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In brief

Spatial transcriptomics offers a

revolutionary approach to studying gene

expression patterns within tissues by

integrating spatial information with

traditional transcriptomics sequencing

technologies. There is a vast amount of

spot deconvolution tools for spatial

transcriptomics data that aim to dissect

the spot-level aggregated gene

expression signals. However, these tools

are limited to single-sample analysis. This

paper presents a new multi-sample spot

deconvolution method that allows for

efficient and accurate cross-sample and

within-sample information sharing,

drastically improving the deconvolution

performance.
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THE BIGGER PICTURE Spatial transcriptomics (ST) enables the localization of cell types and their associ-
ated gene expression within tissue samples. In multi-cellular resolution ST, a tissue is divided into spots
consisting of several cells, and this sometimes creates difficulties for cell characterization and identification
in complex tissue samples. There are several methods for spot deconvolution, but most are limited to sin-
gle-sample analysis and require a reference cellular profile. Here, we present MUSTANG (MUlti-sample
Spatial Transcriptomics data ANalysis with cross-sample transcriptional similarity Guidance), a data anal-
ysis framework that permits multi-sample spot cellular deconvolution without a reference expres-
sion profile.
SUMMARY
Spatially resolved transcriptomics has revolutionized genome-scale transcriptomic profiling by providing
high-resolution characterization of transcriptional patterns. Here, we present our spatial transcriptomics
analysis framework, MUSTANG (MUlti-sample Spatial Transcriptomics data ANalysis with cross-sample
transcriptional similarity Guidance), which is capable of performing multi-sample spatial transcriptomics
spot cellular deconvolution by allowing both cross-sample expression-based similarity information sharing
as well as spatial correlation in gene expression patterns within samples. Experiments on a semi-synthetic
spatial transcriptomics dataset and three real-world spatial transcriptomics datasets demonstrate the effec-
tiveness of MUSTANG in revealing biological insights inherent in the cellular characterization of tissue sam-
ples under study.
INTRODUCTION

Recent advances in single-cell RNA sequencing (scRNA-seq)

have enhanced our knowledge of different cellular development

processes and can help better characterize heterogeneity of cell

types in many complex tissues.1–3 However, in original scRNA-

seq approaches spatial information is not retained when prepar-

ing samples with tissue dissociation and cell isolation.4 Thus,

scRNA-seq technologies lack the spatial resolution, which can

be crucial for characterizing cellular heterogeneity in the spatial

context when investigating tissue organizations.5,6 To address

this limitation, spatial transcriptomics (ST) technologies can

measure gene expression at a variety of spatial locations (spots)
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in a tissue sample while preserving the source position of each

expression datapoint.7 Since the processes by which cells

evolve into tissue compartments and interact with each other

depend on interactions with the environment around it, spatial

information that is naturally preserved by ST technologies pre-

sents ample opportunities for enhancing our understanding of

disease progression and tissue development.8

Despite the rapid development of ST technologies, many of

them still lack single-cell resolutions, such as Visium,9 Slide-

seq,10 and HDST.11 In these approaches, each tissue is divided

into a grid or lattice of spots, with each spot in the grid typically

being 50–100 mm wide, covering around 10–60 cells. These ST

technologies output a high-dimensional, spatially localized
ay 10, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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gene expression count vector for each spot, representing an

aggregated gene expression of the cells in the spot.12 As a

result of the accumulated measurement at each detected

spot, the measured signal is generally a mixture of multiple ho-

mogeneous or heterogeneous cell types, which may make it

difficult to explore the spatial distribution of cell types in com-

plex tissues.13 Spot deconvolution methods aim to separate

the contribution of different cell types in each spot, allowing

for cell-type identification and characterization. This enables

the analysis of cell-type-specific gene expression patterns

and functional annotations, which is necessary for understand-

ing the heterogeneity and cellular composition of complex tis-

sues.14 As a result of crucial need for methods capable of de-

convolving cell-type fractions for each spot to improve

interpretability and analysis of gene expression patterns,

recently several spot deconvolution tools have been developed

such as CARD,14 BayesTME,12 STdeconvolve,15 Cell2loca-

tion,16 DestVI,17 RCTD,18 EnDecon,13 SPOTlight,19 and

UniCell.20

One of the limitations of many existing spot deconvolution

methods is the requirement for a reference profile of cell-type

expression. Previous studies of RNA-seq data deconvolution

algorithms have shown that choice of reference is more impor-

tant than methods of choice in determining deconvolution per-

formance. A reference-free spot deconvolution pipeline that

does not rely on pre-existing reference atlases or datasets as-

sures an unbiased analysis of ST data.21 Recently, two refer-

ence-free tools, STdeconvolve and BayesTME, have been

developed to deconvolve underlying cell types comprising

multi-cellular spot resolution ST datasets.12,15 STdeconvolve

is based on latent Dirichlet allocation (LDA), a generative statis-

tical model commonly used in natural language processing for

discovering latent topics in collections of documents.15 On the

other hand, BayesTME is a Bayesian hierarchical generative

model capable of performing spot deconvolution for aggre-

gated gene expression measurements at spots in ST datasets,

explicitly modeling the aggregated counts via a Bayesian fac-

torized model formulation.12

While many of these ST analysis methods focus on analyzing

individual ST samples, recent advances in high-throughput

sequencing technologies, coupled with spatially resolved exper-

imental techniques, have facilitated the generation of multi-sam-

ple ST datasets, enabling data integration and statistical

modeling for more robust comparisons, validation, and identifi-

cation of spatially regulated gene expression patterns.22–24 For

example, multi-sample ST allows more comprehensive investi-

gation of gene expression spatial dynamics across different con-

ditions (e.g., knockout versus wild type) or experimental settings

(e.g., treatment responders versus non-responders).25 In addi-

tion, Comparative analysis between samples offers insights

into the spatial regulation of gene expression, unveiling spatial

clusters and coordinated gene modules that would be over-

looked in single-sample ST analysis. However, despite the

ample opportunities that multi-sample ST data analysis may

offer, to the best of our knowledge there are no available spot de-

convolution tools for integrative analysis of multi-sample ST da-

tasets. Recently, a hybrid machine learning and Bayesian statis-

tical modeling framework called MAPLE has been developed for

spot clustering of multi-sample ST data but does not perform
2 Patterns 5, 100986, May 10, 2024
spot cell-type deconvolution, which is crucial for the character-

ization of tissue samples.25

To fill these gaps, we introduce MUSTANG (MUlti-sample

Spatial Transcriptomics data ANalysis with cross-sample tran-

scriptional similarity Guidance), a multi-sample ST data analysis

framework, to simultaneously derive the spot cellular deconvolu-

tion of multiple tissue samples without the need for reference

cell-type expression profiles. MUSTANG is designed based on

the assumption that the same or similar cell types exhibit consis-

tent gene expression profiles across samples. This assumption

is reasonable in practice. For example, there are several studies,

including Joglekar et al.,26 suggesting cell types such as excit-

atory neurons or inhibitory interneurons, and glial cells (astro-

cytes and oligodendrocytes) often tend to display relatively

consistent gene expression patterns across different regions of

the central nervous system. However, regional identity can,

although rarely, override cell-type specificity. There are some

cell types such as immune cell populations that can display re-

gion-specific gene expression profiles within a tissue but still

these cells have shared consistent transcriptional patterns to

some extent, which assures the practicality of our assumption

even in these rare cases. In addition, MUSTANG adjusts for po-

tential batch effects as crucial multi-sample experimental con-

siderations to enable cross-sample transcriptional information

sharing to aid in parameter estimation. With that, spatial correla-

tion in gene expression patterns within samples is further

accommodated by constructing and employing a spot ‘‘similar-

ity’’ graph that includes both transcriptional and spatial similarity

edges between spots across samples. By aligning and inte-

grating multiple tissue samples, MUSTANG can effectively

leverage shared information and increase the robustness of joint

spot cell-type deconvolution analysis across multiple ST sam-

ples. In summary, our key technical contributions include the

following:

(1) MUSTANG, to the best of our knowledge, is the first refer-

ence-free spot deconvolution method for multi-sample

ST data analysis.

(2) MUSTANG allows both intra-sample and inter-sample in-

formation sharing by introducing a new spot similar-

ity graph.

(3) Besides modeling spot spatial dependency, MUSTANG

implements batch correction across ST samples in the

workflow to avoid obscuring inherent biological signals

when sharing transcriptional information.

To demonstrate the capability of MUSTANG for revealing the

true underlying spot-level cell-type proportions in multi-sample

ST datasets, we have applied MUSTANG to a simulated semi-

synthetic and three real-world ST datasets of different tissue

properties and show that it can be effectively used for unveiling

the inherent biological signal in tissue architectures.
RESULTS

Model overview
Given gene count matrices of all spots across tissue samples

and spatial coordinates for spot centroid positions, MUSTANG

performs spot cellular deconvolution for multi-sample ST data.
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Figure 1. The MUSTANG framework to analyze multi-sample spatial expression data

(A) MUSTANG requires gene expression matrices of all the spots across tissue samples as well as the spatial coordinates of the spots. The gene expression

matrices are concatenated to form a single expression matrix of genes for all spots.

(B) MUSTANG performs standard scRNA-seq data preprocessing steps such as normalization, gene filtering, and then dimension reduction of gene expression

matrices of the combined spots across samples via principal-component analysis (PCA). The top principal components are batch corrected to remove any

unwanted technical confounders. Then MUSTANG performs Louvain clustering on the K-nearest neighbor graph constructed based on the batch corrected top

PCs to get the clusters of similar spots. The spot transcriptional adjacency matrix is then constructed based on the resulted spot cluster memberships.

(C)MUSTANGadds different offset values to the spatial coordinates of the spots fromdifferent ST samples so that they can be aligned properly. Depending on the

sequencing technology layout (e.g., lattice or hexagonal), the spots spatial adjacency matrix is determined.

(D) The spot similarity graph is constructed by MUSTANG based on the summation of spots spatial and transcriptional adjacency matrices. Spots are colored by

their corresponding transcriptional clusters. The edges in black indicate the spatial neighboring connection between two spots and the yellow-colored edges

demonstrate the transcriptional similarity between yellow-colored spots.

(E) Final step of MUSTANG corresponds to joint Bayesian deconvolution analysis based on raw concatenated gene expression matrix, spatial coordinates with

added offsets, and the spot similarity graph.
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The overall workflow of MUSTANG is presented in Figure 1.

MUSTANG includes four main steps: (1) construction of spot

transcriptional adjacency matrix of expression-based informa-

tion sharing across tissue samples after batch effect correction,

(2) construction of a spot spatial adjacencymatrix to allow spatial

correlation between physically neighboring spots within the

samples, (3) construction of the spot similarity graph based on

the spot transcriptional and spatial adjacency matrices, and (4)

deconvolution of aggregated spot-level gene expression mea-

surements to signals coming from different cell types based on

a Bayesian hierarchical model. Here, we discuss each step in

more detail.
Spot transcriptional adjacency matrix
MUSTANG first identifies the common genes across multiple

input tissue samples and then concatenates the spot count

matrices of all samples f1;.;Ng over the common genes (Fig-

ure 1A). Then, MUSTANG performs the common data prepro-

cessing steps similar to typical scRNA-seq data analysis, such

as normalization, feature selection, and dimension reduction.

First, the combined gene expression matrix of all tissue samples

are log transformed and normalized using library size. Then, the

top 2,000 (optional) highly variable genes are selected based on

the variance of the log-expression profiles. We further perform

principal-component analysis on the normalized expression pro-

files of selected top highly variable genes across all the spots

from tissue samples. Then, the reduced-dimension transcrip-

tional matrix of all spots by top 50 principal components (PCs)

is retained to capture as much variation as possible while scaling

up with complexity of analyzing high-dimensional data. To re-

move any unwanted technical batch effect from the analysis

such as the case where tissue samples are from different

sequencing technologies or samples are generated from multi-

ple experiments or across different laboratories, MUSTANG per-

forms batch effect correction on the retained top PCs. One

powerful method for batch correction is the Harmony algo-

rithm.27 MUSTANG uses Harmony to adjust for batch effects

from the PCs and ensures that the subsequent analyses are

not confounded by technical variability. Later, based on the

batch corrected top 50 PCs, the K-nearest neighbor (KNN) graph

of spots is constructed. Basically, in the KNN graph the nodes

represent spots across ST samples and two spots are con-

nectedwith an edge if they are within the k-most transcriptionally

similar spots from each other for user-selected resolution

parameter k. We measure the transcriptional similarity between

spots by calculating the Euclidean distance of the batch cor-

rected top 50 PC scores. Here, in MUSTANG we suggest select-

ing k to be 50 considering computation performance trade-off. In

addition, we weigh the edges between two spots i and j in the

KNN graph by 1
1+Distði;jÞ where Distði; jÞ is the corresponding PC-

based Euclidean distance between the two spots. This way,

the edges between spots that are transcriptionally more similar

will be weighed with higher values. Then, MUSTANG applies un-

supervised graph-based Louvain clustering on the weighted

KNN graph to get clusters of spots that are transcriptionally

similar.28 Lastly, MUSTANG constructs the spot transcriptional

adjacency matrix based on the spot membership in the resulted

Louvain clustering results. If T is the cross-sample spot tran-
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scriptional adjacency matrix, then the value Tij = Tji = 1 at spots

i and jmeans that i and j are in same transcriptional Louvain clus-

tering class of spots and they are not within a same tissue sam-

ple (Figure 1B).
Spot spatial adjacency matrix
The next step in MUSTANG constructs a spot spatial adjacency

matrix. In this stepMUSTANGonly uses the coordinates of all the

spots. Initially, we add different constant values to all spot coor-

dinates of different samples so that it could be possible to over-

lay the physical locations of spots from different samples on a

single layout without spots from different samples getting over-

lapped or neighbored as shown in Figure 1C. Then, based on

the geometric representations of spots in ST sequencing tech-

nologies, such as lattice layouts (e.g., Slide-seq10) or hexagonal

layouts (e.g., Visium9), neighbors can be identified for each spot

based on shared edges. This edge rule leads to four and six

neighbors for non-boundary spots in lattice and hexagonal lay-

outs, respectively. Finally, MUSTANG constructs the spots

spatial adjacency matrix based on the described edge rule. If

we call the spots spatial adjacency matrix S, then the value

Sij = Sji = 1 means that i and j have a shared edge between

them (Figure 1C).
Spot similarity graph
After deriving both spot transcriptional and spatial adjacency

matrices, MUSTANG constructs the overall spot similarity graph.

The adjacency matrix of the spot similarity graph is a binary ma-

trix, which is resulted after taking the logic ‘‘OR’’ operation be-

tween pairwise indices of spot transcriptional and spatial

matrices T and S. More specifically, if we denote the spot simi-

larity graph adjacency matrix by A, Aij = TijnSij, wheren indi-

cates the OR operator. Figure 1D shows an example of how a

spot similarity graph might look like for an ST dataset with four

tissue samples. In this figure, spots are colored based on their

transcriptional cluster labels. The black-colored edges are the

edges according to the spot spatial adjacency matrix. On the

other hand, the yellow-colored edges indicate the transcriptional

similarity between yellow-colored spots. Note that, for simplicity,

only the transcriptional edges between yellow-colored spots are

drawn and transcriptional edges between blue and green spots

are not shown in the figure. In addition, it worth mentioning that

each yellow edge between a pair of yellow spots in the corre-

sponding clusters is representative of all edges from spots of

one cluster to another in Figure 1D.
Joint Bayesian deconvolution analysis
The last step of our MUSTANG workflow corresponds to joint

Bayesian deconvolution analysis of a raw concatenated gene

expression matrix to preserve information in the original ST

data, together with the spot similarity graph and spatial coordi-

nates with added offsets. Our joint Bayesian deconvolution

model is based on the Poisson discrete deconvolution model

recently introduced in BayesTME for single-sample analysis

of ST data.12 More precisely, in this Poisson model, the raw

aggregated expression measurement of gene g at spot s, de-

noted as Ysg, are factorized as the summation of k (i.e., number

of cell types) different Poisson distributed read counts Ysgk . In
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fact, each of these reads models the total expression count of

gene g in the cells of type k that are at spot s. Thus, based on

this factorization we can explicitly model the raw ST counts Ysg:

Ysg =
X
k

Ysgk � Pois

 X
k

bkdsk4kg

!
; (Equation 1)

where the rate parameter of the Poisson distributions is

controlled with three parameters bk , dsk , and 4kg. The cell-

type-dependent parameter bk quantifies the expected total

count for cell type k and dsk represents the number of cells of

type k that are at spot s. The parameter 4kg captures the normal-

ized gene expression profile of gene g in cell type k. This way of

modeling gene expression in ST data assures biological consid-

erations such as a monotonic relationship between the number

of cells and aggregated read measurement in each spot as

well as different expression profiles for each gene in various

cell types. To complete the Poisson discrete deconvolution

model, Dirichlet and gamma distribution priors are imposed on

4k and bk parameters, respectively. In addition, the prior on dsk

is constructed hierarchically based on the heavy-tailed Bayesian

variant of the graph-fused binomial tree as described in Tansey

et al.29 In this binomial tree model, the cell-type assignment

probabilities in each spot are decomposed into a series of bino-

mial decisions where the prior on each binomial probability en-

courages spatial smoothness across spots. Specifically, such

spatial smoothness on cell-type assignment probabilities is

achieved by imposing the sparsity inducing grouped horseshoe

distribution30 over the graph fussed LASSO31 (i.e., zeroth-order

graph trend filtering) penalized cell-type assignment

probabilities:

Ds � Binomðnmax;1 � sðqs0ÞÞ;

dsk � Binom

 
Ds �

Xk� 1

r = 1

dsr ;sðqskÞ
!
;c1< k <K

ðDSpatialQÞj � Grouped HorseshoeðlÞ:

(Equation 2)

In Equation 2, nmax is the maximum possible number of cells in

each spot, for which its default value is set to be 100. The logistic

function is noted bys and the parameterDs is the total number of

cells in spot s out of possible nmax cells and qsk captures the cell

type k probability proportions at spot s. Lastly, DSpatial is the

edge-oriented zeroth-order graph trend filtering matrix of the

spot spatial graph with a hyperparameter l controlling the global

degree of smoothness.

Here, in our joint Bayesian deconvolution model while per-

forming multi-sample ST data analysis in MUSTANG, we further

allow information sharing across tissue samples in the Poisson

discrete deconvolution model. We take advantage of the prior

knowledge inherited in the spot similarity graph that we con-

structed in the MUSTANG workflow as detailed in the previous

section. Specifically, we include transcriptional similarity in addi-

tion to the spatial similarity to take into consideration the biolog-

ical belief that spots that have similar batch-corrected transcrip-

tional profiles might also have similar cell-type composition as

well. This is done by taking advantage of the zeroth-order graph

trend filtering matrix of the spot similarity graph in the hierarchi-

cal prior in Equation 2. In MUSTANG, we impose the grouped
horseshoe distribution over the graph fussed LASSO penalized

cell-type assignment probabilities based on the spot similarity

graph as:�
DSimilarityQ

�
j
� Grouped HorseshoeðlÞ: (Equation 3)

This results in inferring both transcriptionally and spatially

smooth cell-type proportions, allowing to borrow signal

strengths from both inter-sample and intra-sample spots for

effective joint analysis of multiple tissue samples in a given ST

dataset.

The posterior inference procedure of the joint Bayesian decon-

volution model in MUSTANG is based on Gibbs sampling. The

full derivations for all complete conditionals and Gibbs sam-

pling-based updates are similar to Zhang et al.12 and detailed

in the supplemental information. During the inference process,

we use Markov chain thinning, with five thinning steps between

each sample. We collect 100 Markov chain Monte Carlo

(MCMC) samples after 1,200 burn-in iterations for our conse-

quent analyses and evaluation.

Experiments
We have evaluated our MUSTANG for analysis of multi-sample

ST data from semi-synthetic ST data as well as three real-world

ST datasets generated by the 10X Genomics Visium platform.9

First, a semi-synthetic multi-sample ST data generation is

described and then the simulated samples are analyzed with

MUSTANG and other state-of-the-art cell-type deconvolution

tools to comprehensively quantify and benchmark the perfor-

mances of these tools across different metrics. Specifically,

the results clearly showcase the MUSTANG superiority in accu-

rate deconvolution of aggregated signals in ST data in most of

the settings. Then, amouse brain ST dataset having nearby brain

tissue areas bisected to paired anterior and posterior sections is

analyzed with MUSTANG to showcase its capability in identi-

fying cell types that have consistent patterns across neighboring

tissue regions from different paired sections. The results match

the known anatomical brain regions from the Allen Brain

Atlas.32,33 We also apply MUSTANG on a human brain ST data-

set to further quantitatively benchmark the spot deconvolution

performance. Specifically, the significance of different compo-

nents in MUSTANG enabling multi-sample ST analysis will be

demonstrated in this ablation study compared with BayesTME

and a simpler version of MUSTANG that does not take spot tran-

scriptional adjacency matrix into account. We then analyze a

mouse bone marrow tissue ST dataset to characterize the tumor

microenvironment (TME). The matched immunofluorescence (IF)

staining images are used to validate the findings by analyzing

bone tissue samples with MUSTANG.

Semi-synthetic data
To benchmark the performance of MUSTANG on accurately de-

convolving the aggregated signals in ST data, we apply it to the

recently published ST benchmark datasets.34 As the ground-

truth cell-type compositions are not available for multi-cell per

spot ST datasets, following the instructions in Li et al.,34 we

have generated four ST dataset samples from the STARmap

data of mouse primary visual cortex tissue, termed ‘‘Dataset

10’’ in the original benchmark study,34 as shown in Figure 2A.
Patterns 5, 100986, May 10, 2024 5
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Figure 2. Comparing the cell-type deconvolution performance of MUSTANG and other deconvolution methods on semi-synthetic ST data

(A) Left: a STARmap slide of mouse visual cortex tissue, with cells annotated by cell types. Right: an example of a simulated gridded multi-cell sample with a

window size of 750 pixels where each grid represents a simulated spot containing multiple cells.

(B) The proportion of L4 excitatory neurons in the spots simulated in the gridded sample with a window size of 750 pixels, including the ground truth and the

predicted results of deconvolution tools.

(C) MUSTANG-inferred cell-type-level expression profiles for all clusters and genes compared against the ground truth (n = 10,854). As an example, the

expression signatures of L4 excitatory neurons are colored in red (PCC = 0.98, n = 882).

(D) MUSTANG outperforms all other existing tools in the cell-type deconvolution task for all clusters in all four simulated samples from the mouse visual cortex

data in terms of the accuracy score aggregated from PCC, SSIM, RMSE, and JSD metrics.
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The original STARmap data have the spatial position and gene

expression information of the 1,549 cells, corresponding to 15

cell types. To generate a semi-synthetic multi-sample ST data

from the STARmap mouse visual cortex data, we partition the

original tissue slide into grids and each grid simulates an ST

spot with known cell-type composition. Then, the corresponding
6 Patterns 5, 100986, May 10, 2024
gene count expression matrix is generated by taking the sum of

the expression profile of all the cells in each spot. To generate the

four simulated ST samples with potentially ambiguous cell-type

compositions, we consider four different grid window sizes of

600, 650, 700, and 750 pixels to partition the original

STARmap data. The generated samples are shown in
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Figures 2A and S1A. The simulated multiple ST samples had

different numbers of spots ranging from 189 to 276 spots (details

in supplemental information).

We jointly analyze the generated multiple ST samples by

MUSTANG and compare its cell-type deconvolution perfor-

mance with both reference-free (BayesTME and STdeconvolve)

and reference-based (Cell2location and RCTD) single-sample

cell-type deconvolution state-of-the-art tools. As an example,

in Figure 2B we visualize the ground-truth proportions of the

L4 excitatory neurons across spots in the simulated ST sample

with grid window size of 750 and compared it with the estimated

proportion of different methods for this cell type. As indicated in

the figure, MUSTANG performs better in terms of Pearson corre-

lation coefficient (PCC) values (0.94), followed by BayesTME

(0.91), RCTD (0.87), STdeconvolve (0.84), and Cell2location

(0.83). In addition, as MUSTANG is able to estimate the normal-

ized cell-type-level gene expressions (i.e., 4kg in Equation 1), we

compare the mean expression of genes from the single-cell

reference for each cell type with the MUSTANG-inferred expres-

sion signatures in Figure 2C. For better visualization, we have

plotted the expressions in log10 space. As an example, the

expression profiles of genes in L4 excitatory neurons are colored

in red with PCC values of 0.98, confirming the accuracy of

MUSTANG to estimate the cell-type-level normalized gene

profiles.

Following Li et al.,34 to more comprehensively quantify the

MUSTANG cell-type deconvolution performance and those of

the other state-of-the-art ST data cell-type deconvolution tools,

we calculate three othermetrics besides PCCs for each cluster in

all four simulated samples: structural similarity index (SSIM),

root-mean-square error (RMSE), and Jensen-Shannon diver-

gence (JSD). Then, to simplify the evaluation of the accuracy,

the accuracy score (AS), which is the normalized average rank

of the four metrics (with the highest AS score of 1), is derived.

As plotted in Figure 2D, MUSTANG outperforms all other tools

in terms of ASs in the deconvolution task, highlighting the power

of multi-sample ST data analysis with effective inter- and intra-

sample information sharing implemented in MUSTANG to aid

the parameter estimation procedure. The detailed benchmarking

of the methods across all four metrics are demonstrated in the

supplemental information. Overall, the results on this multi-sam-

ple semi-synthetic data analysis experiment suggest that

MUSTANG has dominant performance in most of the adopted

evaluation metrics consistently across all clusters in the four

samples but, as also previously noted in other benchmark

studies, no method is able to obtain superior performance in

all settings.12,34

Mouse brain data
The brain tissue in an adult mouse is composed of myriad cell

types in a highly organized and coordinated manner for normal

neurological functions through well-defined molecular mecha-

nisms.32,33 To validate the MUSTANG capability of appropriately

deconvolving the aggregated gene expression signals from

spatial sequencing technologies on complex tissue architec-

tures, we use the four anterior and posterior sections of mouse

brain tissues on the sagittal plane. These adult mouse brain tis-

sue sections are sequenced by the 10X Visium platform9 and the

generated spatially resolved transcriptomics data made publicly
available by 10X Genomics. Specifically, these mouse brain tis-

sue data consist of two biological replicates of paired anterior

and posterior sections on the sagittal plane. Figure 3A shows

the four tissue slices placed on the 10X Visium gene expression

slides. Due to the presence of nearby brain tissue regions in

different tissue sections (in either anterior or posterior slices) at

bisection areas in this ST dataset, applying MUSTANG multi-

sample analysis helps validate the effectiveness of MUSTANG

by checking whether the neighboring tissue regions from

different sections have consistent cell-type deconvolution prop-

erties or not.

To catalog the spatial organizations of various brain areas in

brain tissue and thus provide a holistic view of gene expression

patterns at whole-brain level, we simultaneously analyze the ST

data of four brain tissue sections with MUSTANG. Following the

same MUSTANG workflow steps indicated in detail in the model

overview section, we first construct the spot similarity graph and

then fit our joint deconvolution model to the concatenated ST

data. As matched ground truth annotations are not available for

these data, for picking the number of brain regions K, we follow

the known anatomy of mouse brain tissue publicly available by

the Allen Mouse Brain Atlas,32,33 which is the most comprehen-

sive genome-wide atlas of mouse brain tissue. Based on this

reference annotation of mouse brain regions, we select K to be

11, corresponding to the 11 major brain regions, including the ol-

factory bulb, cortex, striatum, pallidum, hippocampus, thalamus,

hypothalamus, midbrain, pons, medulla, and cerebellum regions

(Figure S2 in the supplemental information).

The spatial scatter pie chart of the MUSTANG-inferred brain

region probabilities in Figure 3B indicates that the deconvolution

analysis by MUSTANG accurately reconstructs the layered and

segmented structure of mouse brain anatomy. Matching the

reference anatomy of mouse brain tissue from the Allen Brain

Atlas (Figure S2) and the MUSTANG spatial scatter pie chart

demonstrates a clear mapping between identified sub-popula-

tions by MUSTANG and known major mouse brain anatomical

regions in both anterior and posterior regions. For instance, the

brain area 4 found in anterior sections of samples 1 and 2, corre-

sponds clearly to the olfactory bulb region of mouse brain. Like-

wise, in the posterior sections, brain area 2 corresponds to the

cerebellum region. In addition, some regions such as brain

area 1 are more heterogeneous as they cover both striatum

and pallidum brain areas in the anterior slices.

A closer inspection of deconvolution analysis results by

MUSTANG in Figure 3B clearly demonstrates the capability of

MUSTANG in identification of brain tissue areas that are shared

in all posterior and anterior sections. Particularly, MUSTANG de-

tects brain areas 3 and 5, which represent hypothalamus and

cortex regions that are bisected by the sagittal plane for division

of anterior-posterior sections in the experimental design.

Furthermore, the continuous spatial patterns and consistency

of the inferred brain area probabilities for these areas that are

at bisection regions of the paired anterior-posterior sections

highlight the distinct advantage of jointly analyzing ST samples

with accurate cross-section information sharing implemented

in MUSTANG over the non-integrative ST data analysis tools.

In addition to evaluating the MUSTANG performance on infer-

ring the cell-type probabilities, we also examine the cell-type

cell-count values learned by our deconvolution model. The left
Patterns 5, 100986, May 10, 2024 7
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Figure 3. Analysis of four anterior and posterior sections of mouse brain tissue on sagittal plane with MUSTANG

(A) Paired anterior-posterior slices placed on the 10X Visium gene expression slides.

(B) Spot-based spatial pie charts of MUSTANG-inferred brain region proportions for all four mouse brain tissue sections.

(C) Left: MUSTANG-inferred cell numbers for brain region 5 matching the spatial pattern of the cortex anatomical brain region. Middle: spot-level expression

visualization of the known cortex layer marker gene Tbr1. Right: the ISH images of this marker gene from the Allen Brain Atlas.

(D) Left: MUSTANG-inferred cell numbers for brain region 3 matching the spatial pattern of the hypothalamus anatomical brain region. Middle: spot-level

expression visualization of the known hypothalamus layer marker gene Zcchc12. Right: the ISH images of this marker gene from the Allen Brain Atlas.
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panels of Figures 3C and 3D visualize the spatial pattern of

MUSTANG-inferred brain regions 5 and 3 cell counts across

the four tissue sections. As we can see, the spatial patterns of in-

ferred brain region cell counts similar to brain area probabilities

clearly match the cortex and hypothalamus regions from the Al-

len Brain Atlas annotations. To further examine these cell-type

mappings, we visualize the raw gene expression spatial patterns

of two known marker genes Tbr1 and Zcchc12 for the mouse

brain areas cortex and hypothalamus from the AllenMouse Brain

Atlas32,33 in the middle panels of Figures 3C and 3D. In addition,
8 Patterns 5, 100986, May 10, 2024
for more accurate validation of the predicted brain area spatial

distribution within the brain structure, we extract the reference

in-situ hybridization (ISH) image data for these two known

brain region gene markers from the Allen Mouse Brain Atlas

and plot them in the right panels of Figures 3C and 3D. As we

can see in Figures 3C and 3D, there is high correlation between

the raw gene expression and ISH image spatial patterns of the

cortex and hypothalamus brain region gene markers and the in-

ferred cell counts for their matching brain area from MUSTANG,

highlighting the accurate simultaneous segmentation and
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deconvolution analysis of all four brain sections done by

MUSTANG.

Overall, analyzing the four anterior and posterior mouse brain

ST data withMUSTANG clearly showcases the important advan-

tage of our proposed multi-sample data analysis tool in identi-

fying both section-specific brain regions as well as shared areas

between all tissue sections by jointly analyzing these sections.

Furthermore, the inferred deconvolution parameters for the brain

regions present at the areas close to the bisection plane of paired

anterior-posterior sections are also consistent, illustrating thede-

convolution accuracy of our MUSTANG in nearby tissue regions.

Human brain data
In a recent study,35 spatial expression profiles of 12 dorsolateral

prefrontal cortex (DLPFC) tissue samples were generated.

Based on the selected DLPFC layer-specific gene makers and

cytoarchitecture consideration, six cortical layers (i.e., L1-L6)

and white matter (WM) for each brain tissue sample were anno-

tated. Here, we use the ST expression profiles of four samples

(sample IDs: 151673 to 151676) from this dataset to showcase

the benefits of simultaneously denconvolving tissue samples us-

ing our proposed MUSTANG.

Figure 4A shows the hematoxylin and eosin (H&E) staining im-

ages of four DLPFC tissue samples from the human brain ST da-

taset as well as the cortical layers andWM reference annotations

for sample 151673 from the original study. Following our

MUSTANG workflow, we first start analyzing the samples by

constructing spot transcriptional and spatial adjacency

matrices. As shown in Figure 4B, we derive the spot spatial ad-

jacencymatrix by adding offsets to spatial coordinates of DLPFC

tissue samples and overlaying them on the ST grid space based

on the Visiumplatform. In the transcriptional space, we follow the

data preprocessing steps previously described in theMUSTANG

model overview section to derive the dimension-reduced top 50

PCs for spot-aggregated gene expression counts. Figure 4C dis-

plays the UMAP (uniform manifold approximation and projec-

tion36) embedding of the derived top 50 PCs. It can be seen

that there is strong batch effect in this dataset as spots from

different tissue samples are clustered based on their sample ID

rather than their underlying biological cell types. Although these

samples are from the same tissue and sequencing platform, this

observed batch effect in the data calls for the need of batch ef-

fect correction when analyzingmultiple tissue samples to reduce

the potential influence from any confounding technical factor.

We therefore implement Harmony in MUSTANG to derive the

batch corrected top 50 PCs. The UMAP embeddings of the

batch-corrected PCs are shown in Figure 4D, where the spots

from different samples are now mixed together while preserving

potential expression differences. We further construct the KNN

graph of spots based on these top PCs and apply Louvain clus-

tering, resulting in eight distinct transcriptional sub-populations.

In Figure 4E, the spots from four samples are colored by their

transcriptional clusters in the UMAP embedding space. With

that, the spot transcriptional adjacency matrix and, conse-

quently, the spot similarity graph, can be constructed. Finally,

we fit our joint Bayesian deconvolution model to the concate-

nated data with K = 7 cell types (i.e., six cortical layers plus

WM). Based on the collected post burn-in MCMC samples, we

derive the posteriors of the joint deconvolution model parame-
ters such as spot-wise cell-type proportions, cell-type cell

numbers, and normalized cell-type-specific gene expression.

Figure 4F demonstrates the spatial scatter pie chart plot of our

four DLPFC tissue samples, in which spots are plotted in their

physical coordinates and at each spot there is a circular pie chart

representing the inferred proportions of assigned cell types in

that spot. The high similarity between the spatial patterns of

cell-type proportions in the spatial pie chart plots of all four sam-

ples and the ground truth annotations from the original study

demonstrates the capability of MUSTANG to simultaneously

infer the underlying spot-wise biological cell-type proportions

across multiple tissue samples.

As the ground truth cell-type proportions and cell-type cell

numbers do not exist for multi-cell resolution ST data, inspired

by the guidelines described in the recent benchmarking study

of cell-type deconvolution methods for ST data,37 we quantify

the cell-type cell number inference performance of MUSTANG

based on the PCC between the predicted spot-wise cell counts

of specific cell type (i.e., dsk in Equation 1) and the corresponding

marker gene expression profiles. Specifically, we benchmark

MUSTANG with BayesTME, which is an ST data deconvolution

tool capable of inferring cell-type cell numbers without the

need for paired reference expression profiles. As BayesTME is

designed for single-sample analysis, we analyze each brain tis-

sue sample separately using BayesTME as the baseline.

To calculate the PCC values, we first gather the list of known

layer-specific marker genes from two previous brain studies38,39

that were also used in the original DLPFC dataset paper.35 Spe-

cifically, we only use those marker genes that are annotated to

be related to only one of the DLPFC layers except for the WM

layer, for which as we could not find any WM-specific markers

in the two references, we select themarker genes that are shared

between layer 6 and the WM. The heatmap plot in Figure 5A

shows the list of selected layer-specific marker genes. The

colors in the plot represent the corresponding reference papers

that reported the corresponding marker genes.

Next, we extract the layer-specific gene expression profiles of

DLPFC layers based on the ‘‘pseudo-bulking’’ approach noted in

the original study of the DLPFC dataset,35 in which the UMI

counts for each gene within each layer across 12 spatial repli-

cates are summed up to generate layer-enriched expression

profiles. The layer-specific gene expression profiles of DLPFC

layers have shown previously in Maynard et al.35 to capture bio-

logical properties inherent in DLPFC layers. The pseudo-bulk

data are available as ‘‘sce_layer data’’ for download through

the fetch_data function in spatialLIBD R package.

Following the instructions for cell-type deconvolution bench-

marking described in Li et al.,37 for each DLPFC layer we calcu-

late the PCC between the expression profile of each layer in the

extracted pseudo-bulk data and the inferred normalized expres-

sion profile of all cell types (i.e., 4kg in Equation 1) from

MUSTANG, choose the best-paired inferred cell type with the

highest PCC and match it to that layer. After assignment, this

chosen cell type would be ignored in the future steps. Then,

we repeat the aforementioned steps on the next layer until all

layers are iterated. For now, each layer should be paired with

the best suitable cell type without duplication.

Finally, to complete the quantitative comparison between

different ST analysis methods, for each DLPFC layer we
Patterns 5, 100986, May 10, 2024 9
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Figure 4. Analysis of four human brain DLPFC tissue samples with MUSTANG

(A) H&E staining images of four tissue samples (right) and the reference annotations of spots for the sample 151673 (left).

(B) Overlaying tissue samples on a grid space to construct spot spatial adjacency matrix.

(C and D) (C) UMAP embedding visualization of spots by top 50 PCs before and (D) after batch correction.

(E) Visualization of clustering based on batch corrected top 50 PCs. The spots are colored based on their transcriptional cluster label inferred from Louvain

clustering.

(F) Spot-based spatial pie charts of MUSTANG-inferred cell-type proportions across all four DLPFC tissue samples matching the reference annotations from the

original study.
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calculate the PCC value between the corresponding marker

gene expression of that layer in Figure 5A and the inferred cell

number corresponding to the best-paired cell type. We calculate

PCC values for each of the four tissue samples separately after
10 Patterns 5, 100986, May 10, 2024
jointly analyzing them with MUSTANG. We repeat the same pro-

cedure for analyzing tissue samples separately using BayesTME

and calculate the corresponding PCC values. The boxplots in

Figure 5B show the PCC values for eachmethod on each sample
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Figure 5. Quantitative performance benchmarking on four DLPFC tissue samples

(A) List of layer-specific gene markers from two brain tissue studies.38,39

(B) Boxplots showing the calculated PCC values for three different reference-free cell-type deconvolution methods: MUSTANG, MUSTANG_Spatial, and

BayesTME. Higher PCC values indicate better deconvolution performance identifying annotated cell types.

(C and D) (C) Spot-level log2 expression visualization of the L5 layer marker gene PCP4 correlates with the spatial pattern of (D) MUSTANG-inferred cell numbers

for the L5 layer best paired cell type for the sample 151674 (PCC = 0.42).

ll
OPEN ACCESSArticle
separately. As depicted in the figure, on all four tissue samples,

jointly analyzing them with MUSTANG leads to higher average

PCC values compared with separately deconvolving them using

BayesTME. This superior performance of MUSTANG illustrates

the benefit of simultaneously analyzing tissue samples with an

approach that allows for effective cross-sample information

sharing. As an example of the spatial expression pattern of the

marker genes and inferred cell-type cell numbers, we have visu-

alized the log2 expression of the L5 layer marker gene PCP4 as

well as the MUSTANG-inferred cell numbers for the L5 layer best

paired cell type for sample 151674 in Figures 5C and 5D, respec-

tively. The derived PCC value for this gene is 0.42. Here, we

would like to emphasize that, due to the nature of quantitative

analysis we did in this section while STdeconvolve deconvolu-

tion model does not explicitly model cell type cell numbers

(i.e., dsk in our deconvolution model), it is not possible to bench-
mark STdencovolve with other comparison methods for the pre-

sented performance evaluation results. It worth mentioning that

adjusting for this parameter during the deconvolution of aggre-

gated ST signals in multi-cellular spot resolution ST datasets is

crucial to assure biological considerations such as monotonic

relationship between the number of cells and aggregated read

measurement in each spot. As currently, to the best of our knowl-

edge, only MUSTANG and BayesTME adjust for this source of

variation, we have only included results of these methods in Fig-

ure 5B and excluded STdeconvolve from this quantitative

analysis.

To better understand the corresponding contributions of

different components in MUSTANG to its superior performance

for multi-sample ST data analysis, we further conducted an abla-

tion study that analyzes the tissue samples with a simplified

version of MUSTANG without using the spot transcriptional
Patterns 5, 100986, May 10, 2024 11
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Figure 6. Analysis of four mouse bone marrow tissue samples with MUSTANG

(A) H&E staining images of the four samples profiles with the Visium platform.

(B) Spot-based spatial pie charts of MUSTANG-inferred cell-type proportions for (top) sample 1 and (below) sample 2.

(C) Matching IF staining images of (top) sample 1 and (below) sample 2.

(D) Closer look at the IF staining image regions with high density of green dots, indicating the presence of tumor cells.
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adjacency matrix across samples. This means that we decon-

volve tissue samples without cross-sample transcriptional infor-

mation sharing.We call this simpler version ofMUSTANG, ‘‘MUS-

TANG_Spatial’’ because, after removing transcriptional edges

from spot similarity graph, it gets reduced to using only the

spot spatial coordinates. As shown in Figure 5B, the PCC values

in all four samples get significantly lower in the obtained results by

MUSTANG_Spatial in comparison with those by the complete

MUSTANG workflow. Clearly, removing transcriptional informa-

tion sharing from MUSTANG leads to, on average, similar PCC

values of the results using BayesTME, which deconvolves tissue

samples separately. This is expected as BayesTME, similar to

MUSTANG_Spatial, only allows within-sample information

sharing across physically neighboring spots by performing spatial

smoothing on cell-type assignment probabilities. This ablation

study clarifies the significance of intra-sample transcriptional

similarity guidance on boosting the performance of MUSTANG.

Mouse bone marrow data
The TME plays a critical role in tumor development, progression,

and therapeutic response.40 Recently, several studies have re-

ported that the spatial organization of the TME is the key deter-
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minant of the disease behavior and treatment outcomes.41,42

Thus, a comprehensive understanding of the spatial architecture

and expression patterns of the TME holds great promise for the

development of novel therapeutic treatment strategies. Taking

advantage of the TME ST data helps unveil the underlying com-

plex spatial organization and intricate interplay between tumor

cells and their microenvironment.

For the final application of MUSTANG analyzing ST data of tis-

sue samples, we study and characterize mouse bone marrow

tissue TME. To obtain the ST data, we have profiled the bone tis-

sue of 6- to 8-week mouse after bone lesions generation via the

10X Visium platform to profile four bone marrow tissue sections.

The H&E staining images of the four bone tissue sections are

shown in Figure 6A. The multi-sample ST data generation details

can be found in supplemental information,section A.5.

To identify and characterize the spatial organization of tumor

cells within the bone marrow tissue TME, we jointly analyze the

ST data from the four bone tissue sections with MUSTANG.

We follow the same MUSTANG workflow steps described in

detail in the MUSTANG model overview section to infer the de-

convolved components of the bone tissue samples. We pick

the number of cell types K based on the results of applying
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unsupervised cell-type number inference algorithms imple-

mented in BayesTME12 and STdeconvolve15 to each of the indi-

vidual four bone tissue samples leading to eight different inferred

numbers of cell types. We then select K to be 7 as it is the most

frequently inferred value of total cell-type numbers out of the

eight derived values by BayesTME and STdeconvolve (four oc-

currences; details in the supplemental information).

After simultaneously analyzing the four bone tissue samples

using MUSTANG, we plot the spatial scatter pie chart visualiza-

tion of the inferred deconvolved cell-type proportions. The

spatial pie chart plots for samples 1 and 2 are visualized in Fig-

ure 6B. To validate the identification of tumor cell types in the

bonemarrow TMEbyMUSTANG,we generatematched IF stain-

ing images for each bone tissue section separately. Specifically,

the bone sections were stained with antibodies to depict the po-

tential tumor cell-enriched tissue section parts (the detailed pro-

tocol for generation of IF staining images can be found in the

supplemental information). The generated IF staining images

for bone tissue samples 1 and 2 are shown in Figure 6C. The

green dots in the IF staining images highlight the tumor cell-en-

riched parts (Figure 6D). Matching the green dots regions in IF

staining images with the spatial pie chart plots of tissue samples

from MUSTANG revealed the presence of high MUSTANG-in-

ferred proportions of cell type 2 (colored blue in Figure 6B). We

plot red boxes to highlight the regions of IF staining images of

bone tissue samples with high enrichment of green dots (i.e., tu-

mor cells) and overlay the boxes on the spatial pie charts. The

spots in the matching red boxes of the spatial pie charts are

composed of high inferred cell-type number 2 proportions with

MUSTANG. This demonstrates the capability of MUSTANG to

identify tumor cell-type cells in the bone marrow TME.

DISCUSSION

We have developedMUSTANG, amulti-sample ST data analysis

workflow that jointly analyzes multiple tissue samples by

leveraging transcriptional information sharing across samples

as well as spatial dependency in gene expression patterns within

samples. By our proposed workflow, including spot similarity

graph construction and batch effect correction removing un-

wanted nuisance factors obscuring the inherent biological signal

in ST data, the joint Bayesian decovolution model in MUSTANG

extends the previous developments for reference-free single-

sample ST data analysis12 to joint multi-sample ST data analysis,

allowing for the robust simultaneous spatial characterization of

cell sub-populations across spots in all tissue samples. We

have introduced a new spot-based knowledge graph, spot sim-

ilarity graph, that captures sufficient and comprehensive similar-

ity information between spots to be used in our joint Bayesian

deconvolution model to improve the multi-sample analysis per-

formance beyond existing methods analyzing single ST samples

separately. By providing extensive results on a simulated and

three real-world multi-sample ST data, we have demonstrated

the superior performance of MUSTANG in terms of cell-type de-

convolution and spatial characterization of complex tissue envi-

ronments. Future work concerns further improving the capability

of MUSTANG to decipher tissue structures by performing joint

cell-cell interaction analysis between cells of different sub-pop-

ulations across multi-sample tissue samples.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Xiaoning Qian (xqian@ece.tamu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data used in the manuscript are publicly available and are referenced in the

article. Specifically, the sagittal mouse brain ST data are accessible on the 10X

Genomics website at https://support.10xgenomics.com/spatial-gene-

expression/datasets. The human brain ST data samples are available using

the fetch_data() function from spatialLIBD R package. The code for the soft-

ware and tutorials for reproducing the results is available at https://github.

com/namini94/MUSTANG. Long-term archive of code repository is made

available via Zenodo at https://doi.org/10.5281/zenodo.10818888.43

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Gibbs sampling inference

Here, we provide the detailed posterior Gibbs sampling procedure for the joint

Bayesian deconvolution model described in the MUSTANG model overview

section.

Sampling Ysgk . Since we are modeling the raw ST counts Ysg as

Ysg =
X
k

Ysgk � Pois

 X
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bkdsk4kg

!
; (Equation 4)

and leveraging the relationship between the Poisson and multinomial distribu-

tion, the Ysgk parameters can be sampled from amultinomial distribution. If we
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Sampling bk . To infer the cell-type-dependent expected total counts param-

eter bk , we write its posterior as
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where Ysk: is ðYsk1;.;YskGÞ. Then, we can write the likelihood of reads Ysk: as
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where in the last equation we take advantage of facts that
P

g4kg = 1 andP
gYskg = Ysk . Now, based on Equation 7, we can simplify the posterior of

cell-type-dependent parameter bk in Equation 6 as
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Note that, in Equation 8, we leverage the Gamma prior distribution (i.e.,

Gammaðe; fÞ) we imposed on bk as described in the main text. Thus, based

on Equation 8 we can update the bk as

ðbk j �Þ � Gamma

 X
s

Ysk + e;
X
s

dsk + f

!
: (Equation 9)

Sampling 4k . As described in the main text, we impose Dirichlet prior distri-

bution over the normalized cell-type-dependent gene expression profile

parameter 4k = ð4k1;.;4kGÞ (i.e., 4k � DirðakÞ) and
P

g4kg = 1. We have
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Thus, the normalized gene expression profiles can be updated using the Di-

richlet-multinomial conjugacy as

ð4k j �Þ � Dir
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X
s

Ysk1;.;ak +
X
s

YskG

!
(Equation 11)

Sampling Ds and dsk . By modeling the cell number distribution as a hidden

Markov model and exploiting the forward-filtering backward-sampling algo-

rithm introduced in Zhang et al.,12 we can update dsk in an efficient approach.

Specifically, in the forward-filtering algorithm we calculate the ‘‘alpha’’ values

of our hidden latent stats, which includes the cell-type cell numbers (i.e., xk ),

which we define as

aðxkÞ = Pðdsk ;Ys1:kÞ (Equation 12)

and in the backward-sampling, based on the derivations in Zhang et al.,12 the

cell-type cell number values are updated based on

Pðdsk jxk+1;Y1:T ÞfaðxkÞPðxk+1jxkÞ: (Equation 13)

Additional results with semi-synthetic data

In this section, we present additional results and data demonstrations to

comprehensively report the results in the semi-synthetic ST data experiment.

Figure S1A illustrates the simulated semi-synthetic multi-cell per spot samples

generated from the STARmap mouse visual cortex data with window sizes of

700, 650, and 600 pixels. Furthermore, in Table S1, the number of spots,

amounts of cells per spot, and number of genes are reported for each of the

simulated four samples with varying grid sizes. Figure S1B visualizes the

MUSTANG-estimated proportions of some of the major clusters in simulated

spots when jointly analyzing the four samples with MUSTANG. As indicated,

the inferred spatial patterns match the ground-truth proportions for all four

samples in each cluster. PCC, SSIM, RMSE, and JSD values for the cell-

type composition of the spots simulated from STARmap mouse visual cortex

data for all clusters fromMUSTANG, BayesTME, STdeconvolve, Cell2location,

and RCTD are visualized in the boxplots in Figure S1C, with center lines asme-

dian and green triangle as mean. For PCC and SSIM values, higher is better,

and for RMSE and JSD metrics, lower is better.

Reference anatomical regions of mouse brain tissue

The annotations for the major anatomical regions of the sagittal mouse brain

are extracted from the Allen Brain Atlas32,33 and illustrated in Figure S2.
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When we analyze the mouse brain ST data with MUSTANG, we consider the

number of cell types K to be 11 covering the olfactory bulb, cortex, striatum,

pallidum, hippocampus, thalamus, hypothalamus, midbrain, pons, medulla,

and cerebellum regions based on the reference mouse brain annotations.

Inferring total number of cell types (K) and spatial smoothness (l)

hyperparameters

Here, we describe how one can select the two adjustable hyperparameters in

MUSTANG’s Bayesian deconvolution model: K, the total number of cell types,

and l, the spatial smoothness parameter. We specifically illustrate the hyper-

parameter tuning process on the mouse bone marrow ST data but one can

repeat the procedure for any arbitrary multi-sample ST dataset to derive the

ideal values for the hyperparameters.

First, we describe the results of applying unsupervised cell-type number

inference algorithms implemented in BayesTME12 and STdeconvolve15 to

each of the individual four mouse bone marrow tissue samples. Based on

the instructions in Miller et al.,15 to find optimal number of cell types in bone

tissue samples with STdeconvolve, we fit a number of different LDA models

with different K values and then, based on the inferred number of ‘‘rare’’ pre-

dicted cell types and perplexity values, we pick the number of cell types. Spe-

cifically, we change K from 2 to 15 for each bone tissue sample and plot the

perplexity and number of ‘‘rare’’ predicted cell types versus the K values. Fig-

ure S3 shows the STdeconvolve inferred perplexity and number of ‘‘rare’’ cell

types versus different K values for four bone marrow samples 1 to 4, respec-

tively. As described in STdeconvolve workflow,15 we pick the number of cell

types to be the value from that perplexity stabilizes and has the lowest number

of rare sub-predicted cell types to avoid over-clustering. This leads to inferring

6, 7, 6, and 7 numbers of cell types for samples 1–4, respectively (Table S2).

Then, we use BayesTME to infer total number of cell types (K) and the degree

of spatial smoothness (l). Specifically, BayesTME does this by performing

5-fold cross-validation for each K = ð2;.; 12Þ values with 5% of spots held

out in each fold. Then, in each fold, a Poisson-based discrete deconvolution

model is fitted over a discrete grid of l smoothness values ð100; 101;.; 105Þ
and average log likelihood for the held out spots are calculated. Finally, the

Kwith highest averaged likelihood is picked to be the total number of cell types

and the value of l with average cross-validation log likelihood closest to the

overall average will be selected as the ideal l for the sample under study.12 Fig-

ure S4 shows the calculated average cross-validation log likelihood versus the

number of cell types for each of four bone tissue samples. Based on these fig-

ures, the inferred total numbers of cell types for samples 1 to 4 are 8, 7, 7, and

8, respectively (Table S2).

Table S2 summarizes the inferred total number of cell types from STdecon-

volve and BayesTME.We then select the K to be 7 in our multi-sample analysis

with MUSTANG as it is the most frequently inferred value of total cell-type

numbers out of the eight derived values.

Furthermore, as illustrated in Figure S4, l = 1; 000 has the closest average

cross-validation log likelihood to the overall average (the bold black graph cor-

responding to lmean) for all four samples. We then pick l to be 1,000 in our

multi-sample Bayesian deconvolution analysis with MUSTANG as it is the

most frequently inferred value of spatial smoothness degree.

Mouse bone marrow ST data generation details

Here, we explain the mouse bone marrow TME ST data generation details and

protocols. To generate the data, we have profiled the bone tissue of 6- to

8-week mice after bone lesion generation by intra-iliac injection. For spatial

analysis, ST data are obtained via the 10X Visium platform to profile four

bone marrow tissue sections. Specifically, thin (10 mm) mouse bone marrow

sections were mounted directly onto separate designated capture areas on

the 10X Visium spatial gene expression slides and data preprocessing was

done per the manufacturer’s protocols. In brief, after H&E staining, each sec-

tion was imaged using color brightfield by Cytation 5. The sections were then

processed following the 10X Visium gene expression protocols until the cDNA

libraries were constructed, which were later sequenced using the Novaseq

6000 system with 150 bp paired-end reads, aiming at 300 million raw reads

per section. The H&E staining images of the four bone tissue sections are

shown in Figure 6A. The Visium Spatial Gene Expression Solution from 10X

Genomics allows for the analysis of mRNA using high-throughput sequencing

and subsequently maps a transcript’s expression pattern in tissue sections
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using high-resolution microscope imaging. This provides gene expression

data at 5,000 capture spots in each Visium slide within the context of tissue ar-

chitecture, tissue microenvironments, and cell groups. SpaceRanger was

used to process Visium spatial RNA-seq output and bright-field and fluores-

cence microscope images to detect tissue, align reads, and generate

feature-spot matrices. SpaceRanger built-in function mkfastq was used to

wrap Illumina’s bcl2fastq to correctly demultiplex Visium-prepared

sequencing runs and to convert barcode and read data to FASTQ files.

SpaceRanger function count was used to take a microscope slide image

and FASTQ files from SpaceRanger mkfastq and perform alignment, tissue

detection, fiducial detection, and barcode/UMI counting. In our study, raw

sequence reads were mapped to mice reference genome (mm10) to obtain

the gene expression profile at each spot.

IF staining images generation protocol

Here, we describe the protocols for IF staining of thick sections and bone

clearing. In brief, femur bone sections were cleaned, pretreated with 1 mg/

mL sodium borohydride solution, and then blocked before whole-mount stain-

ing. Then, the bone sections were stained with antibodies. IF staining was per-

formed in 1 mL staining buffer for 3 days at 4�C with constant rotation and fol-

lowed by a whole day of PBS washing. The stained samples were then

dehydrated by a series of methanol solutions before being completely cleared

by BABB solution. The bone sections were later sealed in imaging glass cas-

settes with BABB solution. The images were taken using an Olympus FV1200

MPE confocal microscope.

Additional results with mouse bone marrow data

Here, we present the additional results of jointly analyzing four bone tissue

samples as well as the IF staining images for the profiled tissue samples, which

highlights the tumor cells. Specifically, here, we focus on mouse bone marrow

tissue samples 3 and 4 as the results of the other two samples are discussed in

detail in the mouse bone marrow ST data analysis section. Figure S5A shows

the spatial pie chart plots generated by MUSTANG for samples three and four

and same as what we described in the mouse bone marrow ST data analysis

section, the IF staining images are generated and used to validate MUSTANG

results by identifying tumor cells in bone marrow TME. Figure S5B shows the

matched IF staining images for bone marrow tissue samples 3 and 4. As the

figures suggest, the green dots that highlight the tumor cells regions can be

matched with the tissue areas in samples 3 and 4 that have high proportions

of cells of cell type 2, illustrating the capability of MUSTANG to characterize

tumor cells in mouse bone marrow TME.
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