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Abstract 
The position weight matrix, also called the position-specific scoring 
matrix, is the commonly accepted model to quantify the specificity of 
transcription factor binding to DNA. Position weight matrices are used 
in thousands of projects and software tools in regulatory genomics, 
including computational prediction of the regulatory impact of single-
nucleotide variants. Yet, recently Yan et al. reported that "the position 
weight matrices of most transcription factors lack sufficient predictive 
power" if applied to the analysis of regulatory variants studied with a 
newly developed experimental method, SNP-SELEX. Here, we re-
analyze the rich experimental dataset obtained by Yan et al. and show 
that appropriately selected position weight matrices in fact can 
adequately quantify transcription factor binding to alternative alleles.
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Introduction
Gene regulatory regions constitute an important part of non-coding DNA which defines both the global development
program of a mammal and individual traits of a particular organism. Specific recognition of DNA sites by transcription
factors (TFs) provides the gear system linking individual genomic variants to phenotypes.1 The commonly accepted
model to quantify the specificity of transcription factor binding to various DNA sites is the position weight matrix
(PWM), which specifies additive contributions of individual nucleotides to the protein-DNA binding energy.2,3 Recently
Yan et al.4 presented a powerful high-throughput experimental technique, SNP-SELEX, which allows measuring
differential TF binding to alternative alleles in vitro. Yan et al. used the experimental data they had obtained for many
TFs to assess the performance of PWM in predicting differential TF binding to alternative alleles and compare it to that of
deltaSVM, a more complex method based onmachine learning. As a result, they reported that in this setting “the position
weight matrices of most transcription factors lack sufficient predictive power”. Keeping in mind that PWMs are
extensively used for prediction of the regulatory potential of single-nucleotide variants5–8 the finding of Yan et al. could
be devastating for a vast array of research projects and software tools.

Yan et al. tend to explain the poor performance of PWMs bymodel limitations, primarily, arising from the oversimplistic
assumption that nucleotides occupying different positions in the binding site provide independent contributions to the
binding energy. Here we re-analyze the dataset of Yan et al. and argue that the poor PWM performance in predicting
differential transcription factor binding to alternative alleles detected by SNP-SELEX is to a major extent explained not
by the principle limitations of PWM as a mathematical construction but rather by particular inadequate PWMs for TFs
under study.We show that the careful selection of PWMs of many TFs from a public database quantitatively explains the
differential TF binding to allelic variants with reliability comparable to deltaSVM.

Results
To re-assess PWM performance, we used PWMs stored in the CIS-BP database,9,10 which contains PWMs constructed
from data obtained with different experimental techniques for thousands of TFs for different species. With the objective
of selecting the PWM appropriate for quantifying differential allele binding of a TF, for each of 129 TFs assessed in Yan
et al.we extracted an extended set of candidate PWMs, with a median of 32 PWMs per TF. The overall distribution was
non-uniform e.g. there were only 2 candidate PWMs for ZNF396 and over a thousand for FOXA2, see Extended data,
Supplementary Table S1.

Through cross-validation on the 1st batch of SNP-SELEX data following the strategy of Yan et al., we selected the best
PWMCIS-BP for each TF (see “Selecting the best PWMs and estimating PWMperformance with SNP-SELEX data” in the
Methods). There was no correlation between the prediction performance (area under precision-recall curve, AUPRC) and
the number of tested PWMs per TF (r = �0.07, P = 0.425). Many of the best-performing PWMs were originally
constructed from the data related not to the target TF but to other TFs sharing the same DNA-binding domain as the TF of
interest. Some PWMs were based upon the TF binding data from different species. We denote by ΔPWMCIS-BP the
difference of the allelic scores predicted with PWMCIS-BP and by ΔPWMMult the results of PWMs obtained from
HT-SELEX data using the multinomial algorithm11 and assessed by Yan et al.4

Yan et al. provide the experimental differential binding scores for each SNP (the “pbSNP” scores). We compared these
scores with ΔPWMCIS-BP predictions. For a complete set of 816594 TF-SNP pairs (Figure 1a), the Pearson correlation
coefficient was comparable to that observed by Yan et al. (0.531 vs 0.534 in Yan et al., see their Figure 2a). Yet, if only
SNPs with a strong predicted binding are included (P < 10-4 for the PWM score of a stronger bound allele) then a much
higher correlation (r ~ 0.828) is achieved, see Figure 1b. Finally, if only themost strongly bound TF is considered for each
SNP (as in Figure 3a of Yan et al.), the respective correlation reaches 0.711, comparable to -0.777 reported for deltaSVM
in Yan et al. (compare to their Figure 1c).

To assess ΔPWMCIS-BP performance at varying binding affinity ranges we, similarly to Yan et al., categorized the SNPs
into five quantiles based on their observed affinities (“OBS” scores) and assessed the performance of ΔPWMCIS-BP

separately for each quantile. For all quantiles but the lowest (the weakest bound sites) ΔPWMCIS-BP outperformed
ΔPWMMult of Yan et al. Notably, the performance of ΔPWMCIS-BP was especially high for the middle quantiles and for
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the highest quantile was on par with deltaSVM (see Supplementary Figure S1, compare with Extended data Figure 7 in
Yan et al.). Particularly, for strongly bound SNPs from high quantiles in the first SNP-SELEX batch, ΔPWMCIS-BP did
not display any TFswith a very small AUPRC (i.e. prediction failures), the othermetric for which deltaSVMdramatically
outperformed ΔPWMMult.

Next, we compared the overall performance of ΔPWMCIS-BP for different TFs at the 1st SNP-SELEX batch. For more
than a half (72 of 129) of transcription factorsΔPWMCIS-BP achieved reliable predictions fulfilling the same criterion as in
Yan et al. of the AUPRC > 0.75, see Figure 2a. This is 3 times more transcription factors with reliable PWM predictions
than reported in Yan et al. for ΔPWMMult (only 24 out of 129). Notably, we obtained good predictions in some cases
reported as markedly underperforming such as FOXA2 (compare Figure 2b with Figure 2b of Yan et al.). Another TF
performingmarkedly poorly for PWMMult was IRF3, but the best PWMCIS-BP performed better than bothΔPWMMult and
deltaSVM (AUPRC for ΔPWMCIS-BP of 0.298 as compared to 0.184 of deltaSVM). In some cases, the predictive power
of ΔPWMCIS-BP went in line with that of ΔPWMMult, for instance, TFAP transcription factors in both cases displayed
outstanding performance (AUPRC of 0.9 for ΔPWMMult and 0.92 for ΔPWMCIS-BP) whereas E2F family transcription
factors in both cases performed worse (AUPRC of 0.4 for ΔPWMMult and 0.42 for ΔPWMCIS-BP).

In fact, for 34 transcription factors, PWMCIS-BP outperformed advanced models of deltaSVM (Figure 2c). 5-fold cross-
validation showed that models reaching higher AUPRC simultaneously had a lower variance in prediction quality across
individual folds (Figure 2d). Furthermore, we tested the PWMs on the independent 2nd batch data (Figure 2e, compare
with Figure 3d of Yan et al.), and it also showed competitive albeit lower performance, with 36 of 124 transcription
factors passing 0.75 AUPRC. Finally, we tested if the PWM predictions agreed with the allelic binding ratios in HepG2
ChIP-seq data and found a small but marginally significant correlation (Figure 2f, r = 0.194, P = 0.052) for 101 SNPs
tested in Yan et al. and reaching r = 0.235 (P = 0.047) for a subset of 72 SNPs with significant PWMCIS-BP hits (motif P-
value < 0.005), in contrast to almost zero correlation for ΔPWMMult reported in Yan et al.

Discussion
Our approachmimics amachine learning setup, where the best model is selected ("trained") through cross-validation on a
first experimental data set (1st batch of the SNP-SELEX data), and then additionally independently validated on the
second experimental data set (2nd batch of SNP-SELEX data). As we select from a finite and typically small set of
candidate PWMs, the risks of overfitting are minimized, and the resulting performance was not correlated with the
number of ‘candidate’ PWMs. The utilized layout allowed us to pick up the best suited PWM independently from the
original data or motif discovery method used for PWM construction, yet maintaining the main PWM limitations, such as
the assumption of the independent contributions of nucleotides at different TFBS positions.

The lower performance of PWMs for TFBS recognition as compared with more complex models was reported in many
publications.12–14 The popular explanation blames the assumption of positional independence of PWM scores, which
comes short of taking into account the marked correlations of nucleotides located at neighboring or even distant positions
of binding sites.15–17 This shortcoming is also considered over-restrictive for PWM applications in predicting the effects
of single nucleotide variants on TF binding,4,18 which has recently come into the spotlight of modern genetics where the
advent of complete genome sequencing brought about the need for interpretation of phenotypes associated with

Figure 1. PWM predictions of differential TF binding to SNPs correlate with SNP-SELEX estimates. Hex-plots
of PBS scores (Y-axis) vs ΔPWMCIS-BP predictions (X-axis) for different sets of SNPs, analogous to Figure 2a and
Figure 3a in Yan et al., with PCC and two-sided t-test P-values displayed. a. Complete set of 816594 TF-SNP pairs for
129 TFs that were used to compare the performance of deltaSVM vs ΔPWM in Yan et al. b. A subset of 35837 TF-SNP
pairs overlapping strongPWMhits (P < 10-4 for a stronger boundallele). c. A subset of 84962 TF-SNPpairs obtainedby
considering only the TF with the highest PBS score for each SNP (as in Figure 3a of Yan et al).
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regulatory variants.19,20 Here we suggest an alternative explanation of inadequate PWM performance in predicting the
effects of single-nucleotide variants on TF binding. In many cases, the reason is an inadequate PWM construction or
selection procedure.

Besides technical difficulties in proper “training” a PWM through motif discovery from different types of experimental
data, the particular experimental context may influence the applicability of the resulting PWM. Careful selection of
PWMs from a pool of alternative existing models results in an apparent improvement of the quantitative assessment of
preferential binding to single-nucleotide variants, especially for high-scoring TFBS. In many cases, the prediction power
becomes comparable to that of the significantly more complex model such as deltaSVM.We specifically emphasize that
in our study all selected PWMCIS-BP were genuine PWMs following the classic assumption of the independent
contribution of positional scores.

Summing up, our results do not compromise the high performance of deltaSVM,12 used by Yan et al. as an advanced
substitution of position weight matrices (PWMs). However, properly selected PWMs achieve performance that is very
close and in some cases even better than that of deltaSVM. Despite the simplicity of the PWMmodel, its construction is

ba c

d e f

�

Figure 2. Re-evaluation of position weightmatrices with the SNP-SELEX data. a. Comparison of performance of
Yan et al. ΔPWM (x-axis) and best CIS-BP position weight matrices (PWMs) in predicting preferential binding SNPs in
the 1st batch on the SNP-SELEX data. Each point denotes one of 129 TFs, violet and green points denote inferred
and direct PWMs, respectively (see the Methods). Both axes show area under the precision-recall curve (AUPRC)
values. Transcription factors (TFs) shown in Figure 2bof Yan et al. are highlighted in orange and labeled. Dashed lines
denote AUPRC of 0.75. b. Examples of the precision-recall curves showing performance of different PWMmodels in
predicting preferential binding SNPs (single-nucleotide polymorphisms) as in Figure 2b of Yan et al. c. Comparison of
performance of deltaSVM (y-axis) and best CIS-BP PWMs (x-axis) in predicting preferential binding SNPs identified in
the 1st batch of SNP-SELEX. Each point denotes one of 129 TFs, violet and green points denote inferred and direct
PWMs, respectively. Both axes show mean AUPRC values obtained by 5-fold cross-validation (cv). Dashed lines
denote AUPRC of 0.75. d. Variance of performance of CIS-BP PWMs (x-axis: mean AUPRC, y-axis: s.d.) in 5-fold cross-
validation using the complete data of the 1st batch of SNP-SELEX. Each point denotes oneof 129 TFs, violet andgreen
points denote inferred and direct PWMs, respectively. e. Comparison of performance of deltaSVM (y-axis) and best
CIS-BP PWMs (x-axis) in predicting preferential binding SNPs identified in the 2nd batch of SNP-SELEX. Each point
denotes one of 87 TFs, violet and green points denote inferred and direct PWMs, respectively. Both axes show
AUPRC values. Dashed lines denote AUPRC of 0.75. f. Correlation of allelic biases of DNA binding detected from
ChIP-Seq experiments in HepG2 cells by Yan et al. and those predicted by ΔPWM of Yan et al. (blue) and best CIS-BP
PWMs (orange). Pearson correlation coefficient (r) and the respective P-value are shown. The allelic binding ratio is
computed as in Yan et al.; 101 transcription factor-SNP pairs involving 68 unique SNPs and 6 transcription factors
(ATF2, FOXA2, HLF, MAFG, YBX1, and FOXA1) are shown.
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not trivial and its success depends both on the motif discovery algorithm and reliability of the training data. In our case,
almost half of the best PWMswere derived from related TFs, including 8 cases of PWMs based on experimental data from
other species. The experiments used to obtain the best PWMs were also of different types, including ChIP-Seq, protein-
binding microarrays, and SMiLE-Seq data, see Extended data, Supplementary Table S1.21 Thus, it is important to
consider various sources of PWMs and select those the most suitable by proper benchmarking. In the context of applying
PWMs to analyze regulatory variants, SNP-SELEX of Yan et al. provides rich, unique, and practically useful data.

The objective of our study is by nomeans to undermine the necessity of complex TFBSmodels with dependent positional
contributions. Advanced multiparametric and alignment-free approaches such as deltaSVM appear very likely to
shape the oncoming future of transcription factor binding site models. Rather, we want to underline that the prediction
performance of transcription factor binding sites in its current stage is more influenced by model training protocols than
by model structure restrictions. PWMs still can deliver a solid standard in representation and bioinformatics analysis of
the transcription factor binding sites, including assessment of the functional impact of single nucleotide variants in gene
regulatory regions. In addition, we underline that better defined ‘baseline’ PWMs or PWM selection procedures are
required for the proper evaluation of advanced models. It is important that such ‘baseline’ TFBS models, while certainly
being handicapped by design, still reachmeaningful prediction quality. These are good news for thousands of researchers
who still use the ‘legacy’ PWM scoring for practical applications in regulatory genomics and bioinformatics.

Methods
PWMs used in the study
As a source of candidate PWMswe used theCIS-BP (Catalog of Inferred Sequence Binding Preferences) collection9,10 of
pre-made matrices. For each TF, we gathered all PWMs assigned to the TF and added PWMs for related proteins sharing
similar DNA binding domains. This was motivated by the results of the benchmarking study of Ambrosini et al.2 where a
PWM for some TF often displayed poorer TFBS recognition power than a PWM for some different TF but with the same
DNA-binding domains.

The starting set of position frequency matrices was extracted from TF_Information_all_motifs.txt of CIS-BP 2.0 that
includes models derived from direct experimental data for each TF and models that can be inferred given the TF family-
specific threshold on DNA-binding domain similarity, see Ref. 11. In Figure 2 such PWMs are referred to as ‘direct’ and
‘inferred’. All position frequency matrices were converted to log-odds PWMs as in Ref. 22 with an arbitrarily selected
word count of 100, a pseudocount of 1, and uniform background nucleotide probabilities. For each TF, the set of PWMs
was additionally extended by considering related TFs, i.e. PWMs for all ETV* TFswere added to the ETV1 PWM set, all
FOX* (Forkhead box) PWMs were added to the FOXA2 PWM set, etc. (e.g. YY1 and YY2 PWM sets were identical).
This procedure was not performed for ZNF* (zinc finger) TFs as these TFs can recognize very dissimilar motifs and thus
additional PWMs of other ZNFs would unlikely provide any benefit.

Determination of transcription factor binding preference using PWMs
To assess with a particular PWMwhether an SNV affects transcription factor binding, we used PERFECTOS-APE 6 that
estimates the log-fold change of motif P-values computed for best PWM hits detected among sites overlapping the first
and the second of two alternative alleles. To use the prediction as a binary classifier, we treated the cases with P > 0.005 at
both alleles as predicted negatives and used the log-fold change as the prediction score in the remaining cases. The auc
function of the sklearn.metrics Python package was used to estimate the area under the precision-recall curve (AUPRC).

Estimating PWM performance with SNP-SELEX data
To provide a fair assessment, we mimicked the benchmarking protocol of Yan et al. Particularly, true positives and true
negatives were selected from the SNP-SELEX data as follows. 1st batch data positives: PBS P-value < 0.01 and OBS
P-value < 0.05; negatives: PBS P-value > 0.5 and OBS P-value < 0.05. 2nd batch data positives: PBS P-value < 0.01,
negatives: PBS P-value > 0.5. For each TF, we tested each CIS-BP PWM from its PWM set. For each TF, the PWM
reaching the highest AUPRC on the 1st batch data was selected for evaluation against the best PWM on the 1st batch
(Figure 2a) and against deltaSVM on the 2nd batch of SNP-SELEX data (Figure 2e). Performance estimates for
deltaSVMmodels (used in Figure 2c,e) were extracted from Supplementary Table S7 of Yan et al. Performance estimates
ofΔPWMMult (used in Figure 2a) were kindly shared on our request by the authors.4We alsomimicked the stratified five-
fold cross-validation procedure used by Yan et al. The mean of AUPRC across the folds was used to compare the
performance of ΔPWMCIS-BP with deltaSVM of Yan et al. at the first batch of SNP-SELEX data (Figure 2c).

Applying PWMs for analysis of allele-specific binding
The data on allelic binding ratios at individual SNPs and respective ΔPWM predictions of Yan et al. (Figure 2f, compare
to Figure 2d of Yan et al.) were kindly shared on our request by the authors. The data included 193 TF-SNP pairs
demonstrating allelic imbalance with 101 of 193 pairs annotated with the ΔPWM predictions. For these SNPs,
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we obtained PWMpredictions with the same protocol as for the SNP-SELEX data using the best PWMs selected with the
1st batch of the SNP-SELEX data.

Data availability
Source data
Original data on preferential binding SNPs as well as ΔPWM and deltaSVM predictions are provided in the supple-
mentary materials section of the Yan et al. paper.4

CISBP Human PWMs collection was extracted from CIS-BP 2.0.9,10

Extended data
Figshare: PWM-evaluation-using-SNP-SELEX, https://doi.org/10.6084/m9.figshare.16906789.v1.21

This project contains the following extended data:

• Supplementary table S1 (Overview of PWMs and their performance in recognizing SNPs affecting transcrip-
tion factor binding in SNP-SELEX data.)

• Supplementary figure S1 (Performance of ΔPWMCIS-BP in predicting weak and strong TF binding sites.)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).
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Though I still disagree with authors on the principal motivation of study, i.e. I mean that the 
traditional PWM and the alternative models neither good or bad, they predict sites of different 
structure. But let the current paper reflects the advantages of PWMs, so I agree that the 
manuscript could be accepted
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The Yan et al. article is a useful addition to the literature so questioning the validity of their results 
is also useful. However, this article makes an exaggerated claim of the extent to which Yan et al. 
reduce the utility of PWMs. 
 
PWMs are already known to be potentially flawed models, varying from very accurately predicting 
DNA binding specificity to poorly doing so, with potential confounders like cofactors 1 and indirect 
binding 3. The extent to which these issues apply can depend on the method used to determine 
the PWM. For example, using ChIP-seq data can create a composite motif incorporating part of a 
cofactor. Using PBM may eliminate this effect, but can produce poor binding specificity in some 
cases, possibly because either the specificity is mediated by cofactor requirements or because 
binding is indirect 4,5. 
 
While I am specifically mentioning older approaches like PBMs here, any in vitro or in silico method 
potentially has similar issues. 
 
For this reason, I advocate using a range of methods to assess motif quality 2. 
 
As regards SNPs and other variability, this sort of issue has to be taken into account, otherwise 
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any variation in specificity may not correspond to in vivo reality. 
 
So, back to the approach of this paper: selecting PWMs that match specific criteria for reliability. It 
is not clear to me that this in any way invalidates the results of Yan et al. as there is variability in 
the predictive quality of PWMs, given the potential for confounders. 
 
I would like to see a clearer explanation of the extent to which Yan et al. actually diminish the 
utility of PWMs (noting this is in a specific context, assessing small genomic variants) and the 
extent to which this review generalises beyond carefully selected PWMs.. 
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Sergey Abramov, Vavilov Institute of General Genetics, Russian Academy of Sciences, 
Moscow, Russian Federation 

The Yan et al. article is a useful addition to the literature so questioning the validity of 
their results is also useful. However, this article makes an exaggerated claim of the 
extent to which Yan et al. reduce the utility of PWMs. 
 
We did our best to clarify our claim as it was also questioned by Dr. Levitsky. 
 
 
PWMs are already known to be potentially flawed models, varying from very 
accurately predicting DNA binding specificity to poorly doing so, with potential 
confounders like cofactors 1 and indirect binding 3. The extent to which these issues 
apply can depend on the method used to determine the PWM. For example, using 
ChIP-seq data can create a composite motif incorporating part of a cofactor. Using 
PBM may eliminate this effect, but can produce poor binding specificity in some cases, 
possibly because either the specificity is mediated by cofactor requirements or 
because binding is indirect 4,5. 
 
We fully agree that the data source and the computational procedure used to derive the 
TFBS model would significantly affect the result in terms of whether it reflects the genuine 
TF binding specificity or significantly depends on confounding factors. In this paper we 
restricted ourselves to a more specific context of using PWMs for quantifying the variants 
identified with the SNP-SELEX, which is an in vitro assay, so indirect binding and cofactors 
do not influence the outcome. To make it clear, we have revised the Introduction section of 
our manuscript.  
 
 
For this reason, I advocate using a range of methods to assess motif quality 2. 
 
Indeed. A comprehensive assessment of motif models using different types of experimental 
data was performed e.g. in Ambrosini et al. 2022. In this study, we did not focus on selecting 
the optimal PWMs for a wide range of practical applications or in terms of representing in 
vivo binding. Our aim was to demonstrate that PWMs provide the type of a model, which is 
able to show a reasonable performance in classifying differentially bound oligonucleotides 
with single-nucleotide substitutions. 
  
 
So, back to the approach of this paper: selecting PWMs that match specific criteria for 
reliability. It is not clear to me that this in any way invalidates the results of Yan et al. 
as there is variability in the predictive quality of PWMs, given the potential for 
confounders. I would like to see a clearer explanation of the extent to which Yan et al. 
actually diminish the utility of PWMs (noting this is in a specific context, assessing 
small genomic variants) and the extent to which this review generalises beyond 
carefully selected PWMs. 
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The same issue was pointed out by Dr. Levistky and we did our best to clarify the aim of the 
study in the revised version of the manuscript. We believe, that quantifying the effects of 
single nucleotide variants on TF binding is an important practical problem emerging in the 
increasingly influential field of personalized genomics, as according to the recent reports up 
to 80% of causal variants are found in the regulatory regions [see e.g. 
https://www.medrxiv.org/content/10.1101/2021.06.08.21258515v2]. Even though this is a 
limited problem, it is worth clarifying the PWM performance for this particular application. 
We have added the necessary information in the Introduction section.  
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Victor G. Levitsky  
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Federation 

1. 
Boytsov et al. in the Abstract of their correspondence cited Yan et al. paper 
Yet, recently Yan et al. presented new experimental method for analysis of regulatory variants 
and, based on its results, reported that "the position weight matrices of most transcription factors 
lack sufficient predictive power". Here, we reanalyze the rich experimental dataset obtained by 
Yan et al. and show that appropriately selected position weight matrices in fact can successfully 
quantify transcription factor binding to alternative alleles… 
 
But actually, Yan et al. in the Abstract wrote: 
…the position weight matrices of most transcription factors lack sufficient predictive power, 
whereas the support vector machine combined with the gapped k-mer representation show much 
improved performance, when assessed on results from independent SNP-SELEX experiments 
involving a new set of 61,020 sequence variants…. 
I think that Yan et al. are not wrong 
Since, in particular, Yan et al. also wrote that 
…(1) We reasoned that the poor performance of many PWMs was probably because they did not 
take into account dinucleotide interdependency in transcription factor–DNA interactions and the 
influence of flanking DNA sequences11,12. Previous studies have shown that dinucleotide 
interdependency exists for some transcription factor dimers4. For example, according to the PWM 
model, the SNP rs79124498—located within a binding site of HLF, a bZIP family transcription 
factor that binds DNA as homodimers—would have little effect on HLF binding. However, SNP-
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SELEX indicated that the G allele bound more strongly than the T allele to HLF. This could be 
caused by the dinucleotide interdependency between position 2 (the SNP position) and position 10 
in the binding site (Fisher’s exact test P < 2.2 × 10−16, odds ratio = 3.34)… 
…(2) PWM performed poorly for SNPs located in low-affinity binding sites of transcription factors. 
However, this limitation could be overcome by using deltaSVM. When we categorized SNPs into 
five quantiles on the basis of their binding affinities as measured by OBS, and assessed the 
performance of PWM and deltaSVM in predicting their allelic binding by fivefold cross-validation or 
using the novel batch of SNP-SELEX experimental results (Extended Data Fig. 7), deltaSVM 
outperformed PWM in all quantiles, particularly in the lower quantiles corresponding to weak 
transcription factor binding sites….. 
 
Does Boytsov et al. not agree with Yan et al. in these two points? 
 
As I know, the alternative model can outperform the standard PWM model (e.g. BaMM, Siebert,M. 
and Söding,J. 2016 Bayesian Markov models consistently outperform PWMs at predicting motifs in 
nucleotide sequences. Nucleic Acids Res., 44, 6055–6069). At least this should be if an alternative 
model incorporates a PWM model (as BaMM does). 
 
Hence, Yan et al. compared PWM (e.g. in BEESEM realization) and deltaSVM, and proved that 
PWMs are worse than deltaSVM. Boytsov et al. used additional PWMs from public databases such 
as CIS-BP to select the best performed PWM. This is actually proves that ready PWMs (that 
respects to the same family, i.e. to other TFs with the same DNA binding domain) may be quite 
successive, but this does not prove that PWMs are better than deltaSVMs. This also does not imply 
that PWMs are good or bad. We should develop a special pipeline to compare PWMs and 
deltaSVMs (this is out of scope of paper). Boytsov et al. did not tried to incorporate the non-
traditional model deltaSVMs and data from CIS-BP to potentiate the performance of deltaSVMs. So 
about what the Boytsov paper? Hence, Boytsov et al. proved that BEESEM realization may be 
better if we incorporate CIS-BP data or what? 
 
Boytsov et al. concluded 
…However, properly selected PWMs achieve performance that is very close and in some cases 
even better than that of deltaSVM. Despite the simplicity of the PWM model, its construction is not 
trivial and its success depends both on the motif discovery algorithm and reliability of the training 
data… 
Any motif discovery algorithm does not use any motif library on the process of de novo search. 
Usually, motif libraries are applied to interpret enriched motifs (e.g. STREME and Tomtom in 
meme suite, https://meme-suite.org/meme/index.html) Hence, application of motifs library is not 
a step in de novo process. At this step, I again does not understand why Boytsov et al. compared 
Figure 1b with Fig. 2b of Yan et al. 
 
Overall, Boytsov et al. should draw attention to the point of disagreement with data or conclusion 
of Yan et al. paper. 
 
2. 
The TF classification by family is wrongly described. 
…For each TF, the set of PWMs was additionally extended by considering related TFs, i.e. PWMs for 
all ETV* TFs were added to the ETV1 PWM set, all FOX* (Forkhead box) PWMs were added to the 
FOXA2 PWM set, etc. (e.g. YY1 and YY2 PWM sets were identical). This procedure was not 
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performed for ZNF* (zinc finger) TFs as these TFs can recognize very dissimilar motifs and thus 
additional PWMs of other ZNFs would unlikely provide any benefit… 
This description does not explain several pair from Supplementary Data (Overview of best CIS-BP 
PWMs), e.g.ETV2 & FLI1 
The correct and default approach was described in the previous publication (Ambrosini G , et al. 
Genome Biol. 2020: Matrices were manually mapped to gene symbols and TF families from TFclass 
[Wingender E,et al.. Nucleic Acids Res. 2018] and CIS-BP). Moreover, the CIS-BP database contains 
TF PWMs that were already classified by families. 
 
3. 
Currently, links to Figure 1 are contained in the Introduction section. Although the format of 
correspondence paper is flexible, I propose that authors should either do not user various 
sections, or apply the standard sections, Introduction, Methods, Results, Conclusions/Discussion. 
 
References 
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Moscow, Russian Federation 

… But actually, Yan et al. in the Abstract wrote: …the position weight matrices of most 
transcription factors lack sufficient predictive power, whereas the support vector 
machine combined with the gapped k-mer representation show much improved 
performance, when assessed on results from independent SNP-SELEX experiments 
involving a new set of 61,020 sequence variants….  
I think that Yan et al. are not wrong… 
 
In fact, we do not challenge the authors' statement regarding the high performance of 
deltaSVM in predicting the SNP-SELEX results by sequence analysis. Particularly, we explicitly 
state that  
 
"...  our results do not compromise the high performance of deltaSVM, used by Yan et al. as an 
advanced substitution of position weight matrices (PWMs)" (paragraph 4 of Discussion).  
 
Yet, we strongly disagree with the authors' conclusion on the PWM performance ("lack 
sufficient predictive power") and believe that their comparison of the performance of the 
PWM and deltaSVM became one-sided in favor of deltaSVM due to an accidental selection of 
particular PWMs in their study. We believe that public databases contain PWM which can 
display much better performance in quantifying allele-specific binding and put it explicitly in 
the Introduction that  
 
“We show that the careful selection of PWMs of many TFs from a public database quantitatively 
explains the differential TF binding to allelic variants with reliability comparable to that of 
deltaSVM.” 
 
Again, we put into Discussion that 
 
“Summing up, our results do not compromise the high performance of deltaSVM, used by Yan et 
al. as an advanced substitution of position weight matrices (PWMs). However, properly selected 
PWMs achieve performance that is very close and in some cases even better than that of 
deltaSVM.”  
 
We have also added a detailed discussion on the subject into the Discussion section (see the 
response to the next question of the reviewer). 
 
 
Since, in particular, Yan et al. also wrote that …(1) We reasoned that the poor 
performance of many PWMs was probably because they did not take into account 
dinucleotide interdependency in transcription factor–DNA interactions and the 
influence of flanking DNA sequences…  
…(2) PWM performed poorly for SNPs located in low-affinity binding sites of 
transcription factors.  
Does Boytsov et al. not agree with Yan et al. in these two points? 
 
We agree with the theoretical limitations of position weight matrices regarding their 
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inability to account for non-additive contributions of particular nucleotides into protein 
affinities. Yet, it is important to distinguish between the general and well-known limitations 
of the PWM as a model and the low performance of particular matrices. In our opinion the 
poor performance of PWMs used in the study of  Yan et. al. was not due to the intrinsic 
inability of PWMs to classify TF binding preferences at particular TFBS, but rather due to the 
way the PWMs used in this study were selected/constructed. We prove it by providing the 
alternative PWMs that belong to the same class of mononucleotide models but perform 
better than the PWMs of Yan et al. and comparably to deltaSVM. We have added an explicit 
statement on this matter in the revised version of the manuscript. 
 
“The objective of our study is by no means to undermine the necessity of complex TFBS models 
with dependent positional contributions. Advanced multiparametric and alignment-free 
approaches such as deltaSVM appear very likely to shape the oncoming future of transcription 
factor binding site models. Rather, we want to underline that the prediction performance for 
transcription factor binding sites in its current stage is more influenced by model training 
protocols than by model structure restrictions. PWMs still can deliver a solid standard in 
representation and bioinformatics analysis of the transcription factor binding sites, including 
assessment of the functional impact of single nucleotide variants in gene regulatory regions. In 
addition, we underline that better defined 'baseline' PWMs or PWM selection procedures are 
required for the proper evaluation of advanced models. It is important that such 'baseline' TFBS 
models, while certainly being handicapped by design, still reach meaningful prediction quality.” 
 
 
… ready PWMs (that respects to the same family, i.e. to other TFs with the same DNA 
binding domain) may be quite successive, but this does not prove that PWMs are 
better than deltaSVMs. 
 
We used PWMs with the same DNA binding domains to increase the repertoire of candidate 
PWMs, from which the best PWM for assessing variants identified by SNP-SELEX 
experiments can be selected. To avoid confusion we have added two subsections to the 
Methods section: “PWMs used in the study” and “Selection of the best PWM for a TF”. In fact, 
carefully selected PWMs outperformed deltaSVM models for 34 of 129 TFs (see paragraph 3 
of Introduction in the manuscript and Figure 2), and many of these PWMs were initially 
constructed for different TFs and even different species (see Supplementary Table S1). This 
does not compromise better deltaSVM performance for other TFs (see Fig. 1e). 
 
 
Hence, Boytsov et al. proved that BEESEM realization may be better if we incorporate 
CIS-BP data or what? 
 
We did not test BEESEM or other types of motif discovery software or alternative PWM-like 
motif representations, and thus don’t know if they provide even better PWMs than we found 
in CIS-BP. We only used the existing published PWMs available in the CIS-BP database. SNP-
SELEX provides a rich data source to test various types of models in the task of predicting 
rSNP effects on transcription factor binding, but such testing does not fit the scope of our 
manuscript. 
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Hence, application of motifs library is not a step in de novo process. At this step, I 
again does not understand why Boytsov et al. compared Figure 1b with Fig. 2b of Yan 
et al. 
 
We did not discuss de novo motif discovery. The idea of our study was to verify whether the 
inadequate performance of PWMs reported in Yan et al. was related to the type of the 
model or if it characterized the particular PWMs they used. 
 
In fact, Yan et al. also did not construct PWMs through de novo motif discovery but used the 
pre-made PWMs of Yin et al. Similarly, we followed the suit and avoided de novo motif 
discovery in favor of reusing existing PWMs from CIS-BP. Selection of a single PWM from the 
pool of related PWMs can be considered as "training" of the model, and we fully replicated 
the approach of Yan et al. i.e. the cross-validation on the 1st batch of SNP-SELEX data.  
 
 
Overall, Boytsov et al. should draw attention to the point of disagreement with data 
or conclusion of Yan et al. paper. 
 
We did our best to better highlight the key idea of the study in the revised version of the 
manuscript and added an extensive Discussion section. 
 
 
2. The TF classification by family is wrongly described. … This description does not 
explain several pair from Supplementary Data (Overview of best CIS-BP PWMs), 
e.g.ETV2 & FLI1 
 
In the pool of possible PWMs for each TF, we included CIS-BP 'inferred' PWMs (as described 
in Methods) which belonged to TFs with a similar DNA-binding domain, hence there is no 
contradiction. We revised the Methods section, see the subsection “PWMs used in the 
study.” 
 
 
The correct and default approach was described in the previous publication 
(Ambrosini G , et al. Genome Biol. 2020: Matrices were manually mapped to gene 
symbols and TF families from TFclass [Wingender E,et al.. Nucleic Acids Res. 2018] and 
CIS-BP). Moreover, the CIS-BP database contains TF PWMs that were already classified 
by families. 
 
CIS-BP classification of DNA-binding domains is very general and leads to very wide sets of 
PWMs potentially applicable to a particular TF, if all PWMs across the TF family are 
considered. To reduce computational complexity, we made a compromise of including 
'inferred' motifs (see above) but only for related proteins by matching gene names and not 
relying on the detailed TF family annotation. Even with this simplification in the PWM 
selection, which greatly reduced the number of available PWMs, the resulting performance 
of the best PWMs was significantly better than the PWM performance reported by Yan et al. 
for the same TF. 
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Of note, in Ambrosini et al. (2020) we used all-vs-all testing strategy and reported cross-
family applicability of PWMs, although this is computationally ineffective in the practical 
selection of the best-performing matrices. 
 
 
3. Currently, links to Figure 1 are contained in the Introduction section. Although the 
format of correspondence paper is flexible, I propose that authors should either do 
not user various sections, or apply the standard sections, Introduction, Methods, 
Results, Conclusions/Discussion. 
 
We have revised the manuscript structure according to the reviewer’s suggestion.  
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