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ABSTRACT

Objective: This systematic review aims to assess how information from unstructured text is used to develop

and validate clinical prognostic prediction models. We summarize the prediction problems and methodological

landscape and determine whether using text data in addition to more commonly used structured data improves

the prediction performance.

Materials and Methods: We searched Embase, MEDLINE, Web of Science, and Google Scholar to identify stud-

ies that developed prognostic prediction models using information extracted from unstructured text in a data-

driven manner, published in the period from January 2005 to March 2021. Data items were extracted, analyzed,

and a meta-analysis of the model performance was carried out to assess the added value of text to structured-

data models.

Results: We identified 126 studies that described 145 clinical prediction problems. Combining text and struc-

tured data improved model performance, compared with using only text or only structured data. In these stud-

ies, a wide variety of dense and sparse numeric text representations were combined with both deep learning

and more traditional machine learning methods. External validation, public availability, and attention for the

explainability of the developed models were limited.

Conclusion: The use of unstructured text in the development of prognostic prediction models has been found

beneficial in addition to structured data in most studies. The text data are source of valuable information for pre-

diction model development and should not be neglected. We suggest a future focus on explainability and exter-

nal validation of the developed models, promoting robust and trustworthy prediction models in clinical prac-

tice.

Key words: clinical prediction model, prognostic prediction, natural language processing, machine learning, electronic health

records

INTRODUCTION

Prognostic prediction models are increasingly common in clinical re-

search and practice.1,2 Prognostic models predict which patients,

among a target population of patients, will experience some clinical

outcome during a window of time in the future, the prediction hori-

zon. The predictors used by the model are measured during an ob-

servation window prior to the time of prediction (Figure 1). The

growing availability of observational data in electronic health
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records (EHRs) forms a rich source to develop prediction models in

a data-driven manner.2,3 Although most clinical risk prediction re-

search is centered on the use of structured data, such as coded condi-

tions, measurements, and drug prescriptions, the majority of

information in EHRs is typically stored in vast quantities of unstruc-

tured text, for example, nursing notes, discharge letters, or radiology

reports.4 When compared with structured data, unstructured text

lacks an organized structure or terminology, is large in terms of file

size, and contains patient-sensitive information, which complicates

its use for the construction of prediction models. However, informa-

tion captured in text can be more detailed and extensive than in

structured data, as it is not limited to specific code systems or input

fields. Therefore, the use of text data in a prediction model could po-

tentially provide information to better predict the outcome, improv-

ing model performance.

The growing availability of unstructured text in EHR data, in-

creased computational power, and progress in natural language

processing (NLP) techniques are now enabling the use of text data

for the development of prediction models. Several reviews have elu-

cidated the use of text data in the clinical domain, focusing on the

general task of extracting information from unstructured text5–11 or

the diagnostic classification of patients, including case detection, pa-

tient identification, and phenotyping.4,9,12 However, the develop-

ment of text-based prognostic prediction has not been extensively

studied. Recently, Yang et al13 performed a large review of 579

prognostic prediction models, expanding on the review by Goldstein

et al,2 but neither focused on the use of text data. Another review,

by Yan et al14 studied the use of unstructured text in, specifically,

early sepsis prediction. To our knowledge, no broad systematic re-

view has been conducted on the development of text-based prognos-

tic prediction models. As these models start to be developed, it

becomes increasingly important to reflect on the work that has been

done, summarize the methodological landscape, and discover

whether text data have value supplementing structured data.

Consequently, the objective of this review is to assess how infor-

mation extracted from unstructured text in EHR data is utilized to

develop and validate prognostic prediction models. We evaluated

the studies on the study settings and populations, text processing

methods and representations, machine learning methods and feature

set combinations, performance evaluation and external validation,

attention to model explainability, and model availability. Further-

more, we determined the value of text in addition to structured data

by comparing the performance between models using different fea-

ture sets within the studies.

MATERIALS AND METHODS

Review protocol
This study followed the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA).15 The review protocol was

registered on June 17, 2021, and is publicly available at the Open

Science Framework Registries (https://osf.io/gw628).

Eligibility criteria
This review targeted studies from the last 15 years (January 2005 to

March 2021) describing the development and evaluation of prog-

nostic clinical prediction models that incorporate information

extracted in a data-driven manner from unstructured text in EHR

data. A range of 15 years was chosen to allow for a broad search, in-

cluding early studies developing prediction models in a data-driven

manner. The 3 inclusion criteria are defined as follows. (1) The

study described the development and evaluation of a prognostic clin-

ical prediction model. (2) The model predictors were based on infor-

mation extracted from unstructured text in an EHR database. (3)

Information was automatically extracted from the unstructured text

in a data-driven manner. Data-driven implies that the extraction of

information from the text was exploratory and not restricted to fea-

tures that were expected to be important. This allowed us to evalu-

ate prediction models developed on all the available text,

comparable to the exploratory development of prediction models on

all structured data, instead of a limited set of concepts. Detailed in-

clusion criteria are provided in Table 1.

Literature search
Four databases were used for the literature search: Embase, MED-

LINE, the Web of Science core collection, and Google Scholar. The

database choice and the search strategy creation were aided by a

medical librarian. The search strategy consisted of 4 clauses that in-

crementally limited the search results: (1) Prediction models; (2) The

medical domain or EHRs; (3) A notion of text data, clinical notes,

or NLP methods; (4) The period from January 2005 till March

2021, studies in the English language, and excluding conference

abstracts and animal research. The full search strategy can be found

in Supplementary Table S1.

Screening
The found studies were first screened for fulfilling the eligibility cri-

teria based on the title and abstract. Those that were found relevant

underwent a second screening for inclusion based on the full text. In

both screening phases, 1 reviewer (TS) screened all studies and 10

other reviewers (EF, SI, DJ, LJ, JK, AM, VP, AR, RW, and CY) inde-

pendently screened 1/10th of the total number of studies. This

resulted in each study being screened by 2 independent reviewers.

Any discrepancies between them, in both screening phases, were re-

solved in a consensus meeting.

Study quality assessment
To assess the quality of the studies 1 reviewer (TS) determined their

adherence to the transparent reporting of a multivariable prediction

model for individual prognosis or diagnosis (TRIPOD) statement16

using the TRIPOD adherence form (https://www.tripod-statement.

org/adherence/).

Figure 1. Visualization of the prognostic prediction problem. The objective is

to predict which patients from a target population will experience an outcome

event within a prediction horizon, using predictors only measured in an ob-

servation window before the time of prediction. Predictors can be extracted

from both the structured data and text data.
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Data extraction and synthesis
Data for analysis were extracted from the included studies by 1 re-

viewer (TS) using a predefined set of data items, outlined in Table 2.

Some items are based on clinical prediction item sets from the criti-

cal appraisal and data extraction for systematic reviews of predic-

tion modeling studies (CHARMS) checklist17 and the TRIPOD

statement.16 Ten data item topics were distinguished: (1) general

publication information, (2) study setting, (3) study population, (4)

unstructured text predictors, (5) structured data predictors, (6) ma-

chine learning methods and feature sets, (7) internal and (8) external

validation, (9) model explainability, and (10) model availability.

The input for text representation methods consisted of a list of

both sparse and dense numeric vector representations. Sparse repre-

sentations included Bag-of-Words, Term Frequency—Inverse Docu-

ment Frequency (TFIDF), and clinical concept extraction. Dense

vector representations included topic models, word and document

embeddings, and summarizing scores, such as a sentiment score.

Combinations of representations were possible. The machine learn-

ing methods were of varying complexity and interpretability, rang-

ing from methods with relatively low complexity and high

interpretability, such as linear or logistic regression, to increasingly

more complex random forests, gradient boosting, support vector

machines (SVM), and deep neural network methods.

Model explainability indicates whether a model is understandable

to humans and whether the model’s behavior can be described in the

entire feature space.18 However, determining the explainability of a

model is not an objective or trivial task.19 Therefore, we assessed in-

stead if a study paid attention to model explainability, regardless of

whether the developed model could be considered explainable or not.

This was assessed by the presentation of global feature importance,

the feature importance over all predictions, or local feature impor-

tance, the contribution of features to a specific prediction.

If a study reported on multiple prediction problems, for example, a

study reporting on both hospital readmission and in-hospital mortality

prediction during intensive care unit (ICU) admission, the data items

were extracted for each reported problem separately. The model and

validation data items were only extracted for the—self-reported—best

performing structured, text, and combined-data models in each prob-

lem. For data items with free text input, the results were manually cat-

egorized after data extraction to enable analysis.

We performed a meta-analysis on the reported model perfor-

mance, comparing the structured, text, and combined-data models,

for each prediction problem. The differences in the area under the

receiver operating characteristic curve (AUC) were calculated for

each reported feature set comparison: text and structured data

(DAUCTS ¼ AUCT–AUCS), combined and structured data (DAUCCS

¼ AUCC–AUCS), and combined and text data (DAUCCT ¼ AUCC-

AUCT). The AUC differences indicate the relative performance dif-

ference between the uses of the 3 feature sets within each prediction

problem and are suitable to be compared across studies.

RESULTS

Search and data-extraction results
The literature search, performed in March 2021, resulted in a total

of 5043 studies. The PRISMA flow diagram is presented in Figure 2.

After deduplication, removing 2030 studies, a set of 3013 studies

Table 1. Inclusion criteria

Criterium Description Exclude examples

1 The study described the development and evaluation of a

prognostic clinical prediction model

A The model predicts a future clinical event or outcome for

a patient

Exclude diagnostic, identification, phenotyping, or ex-

traction models

B The subject must be a patient or a limited group of

patients

Exclude if the subject is anything else, such as a drug,

bed, or gene

C A parameterized prediction model must be developed

and evaluated

Exclude if a study only reports the odd-ratios of covari-

ates, only runs statistical tests, or does not evaluate the

developed model

D Any clinical domain is relevant, such as intensive, radiol-

ogy, general practitioner, or psychiatric care

2 The model predictors were based on information

extracted from unstructured text in an EHR database

A The information is extracted from human-readable text

data in an EHR database

Exclude if all text data comes from other sources, such as

social media, literature, recordings, transcripts, or ge-

netic data

B The extracted information is used as covariates in the

model

Exclude when the study only uses the information to de-

fine the outcome or target patient cohorts

C The model must at least use information from unstruc-

tured text, but a combination with structured data is

allowed

3 Information was automatically extracted from the un-

structured text in a data-driven manner

A Data-driven means that the extraction is exploratory and

it should not have been known beforehand what infor-

mation from the text data was important for model

development

Exclude if the extraction was driven by mere intuition,

personal experience, or existing knowledge. For exam-

ple, the extraction of a limited number or specific set

of clinical concepts, such as the smoking status or a

small set of vital signs

B The extraction was done automatically Exclude if the information is manually extracted from

the text data
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was screened on title and abstract. We excluded 2783 studies that

violated one of the inclusion criteria. Full-text screening of the

remaining 230 studies resulted in 126 relevant studies to be included

in the review. The 104 studies that were excluded based on their full

text consisted of 5 duplicate studies, 52 studies not performing prog-

nostic modeling or a performance evaluation, 13 studies with no use

of text data in the prediction model, 28 studies without data-driven

information extraction, and 6 studies with other reasons for exclu-

sion (no full-text available, not peer-reviewed, reviews). The study

quality assessment, measured by TRIPOD adherence, resulted in an

average score of 23.1 out of 30 (median¼24, min¼17, max¼28,

n¼124) for the development only studies and 30.5 out of 36 for de-

velopment and external validation studies (median¼30.5, min-

¼30, max¼31, n¼2). All included studies were considered to be

Table 2. List of data items for data extraction, by topic

Item topic Data item Input type

1. General information Publication year Year

Journal Free text

2. Study setting Dataset Free text

Country of data Country

Clinical setting Free text

Study dates Range of years

3. Population Type of study* Cohort, case-control

Target populationAB Free text

Prediction outcomeA Free text

Prediction horizonA Hours, days, years, relative time (free text), and time-

point

Prediction outcome type Binary, multi-class, and continuous

4. Unstructured text predictors Type of unstructured text Free text

Language of text Language

Observation windowB Hours, days, years, relative time (free text), and time-

point

Preprocessing methods Free text

Text representation methods BoW, TFIDF, CE, WE, DE, TM, and SS (multiple possi-

ble)

Used ontologies/vocabularies Free text

Used software/program/package Free text

Number of predictorsA Number

5. Structured data predictors Types of structured data Free text

Observation windowB Hours, days, years, relative time (free text), and time-

point

Number of predictorsA Number

6. Model Machine learning methodA LogR, LinR, Cox, NB, RFTB, GB, SVM, feedforward

NN, RNN, CNN, transformers, DNN, ensembles,

and other

Feature set Structured, text, and combined

7. Internal validation Number of observationsA Number

Number of observations with the outcome (outcome

cases)A

Number

AUC, AUPRC, F1-scoreA Values

Accuracy, sensitivity (or recall), specificity, and positive

predictive value (or precision) reported? A

Yes or No

MSE/MAE reported? A Yes or No

ROC/PR curves presented? A Yes or No

Calibration plot or metrics presented? AB Yes or No

8. External validation Type of external validationA Same or another department, center, or country

Same items as internal validation

9. Explainability Global feature importance presented?* Yes or No

Single patient (local) feature importance presented?* Yes or No

10. Final model availability Is the final model directly available to apply to different

data? A

Yes or No

Is the study code available to reproduce the methods?* Yes or No

Notes: Data item sources indicated by A: CHARMS and B: TRIPOD; an asterisk (*) indicates data items added to the review protocol.

Abbreviations: BoW: Bag-of-Words; CE: Concept Extraction; WE: word embedding; DE: document embedding; TM: topic model; SS: summarizing score;

LogR: logistic regression; LinR: linear regression; Cox: cox proportional hazards regression; NB: Naı̈ve Bayes; RFTB: Random forests or other tree-based meth-

ods; GB: gradient boosting; SVM: support vector machines ; NN: neural networks; RNN: recurrent neural networks; CNN: convolutional neural networks;

DNN: deep neural networks; AUC: area under the receiver operating characteristic curve; AUPRC: area under the precision-recall curve; MSE: mean squared er-

ror; MAE: mean absolute error; CHARMS: critical appraisal and data extraction for systematic reviews of prediction modeling studies; TRIPOD: transparent

reporting of a multivariable prediction model for individual prognosis or diagnosis.
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of sufficient quality. The scoring table is available as Supplementary

Material.

We extracted the different data items for each study and its

reported prediction problems. Fourteen of the 126 studies reported

multiple prediction problems, resulting in a total of 145 problems. A

list of characteristics of the studies ordered by publication year is

presented in Supplementary Table S2 and the extracted data items

are available as Supplementary Material. The large majority of the

reviewed studies (99, 79%) were published in the period from Janu-

ary 2018 to March 2021 (Table 3). No eligible studies were found

in the period 2005–2011. The studies were published in a variety of

journals and conference proceedings. The journals with the highest

number of studies were the Journal of Biomedical Informatics (11,

9%), PLoS One (7, 6%), BMC Medical Informatics and Decision

Making (6, 5%), JMIR Medical Informatics (6, 5%), and The Jour-

nal of the American Medical Informatics Association (6, 5%).

Sixty-five of the 126 reviewed studies compared models that

used structured data (S), text data (T), or a combination of struc-

tured and text data (C). A comparison between all 3 feature sets

(S:T:C) was reported for 34 of the 145 prediction problems (23%).

In 37 problems (26%) 2 feature sets were compared (S:T 6, 4%; S:C

26, 18%; T:C 5, 3%), and in 74 problems (51%) no comparison

was made and the use of only 1 feature set was reported (T 48,

33%; C 26, 18%).

Clinical settings and prediction problems
Most prediction problems focused on general hospital care settings

(68, 47%), followed by intensive care (26, 18%), emergency care

(20, 14%), surgical care (12, 8%), and psychiatric or mental health

care (10, 7%). Only a few problems (5, 6%) were set in outpatient,

or radiology settings. Almost half (68, 47%) of the problems used a

local proprietary dataset, 18 problems (13%) used a collection of 2

or more local datasets, and 10 (7%) used registry, claims, or survey

datasets. One-third of the prediction problems (48, 33%) were de-

veloped on a publicly available dataset. Specifically, 47 problems

used the Multiparameter Intelligent Monitoring in Intensive Care II

(MIMIC-II)20 database or the Medical Information Mart for Inten-

sive Care III (MIMIC-III)21 database and one problem used the pub-

lic dataset from the 2014 i2b2 Shared Task.22

Figure 3 visualizes the different categories of target populations,

clinical outcomes, and prediction horizons that make up each pre-

diction problem. The 3 largest target populations were patients with

general hospital admissions (32, 22%), ICU admissions (26, 18%),

and emergency department (ED) visits (20, 14%). The largest out-

come events were mortality (42, 29%), diagnosis of a specific dis-

ease or condition (27, 19%), and hospital, ICU, or ED readmission

(17, 12%). Most prediction problems had as prediction horizon a

period of months (43, 30%) or the period during admission (39,

27%). There were 82 unique problems, combinations of a target

Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram with the search and screening results of the systematic review.
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population, outcome, and prediction horizon, of which 58 only oc-

curred once. The prediction of mortality during admission in ICU

patients occurred most often (10, 7%), followed by the prediction of

admission to the hospital, including transfer to the ICU, at ED dis-

charge for patients visiting the ED (9, 6%).

The observation window, in which the predictors are measured

prior to the time of prediction, was not reported in 18 problems

(12%). The most-reported observation windows, in all models, were

the first 24 hours of a hospital or ICU admission or the first hour of

the ED visit (50, 20%), during the entire admission or visit (36,

15%), and during triage (17, 10%). The relationship between the

observation window and prediction horizon in text and combined-

data models is visualized in Supplementary Figure S1. The most fre-

quent combinations were an observation period during the first 24

hours of a hospital or ICU admission or the first hour of an ED visit

followed by a prediction horizon during this admission or visit (24,

13%) and an observation period during the entire admission or visit

followed by a prediction horizon in months (17, 9%).

The distributions of the number of observations and the number

of observations with the outcome (outcome cases) are depicted in

Figure 4A together with the distribution of their ratio in Figure 4B.

The number of observations differed much between studies, from

only a few hundred observations to a few million, with a mean of

87 016 and a median of 17 973 observations. Observations and out-

come cases had an average ratio of 0.20 and a median of 0.14. In

only 1 prediction problem, the number of observations was not

reported and in 22 problems (16%) the number of outcome cases

was missing.

Preprocessing methods and text representations
Text preprocessing methods, applied before the text representation

creation, were well-reported in 107 prediction problems (74%). The

preprocessing of text commonly included methods such as sentence

splitting, tokenization, lemmatization, the removal of stop words,

punctuation, or numbers, abbreviation disambiguation, and the fil-

tering of tokens based on frequencies. The text data was written in

English for the majority of problems (115, 79%), followed by Chi-

nese (8, 6%) and Portuguese (5, 3%). In total 12 different languages

were reported. Various types of unstructured text were used, which

we categorized into 17 categories, see Supplementary Figure S2. In

68 problems (47%) the type was unspecified. The most occurring

types of unstructured text were nursing (19, 13%), physician (18,

12%), radiology (17, 12%), and triage notes (10, 7%), and surgery

and (pre)operative reports (9, 6%).

Bag-of-Words and TFIDF text representations were used most of-

ten, in 67 of the 184 text and combined-data models (36%), followed

by word embeddings (33, 18%) and concept extraction (24, 14%).

In some cases, multiple representations were combined by concatena-

tion (11, 6%) or dense representations were generated from extracted

concepts (5, 3%). Dense representations had a median dimension of

200 features against 6985 features in sparse representations (Supple-

mentary Figure S3). Preprocessing methods were more frequently

reported together with the use of Bag-of-Words (34, 83%) and

TFIDF (24, 92%) compared with concept extraction (14, 58%), doc-

ument embeddings (11, 58%), and word embedding (25, 76%)

methods, which often used out-of-the-box tools or software. Meta-

Map23 was the most common software used for extracting clinical

Table 3. Number of included studies by publication year

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 (until March)

Number of included studies 4 0 5 4 9 5 19 30 41 9

Figure 3. Sankey diagram of the different categories of target populations and clinical outcomes, and clinical outcomes and prediction horizons, ordered by size.

The number in parentheses indicates the number of prediction problems with these categories and the width of the connection between 2 categories represents

the number of prediction problems with this combination of categories.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 7 1297

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac058#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac058#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac058#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac058#supplementary-data


concepts from text data, in 11 out of the 30 models using extracted

concepts. Medical concepts from vocabularies in the Unified Medical

Language System24 were extracted from the text data in 26 of 30

models. Five models made only use of the SNOMED Clinical

Terms25 and for 4 models no ontology was reported.

Machine learning methods
The most used methods for training text and combined-data models

were logistic regression (49, 27%), recurrent neural networks (23,

13%), and random forest or other tree-based methods (19, 10%). For

the structured-data models, logistic regression was also the most prev-

alent method (20, 30%), followed by gradient boosting (13, 20%)

and recurrent neural networks (8, 12%). In most prediction problems

(129, 89%), the prediction outcome was binary. Multi-class (10, 7%)

and continuous (6, 4%) outcomes were used less often.

Figure 5A depicts the use of both text representations (abstracted

as dense, sparse, or combined representations) and machine learning

methods in text and combined-data models over the years. A distinc-

tion was made between neural network-based methods, ensemble

methods, and traditional machine learning methods not based on

neural networks. It can be observed that until 2017, the use of sparse

representations and traditional models was most common, but after

2018 the use of both dense text representations and neural networks

took off. To understand their joined rise, we examined the relation-

ship between the model’s machine learning method and its textual

input representation in Figure 5B. It shows that the word and docu-

ment embeddings served primarily as the input for deep learning

methods, while the Bag-of-Words representations were commonly

used by more traditional machine learning methods. The text repre-

sentations and machine learning methods were significantly associ-

ated, X2 (4, n¼183) ¼ 36.1, P < .001.

Model performance evaluation and comparison
The internal validation model performance was reported using the

AUC (or c-statistic/index) for the majority of prediction problems

(121, 83%). For the other problems only metrics that are based on

dichotomized outcomes, such as accuracy, sensitivity (or recall), spe-

cificity, and positive predictive value (or precision), were reported.

The mean squared error or mean absolute error were reported for

models predicting a continuous outcome (4, 3%). The F1-score was

reported for 46 problems (31%) and the area under the precision-

recall curve (AUPRC) for 20 (14%). The combined reporting of met-

rics is visualized in Supplementary Figure S4. A receiver operator

curve or precision-recall curve was presented for 57 problems

(39%), but for only 18 problems (12%) a calibration plot or calibra-

tion metric (such as the brier-score or calibration intercept and

slope) was presented.

Figure 6A depicts the distributions of AUC differences (DAUC)

between the structured, text, and combined-data models within

each prediction problem. The combined-data models had a visibly

higher performance than the text or structured data models and

the average AUC differences, for both DAUCCS and DAUCCT,

were significantly larger than zero, t (53)¼6.76, P < .001 and t

(33) ¼ 5.49, P < .001 respectively. Text-based models did not

perform significantly better or worse than the structured-data

models. Their AUC difference, DAUCTS, showed a large variation

across prediction problems. We investigated whether there was a

relationship between these AUC differences and the clinical set-

tings. Figure 6B shows how the text and structured-data model

performance differences vary between 4 clinical settings: emer-

gency, hospital, intensive, and surgical care. Psychiatric care is not

presented as it only had 1 observation. Following a full pairwise

comparison of the distributions, we found that the AUC difference

means of the intensive and surgery care prediction problems were

different t (8.55) ¼ �3.95, P ¼ .024 (Bonferroni adjusted). This

implies that models using text data in the surgical care setting had

on average a higher performance (compared with structured data

models) than in the intensive care setting. This discrepancy may

be caused by the use of different types of unstructured text in

both care settings, see Supplementary Figure S2. Surgery care

models incorporated primarily surgery and (pre)operative reports

Figure 4. (A) Boxplots of the number of observations (left) and outcome cases (right) of 145 prediction problems. (B) Boxplot of the ratios between the number of

observations and outcome cases. In both (A) and (B), the mean is indicated by the diamond and the points represent the underlying data.
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and radiology notes, while intensive care models relied on unspeci-

fied, nursing, physician, and radiology notes.

Notably, prediction models were externally validated in only 2 stud-

ies. Marafino et al26 externally validated their in-hospital mortality pre-

diction model within 3 medical centers and Menger et al27 externally

validated their in-hospital patient violence prediction model at 2 sites.

Both studies reported a small to moderate decrease in external valida-

tion model performance, between 0.023 and 0.079 AUC difference.

Model explainability and availability
The attention to model explainability was assessed by the presenta-

tion of global or local feature importance. Global feature impor-

tance was reported for 64 prediction problems (44%) and local

feature importance was presented for 9 problems (6%). The final

model was presented or made available in only 7 prediction prob-

lems (5%), whereas the code used for training the model was di-

rectly available online for 31 problems (21%).

Figure 5. (A) The use of different text representations (TR) and machine learning (ML) methods in text-based or combined-data prediction models over time. No

eligible studies in 2013. (D)NN are all feedforward and deep neural network-based methods. (B) The combinations of text representations (left) and machine-

learning methods (right) in text-based or combined-data prediction models. The number in parentheses indicates the number of prediction problems with these

categories and the width of the connection between 2 categories represents the number of prediction problems with this combination of categories. Both (A) and

(B) share the same legend: the colors of the nodes indicate the types of text representations and machine learning methods.

Figure 6. (A) Area under the receiver operating characteristic curve (AUC) difference distribution boxplots of the combined and structured-data models (DAUC

Combined�Structured), the text and structured-data models (DAUC Text�Structured), and combined and text-based models (DAUC Combined�text). (B) Text

and structured-data model AUC difference (DAUC Text�Structured) boxplots for 4 different clinical settings. In both (A) and (B), the means are indicated by a dia-

mond, the points represent the underlying data, sample sizes are shown on top, and the dotted line indicates the AUC difference of zero. ns: not significant; *P <

.05, ****P < .001.
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DISCUSSION

Model performance
We found that in the 126 studies developing prognostic prediction

models using unstructured text, published in the last 15 years, the

performance of combined-data models on average outperformed the

text and structured-data models. This demonstrates that the text

data available in the EHR is a source of valuable information able to

improve model performance in addition to structured data. Yan et

al14 found comparable results in a review of 9 studies predicting sep-

sis. Although on average text-based models did not outperform

structured-data models, we did see an interesting difference between

clinical settings. In intensive care prediction problems, the

structured-data models had a higher performance than the text-

based models when compared with surgical care. This may be

explained by the inherent differences in recording data between

these clinical settings, as the intensive care is generally a structured-

data rich setting, where the unstructured data had the form of physi-

cian and nursing notes, while in surgical care the information was

contained in surgical and (pre)operative reports. Therefore, how

clinical information is recorded may influence the performance of

both text- and structured-based models.

Clinical settings, datasets, and language
Hospital care (including intensive, surgical, and emergency care)

was the most common clinical setting. While the combinations of

different target populations, outcome events, and prediction hori-

zons varied much between prediction problems, common themes

could be observed, such as the prediction of mortality in the ICU or

ED discharge disposition. Although almost half of the reviewed

studies used a proprietary dataset, a third of the studies used a public

dataset, specifically, the MIMIC-II20 or MIMIC-III21 dataset or the

dataset from the 2014 i2b2 Shared Task.22 This shows that the pub-

lic availability of datasets containing anonymized unstructured text

and their use should be encouraged as they enable transparent and

reproducible research on unstructured text and can serve as a bench-

mark for clinical NLP tasks. Almost 90% of the reviewed studies

were performed on English unstructured text. This suggests that op-

portunities still exist for studying model development using text

data in other languages.28,29

Text processing and machine learning methods
The techniques used for preprocessing text and creating numeric

text representations were generally well described. The impact of

preprocessing methods on the model performance can be significant

and those methods are therefore essential to report.30 The sparse

Bag-of-Words and TFIDF representations and the dense word and

document embeddings were most frequently used and we found an

association between the types of text representation and machine

learning methods. The neural network methods generally used a

dense text representation, while regularized logistic regression meth-

ods, random forests, or SVMs largely took sparse representations as

input.

Model explainability and external validation
Less than half of the studies paid attention to model explainability,

which may be considered rather limited given the importance of

explainability and trustworthiness in clinical prediction models.18

When compared with logistic regression models, which are intrinsi-

cally interpretable, deep learning models need additional effort to be

explained. Deep learning is well-suited for handling and combining

structured and unstructured data,31 but the high complexity and

dense input features impede direct explainability without posthoc

explanation techniques.18 We suggest that future studies assess their

model’s explainability and consider the use of either directly ex-

plainable modeling methods or posthoc explanation techniques.

Furthermore, only 2 studies presented external validation results

and relatively few studies shared their trained model or code. Exter-

nally validating prediction models using text data might be challeng-

ing, due to the differences in (sub)language and EHR systems or the

fear of sharing identifiable patient information captured by the

model. However, assessing generalizability and external validity

remains important in model development.32 Frameworks exist, such

as the Observational Medical Outcomes Partnership Common Data

Model (OMOP CDM),33 that deal with the lack of syntactic and se-

mantic interoperability in health data. The OMOP CDM enables ex-

ternal validation by evaluating trained prediction models on other

databases, only reporting back the aggregated and anonymized

results.1,3 This allows research to meet the challenges of validating

text-based models between databases using different languages. We

suggest a future research focus on external validation and advocate

the sharing of code or trained models for external validation by

others. These steps will not only expand the model’s generalizability

but will also promote the use of robust and trustworthy prediction

models in clinical practice.32

Strengths and limitations
There were likely some published studies eligible for inclusion that

we did not find. For example, studies that incorporated text data in

a prediction model but did not mention it in the title or abstract

would have been missed. Nonetheless, the search query was

designed to capture a wide variety of terms that would indicate the

use of unstructured text. Furthermore, the level of granularity for

predefined categories for text representations or machine learning

methods was high. More granular categories on, for example, the

different deep learning architectures could have been collected for

more detailed and in-depth information. However, this would also

have resulted in decreasing numbers per category, complicating in-

terpretation. To the best of our knowledge, this is the first system-

atic review on the development of prognostic clinical prediction

models using unstructured text. We performed a broad literature

search over a long period of time, resulting in a large set of eligible

studies in a wide variety of clinical settings, not focused on 1 specific

prediction problem. The comparison of the relative performance be-

tween text, structured, and combined feature sets within each study

allowed us to assess the value of text data in prediction model devel-

opment. Finally, we made the extracted data available to provide

transparency and reproducibility.

CONCLUSION

In this systematic review, we found that the use of unstructured text

in the development of prognostic prediction models was beneficial

in most studies. Combining unstructured text with structured data

in prediction model development generally improved model perfor-

mance, while the performance of text-based models compared with

structured-data models varied. Overall, unstructured text in EHR

data should not be neglected, as it is a source of valuable informa-

tion that can improve prediction model performance in addition to

structured data. But the information available in both structured

and unstructured data is likely dependent on the clinical setting and
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type of unstructured text. Models were generally developed in hospi-

tal care settings using a variety of text representations and machine

learning methods and we found a relationship between the types of

text representation and machine learning methods used. Further-

more, it is a cause for concern that only 2 studies externally vali-

dated their developed prediction models and that many studies had

little attention for model explainability. Therefore, we suggest a fo-

cus on external validation and model explainability in future re-

search. Additionally, we emphasize the importance of studying the

use of text in non-English languages in prediction model develop-

ment.
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