0.66

Val (V) 77.8108 0.0000 0.5324 0.0000 1.06 1.70 0.62

Phe (F) 105.7054 11.2472 0.4412 �0.1195 1.13 1.38 0.71

Met (M) 70.3631 23.2299 1.0768 �0.3068 1.45 1.05 0.58

Trp (W) 133.6980 14.8820 0.8364 �0.4310 1.08 1.37 0.75

Ala (A) 34.7760 0.0000 0.1744 0.0000 1.42 0.83 0.70

Cys (C) 23.5563 30.4540 0.2479 �0.2402 0.70 1.19 1.18

Gly (G) 3.7616 0.0000 0.0208 0.0000 0.57 0.75 1.50

Tyr (Y) 80.9646 42.7160 0.4534 �0.5896 0.69 1.47 1.06

Thr (T) 46.7285 16.0490 1.4265 �0.4369 0.83 1.19 1.07

Ser (S) 26.0681 15.9613 0.2346 �0.6040 0.77 0.75 1.32

His (H) 82.1701 13.8631 0.8124 �0.7766 1.00 0.87 1.06

Gln (Q) 70.0876 17.8662 1.0036 �0.7211 1.11 1.10 0.86

Lys (K) 97.7144 8.0786 1.4600 �0.6229 1.16 0.74 0.98

Asn (N) 50.5075 17.7804 0.6396 �0.7211 0.67 0.89 1.35

Glu (E) 57.1582 25.5726 1.0315 �0.9298 1.51 0.37 0.84

Asp (D) 37.4173 25.2736 0.6058 �0.9298 1.01 0.54 1.20

Arg (R) 90.8008 35.3095 1.2424 �1.4797 0.98 0.93 1.04

Pro (P) 69.2297 0.0000 0.3226 0.0000 0.57 0.55 1.59

aNotations used: SL, surface area of side chain with lipophilic potential; SH, surface area of side chain with hydro-

philic potential; L, lipophilic index of side chains; H, hydrophilic index of side chains; P�, � potency index; P�, �

potency index; Pc, coil potency index.
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three parameters are the secondary structural potency indices of

amino acid residues. The curves of correlation coefficients R is

shown in Figure 3, where Ra is for the iterated coefficients

{a
ðnÞ
l } and Rb is for the iterated coefficients {bðnÞ� }. The average

residue Q between the predicted bioactivities and the experimen-

tal bioactivities of octapeptides are shown in Figure 4, where Qa

is for {a
ðnÞ
l } and Qb is for {bðnÞ� }. It has been observed that, after

5–6 iterations, the iterative result is converged smoothly. The

converged sensitive coefficient sets {a
ðnÞ
l } and {bðnÞ� }, as well as

Table 2. Experimental and Predicted Peptide Substrate Cleavage Activities of SARS Coronavirus

3C-like Proteinase.

Namea Sequenceb (Kcat/Km)rel
a log(Kcat/Km)expt

a log(Kcat/Km)calc
c log(Kcat/Km)pred

d

S12 SAVLQ;SGF 1.0000 0.0000 �0.0338 �0.0396

P5L LAVLQ;SGF 3.9000 1.3610 1.7060 1.9394

P5T TAVLQ;SGF 3.6600 1.2975 1.3252 1.3306

P5V VAVLQ;SGF 3.5900 1.2782 1.0332 0.9280

P5A AAVLQ;SGF 3.3300 1.2030 0.6025 0.3333

P4L SLVLQ;SGF 0.1500 �1.8971 �0.8152 0.4788

P4T STVLQ;SGF 1.4700 0.3853 �0.5455 �0.9877

P4V SVVLQ;SGF 2.4400 0.8920 �0.3388 �0.5486

P3L SALLQ;SGF 0.8700 �0.1393 0.5149 1.0315

P3T SATLQ;SGF 1.1900 0.1740 0.2043 0.2272

P3A SAALQ;SGF 0.1900 �1.6607 �0.3850 0.3295

P3K SAKLQ;SGF 2.6800 0.9858 �0.0289 0.1694

P10A SAVLQ;AGF 2.0400 0.7130 0.4130 0.1084

P10G SAVLQ;GGF 0.8300 �0.1863 0.2582 Outlier

P2M SAVMQ;SGF 0.2080 �1.5702 �1.4607 �1.3500

P2F SAVFQ;SGF 0.0460 �3.0791 �3.5378 �4.5758

P2V SAVVQ;SGF 0.0056 �5.1850 �3.6989 �2.9612

P2A SAVAQ;SGF 0.0046 �5.3817 �6.0456 �5.5328

S21 TVVLQ;SGF 3.9800 1.3813 1.0201 0.9197

S22 TVTLQ;SGF 2.6200 0.9632 1.2582 1.4161

S23 VVTLQ;SGF 2.4300 0.8879 0.9663 0.9465

S24 TVKLQ;AGF 4.3100 1.4609 1.4717 1.5935

aThe names of peptides are taken from Ref. 28. S12 is the parent peptide in the training set. All other peptides are

mutated from it.
bThe notation ; indicates the cleavage site of SARS coronavirus 3C-like proteinase.13

cCalculated bioactivities of 22 octapeptides after 10 iterative calculations.
dPredicted bioactivities of 21 octapeptides in Jackknife test.

Figure 3. The correlation coefficients between experimental and

predicted bioactivities. Ra is for {a
ðnÞ
l } iteration and Rb is for {b

ðnÞ
j }

iteration. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 4. The value of Q between predicted bioactivities and exper-

imental bioactivities of octapeptides. Qa is for {a
ðnÞ
l } iteration and

Qb is for {b
ðnÞ
j } iteration. The Q is the average square root of the

summation of squared differences between predicted bioactivities

and experimental bioactivities (cf. Eq. 10). [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

2047Peptide Reagent Design

Journal of Computational Chemistry DOI 10.1002/jcc



the corresponding R and Q for the octapeptides in the training

dataset are given in Table 3.

The two sets of coefficients {a
ðnÞ
l } and {bðnÞ� } and eq. (4) can

then be used for the bioactivity prediction of new peptide

reagents. Jackknife test35 is performed for evaluating the predic-

tive power of AABPD approach. The predicted bioactivities of

the 22 octapeptides obtained in the Jackknife test are listed in

Table 2 with correlation coefficient R ¼ 0.8472 and predictive

residue Q ¼ 60.7375. In the Jackknife test we found that the

octapeptide P10G (SAVLQ;GGF) is an outlier with an very high

predicted bioactivity. This may be caused by the small training

dataset with limited diversity. In octapeptide P10G the residue

serine (S) in position R10 of the parent octapeptide S12

(SAVLQ;SGF) is replaced by glycine (G). On this position only

two mutations are made. In the Jacknife test for P10G in training

Table 3. The Converged Sensitive Coefficient Sets {a
ð10Þ
l }, {b

ð10Þ
a },

Correlation Coefficient R, and Average Residue Q of 22 Octapeptides in

Training Calculation and in Jackknife Test.

4 Parameters 7 Parameters

a1(S
L) ¼ 0.16205 a1(S

L) ¼ 0.64288

a2(S
H) ¼ 0.94055 a2(S

H) ¼ �0.60573

a3(L) ¼ 45.11523 a3(L) ¼ 31.18381

a4(H) ¼ 78.24573 a4(H) ¼ 7.90862

– a5(P�) ¼ 50.47151

– a6(P�) ¼ �26.15246

– a7(Pc) ¼ �3.59095

– –

R R
Q Q

Jackknife Test

R –

Q –

b1(R5) ¼ 0.01925 b1(R5) ¼ 0.01875

b2(R4) ¼ �0.01321 b2(R4) ¼ �0.04513

b3(R3) ¼ 0.01682 b3(R3) ¼ 0.00510

b4(R2) ¼ 0.10315 b4(R2) ¼ 0.11854

b5(R1) ¼ �0.75093 b5(R1) ¼ �0.10948

b6(R
0
1) ¼ 0.01418 b6(R1

0) ¼ 0.00863

b7(R
0
2) ¼ 26.69763 b7(R2

0) ¼ �0.26087

b8(R
0
3) ¼ �0.79655 b8(R3

0) ¼ 0.05023

0.9375 0.9705

60.4804 60.2305

0.8472 –

60.6375 –

Figure 5. The experimental and predicted bioactivities of octapepti-

des in training set of 22 octapeptides after 10 iterations. [Color fig-

ure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Table 4. Experimental and Predicted Bioactivities of 40 Epitope-Peptides.

Name Sequence Exp. pIC50
a Calc. pIC5

b Pred. pIC50
c

P01 WLEPGPVTA 6.082 6.341 6.582

P02 ITSQVPFSV 6.196 6.495 6.568

P03 FLEPGPVTA 6.898 7.163 7.465

P04 ITAQVPFSV 7.020 6.799 6.726

P05 YLEPGPVTL 7.058 7.364 7.498

P06 YTDQVPFSV 7.066 7.498 7.758

P07 YLEPGPVTI 7.187 7.375 7.443

P08 YLEPGPVTV 7.342 7.453 7.461

P09 YLSPGPVTA 7.383 7.305 7.287

P10 IIDQVPFSV 7.398 7.667 7.707

P11 ITWQVPFSV 7.463 7.362 7.348

P12 ITYQVPFSV 7.480 7.302 7.234

P13 ILSQVPFSV 7.699 7.797 7.815

P14 IMDQVPFSV 7.719 7.717 7.717

P15 YLMPGPVTV 7.932 8.056 8.074

P16 WLDQVPFSV 7.939 7.574 7.285

P17 YLAPGPVTA 8.032 7.608 7.526

P18 YLYPGPVTV 8.051 7.998 7.975

P19 YLWPGPVTV 8.125 8.058 8.090

P20 ILYQVPFSV 8.310 8.603 8.648

P21 ILDQVPFSV 8.481 7.827 7.713

P22 YLFPGPVTA 8.495 8.131 8.069

P23 YLDQVPFSV 8.638 8.799 8.892

P24 ILFQVPFSV 8.699 8.623 8.605

P25 ILWQVPFSV 8.770 8.663 8.649

P26 WTDQVPFSV 6.145 6.273 6.381

P27 YLEPGPVTA 6.668 7.567 7.748

P28 ITDQVPFSV 6.947 6.526 6.643

P29 ITFQVPFSV 7.179 7.321 7.344

P30 FTDQVPFSV 7.212 7.094 7.028

P31 ITMQVPFSV 7.398 7.360 7.357

P32 YLSPGPVTV 7.642 7.191 7.124

P33 YLYPGPVTA 7.772 8.111 8.147

P34 YLAPGPVTV 7.818 7.495 7.466

P35 ILAQVPFSV 7.939 8.100 8.119

P36 ILMQVPFSV 8.125 8.661 8.749

P37 YLFPGPVTV 8.237 8.017 7.981

P38 YLMPGPVTA 8.367 8.169 8.135

P39 YLWPGPVTA 8.495 8.171 8.112

P40 FLDQVPFSV 8.658 8.395 8.191

aThe experimental bioactivities pIC50 are taken from Ref. 38.
aCalculated bioactivities pIC50 of 9-peptides in training set.
bPredicted bioactivities pIC50 of 9-peptides in Jackknife test.
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set there is only one mutated octapeptide P10A on the position

R10, no sufficient information on this position. The comparison

between experimental and predictive bioactivities of the 21 octa-

peptides are shown in Figure 5.

Peptide-based vaccines, in which small peptides derived from

target proteins (epitopes) are used to provoke an immune reac-

tion, have attracted considerable attention as a potential means

both of treating infectious diseases and promoting the destruc-

tion of cancerous cells by a patient’s own immune system.36,37

With the availability of large sequence databases, computer

aided design of peptide-based vaccines has emerged as a promis-

ing approach for screening among billions of possible immune-

active peptides to find those likely to provoke an immune

response to a particular cell type. The second example is the

affinity prediction for epitope-peptides with class I MHC (major

histocompatibility complex) molecules. Forty samples of 9-pepti-

des are used in the training set, which are taken form Ref. 38.

The 9-peptide sequences, the experimental bioactivities pIC50,

and the predicted bioactivities in Jackknife test are shown in

Table4. In the training calculation we get the correlation coef-

ficient R ¼ 0.8988 and average residue Q ¼ 60.6246, and in

the Jackknife test we get the correlation coefficient R ¼ 0.8285

and predictive average residue Q ¼ 60.7949.

Discussion

The theoretical model of AABPD is built upon the structure fea-

tures of peptides with clear physical implications. A merit of the

peptide reagent design method developed in this paper is that

the binding free energy between peptide reagent Pi and the tar-

get peptide P0 is described by the physicochemical parameters

of amino acids at every sequence site. It is through eq. (4) that

has made it possible to not only predict the bioactivities of new

peptide reagents, but also describe the physical and chemical

features of an amino acid at every sequence position. This is

very helpful for designing peptide reagents, peptide analogues,

as well as peptide mimetics and modified peptides for drug de-

velopment. In the traditional QSAR only one set of predictive

coefficients {al} is used, that is for the physical parameters in

linear free energy equation. However, in the AABPD model two

sets of predictive coefficients {al} and {b�} are used for physi-

cal parameters and for the position of residues in peptide,

respectively. Two least square procedures are performed for {al}
and {b�} alternately and iteratively. In this way the predictive

residue Q decreases and the correlation coefficient R increases

step by step. In the first calculation example the first correlation

coefficient R(0) ¼ 0.6175 is the results of traditional QSAR

method and the converged correlation coefficient R(10) ¼ 0.9705

is the improved result with the AABPD method. Usually after

5–6 iteration steps, the iterative procedure converged smoothly

for two sensitive coefficient sets {al} and {b�}. However, in the

case the diversification of peptides is very poor we may get very

bad solution, because of the matrix singularity problem. To build

a good training set with proper diversification, two criteria have

to be satisfied. First, the range of binding affinities in the test set

should not exceed the range of affinities in the training set.

Second, each amino acid at each position in the test set should

also be present at that position in the training set in different

peptides.

The iterative double least square (IDLS) technique has been

used in more than 10 peptide systems. In all these cases we got

converged results. So far we have not observed any unconverged

example. In the IDLS technique general inverse matrix method

is applied for the least square solution of simultaneous linear

equation set. This is a very robust method. Only in the case the

diversification of peptide training set is very poor, we may get a

very bad solution because of the matrix singularity problem.

Conclusion

The linear free energy equation plays an important role in the

QSAR study. The physicochemical parameters used in the linear

free energy equation should describe the binding free energy

from all aspects and include all factors that affect the interaction

and recognition between ligand and receptor. Generally speak-

ing, more physical parameters are used in linear free energy

equation, better results may be achieved. However, sometimes

additional parameters do not work harmonically and may con-

flict each other. For rational drug design, chemists developed

many good parameters for QSAR study. However, the physico-

chemical parameters of amino acid residues for peptide design

are not so ready. For further improvement of AABPD, better

linear free energy equations and more optimized physicochemi-

cal parameters are needed.
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