
The Use of Genome-Wide eQTL Associations in
Lymphoblastoid Cell Lines to Identify Novel Genetic
Pathways Involved in Complex Traits
Josine L. Min1*, Jennifer M. Taylor2, J. Brent Richards3,4, Tim Watts5, Fredrik H. Pettersson1, John

Broxholme2, Kourosh R. Ahmadi4, Gabriela L. Surdulescu4, Ernesto Lowy2, Christian Gieger6, Chris

Newton-Cheh7, Markus Perola8, Nicole Soranzo4,9, Ida Surakka8, Cecilia M. Lindgren1, Jiannis

Ragoussis5, Andrew P. Morris1, Lon R. Cardon1,10., Tim D. Spector4., Krina T. Zondervan1*.

1 Genetic and Genomic Epidemiology Unit, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2 Bioinformatics Core, The

Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 3 Departments of Medicine and Human Genetics, McGill University, Montréal,
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Abstract

The integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic
pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed
lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed
probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU
HapMap founders and 86 unrelated twins. Genome-wide association analysis of these probes with 2.2 m SNPs revealed 131
potential eQTLs (1,989 eQTL SNPs) overlapping between the HapMap datasets, five of which were in cis (58 eQTL SNPs). We
then tested 535 SNPs tagging the eQTL SNPs, for association with the relevant QT in 2,905 twins. We identified nine
potential SNP-QT associations (P,0.01) but none significantly replicated in five large consortia of 1,097–16,129 subjects. We
also failed to replicate previous reported eQTL associations with body mass index, plasma low-density lipoprotein
cholesterol, high-density lipoprotein cholesterol and triglycerides levels derived from lymphocytes, adipose and liver tissue.
Our results and additional power calculations suggest that proponents may have been overoptimistic in the power of LCLs
in eQTL approaches to elucidate regulatory genetic effects on complex traits using the small datasets generated to date.
Nevertheless, larger tissue-specific expression data sets relevant to specific traits are becoming available, and should enable
the adoption of similar integrated analyses in the near future.
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Introduction

The availability of high throughput and low cost genotyping

technologies have lead to recent successes of genome-wide

association (GWA) studies in mapping genes contributing to

various complex traits including diabetes, lipids and bone mineral

density (BMD) and obesity [1–3]. Many consistently replicated

associations between clinical phenotypes and genetic variants have

been found to date. However, most of these studies – particularly

those involving quantitative traits (QTs) - require very large

sample sizes to detect modest effects which explaining only a small

fraction of the heritability associated with these traits; furthermore,

they do not provide experimental data supporting the functional

and regulatory consequences of the associations [4]. Linkage

disequilibrium (LD) across the associated region and time-

consuming experiments to gain functional evidence make

identification of the causal variants difficult. A common approach

employed by various studies to gain insight into the possible

regulatory role of replicated disease-associated Single Nucleotide

Polymorphisms (SNPs) is to investigate their correlation with

transcript levels. For instance, Moffatt et al. (2007) found that the

most significant SNPs associated with childhood asthma risk in a
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large LD region with 19 candidate genes accounted for 29.5% of

the variance of ORMDL3 transcript levels measured in lympho-

blastoid cell lines (LCLs) and thus ORMDL3 was prioritized as a

primary biological candidate for the asthma locus [5]. In a similar

approach, a SNP near TNFRSF11B, strongly associated with BMD

was found to be associated with a 50% decrease in expression

levels of TNFRSF11B in LCLs, providing a putative mechanism

for the SNP-trait association [2].

These approaches still rely, however, on the detection of

replicated SNP-disease associations in the first instance. Several

recent studies of the genetic basis of regulatory variation

(expression Quantitative Trait Loci (eQTL) studies) have shown

that cis-acting genetic variants can be strongly associated with gene

expression levels generated from various human samples including

LCLs [6–11], whole blood [12], fresh lymphocytes [13],

abdominal fat [12] and liver tissue [14], and some of these cis-

acting variants were reported to be correlated with a few clinical

QTs [2,5,12–16]. The general question remains, however, to what

extent gene expression traits that are likely to be under stronger

genetic influence than ‘downstream’ complex traits [13,17], can

help in uncovering novel genetic pathways involved in phenotypic

variation. An additional question is whether LCLs, used

extensively to date in eQTL discovery studies [6–11] are suited

to elucidating clinically relevant expression patterns.

In humans, LCLs have been commonly used in eQTL studies

[6–11], mainly because they are an easily accessible source of a

single cell type, in which immediate environmental influences and

variation manifested by other cell types on expression are

minimized compared to ex vivo samples thus decreasing noise

and allowing - in theory - a more powerful investigation of genetic

influences. However, LCLs -being removed from immediate

environmental influences such as inflammatory responses –are

transformed and cultured under artificial conditions and may not

represent the natural gene expression state in vivo. In addition, the

large percentage of pauciclonality in LCLs combined with

widespread monoallelic expression has been shown to lead to

highly differential expression profiles between LCLs and ex vivo

cells [18,19]. These differences between cell lines and natural

tissues might significantly reduce effect sizes of both QT/disease-

gene expression and eQTL associations. As long as LCLs mirror

the relevant patterns of regulation, an integrated analysis of

replicated eQTLs with clinical phenotypes could provide a more

powerful and informative approach to elucidate the genetic

regulation of complex traits.

Such integrated analyses - ideally involving evidence from

multiple datasets - are, however, methodologically not straight-

forward. Potential problems include the unknown relevance of

LCL expression profiles for the phenotype in question. Indeed

comprehensive collections of more relevant human tissues are not

commonly available for many clinical phenotypes. Moreover,

several studies have highlighted cell type- or tissue specific genetic

effects, where others found that a substantial numbers of eQTLs

are shared across tissues [12,20]. A few studies compared the

overlap of eQTLs found in LCLs and primary tissues and found

that a large number of eQTLs detected in LCLs can also be

detected in primary tissues [21–23].

In addition, differences in probe annotation and SNP tag

coverage across datasets may hamper comparisons across studies.

Gene expression profiles obtained from different platforms in

different laboratories analysed with the same annotation and

statistical methods [24–26] may improve the reproducibility of

eQTL studies [19,25,27].

In this study, we investigated the potential of combining gene

expression data from LCLs and genotype data to uncover

associations with a more regulatory and functional role between

clinical traits and underlying genetic variants. Specifically, rather

than focussing solely on the direct association between genetic

variants and a single clinical trait, or between genetic variants and

expression phenotypes, we sought to determine whether an

integrated approach would enable the detection of clinically

relevant associations. For this purpose, we used clinical, LCL

expression, and genotyping data from the UK Adult Twin registry,

a longitudinal epidemiological study of 11,000 twins (mostly

female) for whom extensive clinical, anthropometric, life-style, and

demographic information, as well as a wide range of biological

measurements have been collected [28]. In addition, we aimed to

detect robust eQTLs by using the twin data as well as three sources

of publicly available HapMap LCL expression data generated on

Illumina platforms but re-analysed using identical methodology

since they used different array versions and were produced in

different laboratories. Although the size of the datasets employed

for eQTL detection were only likely to enable the detection of cis

eQTLs relevant to QTs - the focus of our study - we also present

relevant results for trans effects. Our study is the first to investigate

the utility of eQTLs in a large number of QTs (N = 44), which

include BMD, anthropometric, metabolic and fat-related traits.

Results

The study design comprised four analysis stages (Figure 1): I)

prioritisation of clinically relevant expression probes through

correlation of 44 QTs with gene expression in LCLs of 299 female

twins; II) identification of SNPs associated with QT-correlated

expression probes (eQTLs) in 57 CEU HapMap individuals and

86 unrelated twins; III) confirmation of QT-SNP association in the

larger cohort of 2,905 female twins; IV) replication of QT-SNP

association in large, independent cohorts. The hypothesis behind

this design was that focussing eQTL SNP detection on expression

traits correlated with QTs should enrich for QT-SNP associations.

This screening step could increase power of detection not only

because expression traits are likely to be under stronger genetic

control than more downstream QTs, but also because it

potentially reduces the extent of multiple testing otherwise

inherent to genome-wide QT association approaches.

We selected 44 QTs measured in the twin cohort including

anthropometric traits, BMD, fat-related traits, electrolytes, liver

function markers, bone markers, lipids and glycemic traits

(Methods, Text S1). We first estimated the heritabilities of these

QTs in the entire twin cohort of 6,533 female twins (Figure 2A). In

general, the lowest heritabilities were found for electrolyte

measurements (h2: 0.15–0.37) and highest heritabilities were

found for fat-related (h2: 0.43–0.82) and BMD traits (h2: 0.62–

0.79). To investigate the correlation structure of the 44 QTs,

principal components analysis (PCA) on the 44 QTs was

performed discriminating three clusters: 9/12 fat-related traits,

four BMD traits and four blood pressure traits (Figure 2B,

Figure S1).

Stage I: Correlations between QTs and gene expression
levels in female twins

In Stage I, we generated gene expression profiles for a subset of

299 female Caucasian twins with available LCLs using Illumina

Human WG-6 V2 Sentrix BeadArrays containing 46,713 probes.

A total of 19,573 (42%) expression probes (11,854 Ensembl genes)

were detected in at least 10% of the individuals (Figure 1) and had

no SNPs in their sequence. We tested these expression probes for

association with each of the QTs using linear mixed models,

adjusting for the confounding effect of RNA Integrity Number,

Quantitative Trait-eQTL Associations from LCLs
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cell culture duration, age, and for correlation of measurements due

to experimental design (see Methods). Given its potential

confounding effect, we investigated the effect of smoking on gene

expression measurements, but found that only one expression

probe-QT correlation was mediated by smoking (Text S1, Table

S1). In total, 939 expression probes (4.8%) correlated with at least

one QT at a nominal significance value of p,1023, and 137

(0.7%) at p,1024 (Table 1). Of the 939 expression probes, 160

correlated with 2–8 QTs at p,1023, giving a total of 1,176

expression probe-QTs correlations (Table S2). The five expression

probes correlated with $5 QTs were correlated with blood

pressure and fat-related traits. The 939 expression probes

Figure 1. The study design comprises four different analysing stages. Stage I: Correlation analysis between 44 QTs and 19,573 detected
gene expression levels in 299 female twins profiled in LCLs. Stage II: eQTL detection of nominally significant QT-correlated probes in 57 CEU HapMap
individuals and 86 unrelated twins. Stage III: confirmation of QT-SNP association in 2,905 female twins. Stage IV: Replication of QT-SNP association in
large, independent cohorts.
doi:10.1371/journal.pone.0022070.g001
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nominally correlated with QTs at p,1023 were taken to Stage II.

Assuming independence between the QTs, the estimated false

discovery rate (FDR) was 0.73 across the 19,573 probes and 44

QTs. Given the correlations between many of the QTs, this

estimate was likely to be a substantial overestimate. At this stage,

however, we did not adjust for multiple testing because: i) results of

Stage I were taken forward to the subsequent confirmation Stages

II–IV during which appropriate correction was made; and ii)

substantial correlations exist between QTs (Figure S1) and

between expression probes and such adjustments would be

extremely stringent.

Stage II: eQTL analysis in the HapMap and Twin datasets
To uncover consistent eQTL signals underlying expression

signals correlated with QTs, we analysed and annotated three

LCL expression datasets from 57 CEU HapMap founders

(Wellcome Trust Centre for Human Genetics (WTCHG) version

1 (V1), WTCHG version 2 (V2), Sanger V1 [11]) that were

measured on two Illumina Beadchips (V1 and V2) in two

laboratories using the same methods (Text S1, Table S3 and

S4). In addition, we conducted eQTL detection in 86 unrelated

twins from Stage I (Twin V2) for which we had genotypes and

LCL expression data available. High reproducibility among the

same HapMap individuals was observed for 184 identical probes

that were detected in at least 10% of individuals in both WTCHG

V1 and WTCHG V2 datasets (spearman r= 0.96 (standard

deviation = 0.015)). Although our main focus - given the size of the

datasets - was on detecting cis eQTLs, we also included trans signals

for the purpose of contrast and completeness. Associations in cis

were defined as SNP-probe associations where SNPs were located

within a region 1 Mb upstream or downstream of the expression

probe midpoint. We considered all other associations as

associations in trans [11]. The rationale for the 1 Mb window

was that most of the eQTLs lie either within genes or close to the

gene [7,17,29].

For the eQTL analyses, we selected 718 of the 939 expression

probes (640 Ensembl genes) from Stage I that were detected in at

least 10% of the HapMap individuals (WTCHG V2) and had well-

mapped autosomal locations on NCBI build 36 (Figure 1). Our

primary aim was to leverage the combined evidence of eQTL

detection across the different datasets, with overlap in signals

between SNP-expression probe pairs from the HapMap datasets

providing evidence of technical replication, and overlap between

SNP-expression probe pairs from HapMap and the twin dataset

providing evidence of biological replication. However, overlap

analyses could involve only those 546/718 (76%) of the V2 probes

(594 Ensembl genes) which had the same Ensembl transcript

target as at least one probe on the Illumina V1 Beadchip.

We tested the 546 probes (corresponding to 1,050 V1

expression probes) for eQTL association in the three HapMap

datasets using a nominal significance threshold of p,1023 in all

three datasets (‘overlap’ analysis). To capture the increased

coverage of RefSeq genes on the V2 Beadchips compared to V1

Beadchips, we also conducted eQTL analyses using the WTCHG

V2 and Twin V2 datasets only for all prioritised 718 V2 probes.

For the WTCHG V2 and Twin V2 analyses, we applied a

nominal significance threshold of p,5*1027, a threshold applied

in GWA studies of a single trait [3]. We fitted additive models

between normalised expression values of each of the selected

expression probes and 2.2 million SNPs downloaded from www.

HapMap.org [30] in the HapMap datasets and 296,308 SNPs in

Twin V2 (see Methods). We tested additive models only as a

previous study showed that dominance had a minimal effect on

gene transcription [7].

After removal of eQTLs with different directional effects, the

overlap analysis yielded 131 expression probes (135 Ensembl

genes) associated with at least one SNP at p,1023 in all three

HapMap datasets (1,989 eQTL SNPs). Five of the expression

probes (five Ensembl genes) provided 58 cis eQTL associations

(Table 2). The remaining 129 expression probes (133 Ensembl

genes) resulted in 1,959 trans eQTL associations. In the WTCHG

V2 dataset, we identified 297 probes (251 Ensembl genes) with a

total of 1,954 eQTL associations (p,5*1027, 1,932 eQTL SNPs);

five of the 297 probes (four Ensembl genes) had 39 eQTL

associations in cis (Table 2).

In the Twin V2 dataset, 131 probes (110 Ensembl genes) with

252 eQTL associations (242 eQTL SNPs) were found; ten of the

131 probes (10 Ensembl genes) provided 42 eQTL associations in

cis. The corresponding FDR for cis eQTL analysis of 718 probes in

the WTCHG V2 analysis and Twin V2 at a pvalue of 5*1027 was

0.01 and 0.001, respectively.

Only four eQTL associations from the overlap analysis (two

probes, two Ensembl genes) and 229 eQTL associations (164

probes, 142 Ensembl genes) from the WTCHG V2 were

Table 1. Number of correlations between 44 QTs and 19,573 expression probes (11,854 Ensembl genes) at different significance
levels for 299 female twins.

P value threshold No. of QTs (N = 44)
No. of correlated probes
(N = 19,573) No Ensembl genes No. of probe-QT correlations

,1023 44 939 703 1,176

,1024 34 137 91 161

,1025 12 15 12 18

,1026 3 3 3 3

doi:10.1371/journal.pone.0022070.t001

Figure 2. Heritability estimates and PCA of QTs. A) Heritability estimates with 95% confidence intervals of 44 QTs ordered by clinical
subgroups. Abbreviations are: bp1 = first blood pressure measurement; bp2 = second blood pressure measurement; alb cor calcium = albumin
corrected calcium; ggt = gamma-glutamyl transpeptidase; bmi = body mass index; circumf = circumference; tot.fat.mass% = total fat mass (%);
bmd = bone mineral density; alkalinephosph = alkalinephosphatase; crp = C-reactive protein; hdl = high-density protein cholesterol; ldl = low-density
protein cholesterol B) PCA of 44 QTs. Three clusters of QTs were discriminated: fat related QTs including weight, BMI, total fat mass (g), total fat mass
(%), central fat (g), central fat (%), hip circumference, waist circumference and leptin, BMD QTs including forearm, hip, femoral neck and spine BMD
and a cluster with four blood pressure QTs.
doi:10.1371/journal.pone.0022070.g002
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replicated in the Twin V2 dataset at the 1*1023 threshold. Fifteen

of the 164 probes (13 Ensembl genes) provided 39 eQTL

associations in cis. Combining the WTCHG V2 and Twin V2

datasets, we tested these 229 eQTL associations in a fixed-effects

meta-analysis [31]. After checking for heterogeneity, these analyses

resulted in 102 eQTL associations (85 probes, 73 Ensembl genes)

at the 5*1027 threshold of which nine probes (seven Ensembl

genes) showed 18 eQTL associations in cis.

To investigate whether the reduced sets of expression probes

resulting from Stages I and II are more likely to be functionally

related to the QTs, we summarised them in ‘‘Biological Process’’

Gene Ontology (GO) categories using DAVID [32] and assessed

heritability distributions (see Methods). The 546 expression probes

from Stage I showed an enrichment of common GO terms such as

‘‘cell fate specification’’ (p = 4.5*1024, FDR P = 0.24) whereas the

131 probes identified from the overlap analysis (Stage II) and the

85 probes identified from the meta-analysis showed an excess of

the GO term ‘cellular lipid metabolism’ (GO:00044255,

p = 2.0*1023, FDR P = 0.11) and ‘negative regulation of response

to stimulus’(GO:0048585, p = 4.0*1024, FDR P = 0.10) compared

to the 18,838 detected probes, respectively.

Despite the small sample size, the frequency of expression

probes with heritabilities .0.2 increased throughout the selection

strategy, from 15% of all 19,573 detected probes, 20% of the 718

QT-correlated probes, 21% of the 546 the QT correlated probes

annotated to WTCHG V1 probes, 23% of the 297 eQTL probes

identified from WTCHG V2 dataset, 27% of the 131 eQTL

probes from Twin V2 dataset, to 31% of 131 eQTL probes from

the overlap analysis and 31% of 85 eQTL probes from the meta-

analysis (Figure 3). The increasing percentage of heritable probes

and the enrichment of GO terms suggested that our filtering

strategy up to Stage II was successful in increasing the proportion

of true-positive relative to false-positive QT-related signals.

Stage III: Confirmation of associations between eQTL
SNPs and QTs in twin cohort

In Stage III, nominally significant eQTL SNPs and those in LD

(r2.0.8) were tested for association with the QTs with which the

relevant expression probes were previously correlated (Stage I), in

the larger cohort of 2,905 female twins (Figure 1). For these twins

whole genome genotyping was available from the twin cohort

employing 296,308 SNPs with the Illumina HumanHap 300 k

Duo Beadchip (Illumina, San Diego, USA) after appropriate

quality checks (see Methods). eQTL and GWA signals were

considered overlapping for SNPs on the GWA chip that were in

LD with the eQTL SNP. For the overlap analysis, 535 SNPs on

the GWA chip were in LD (r2.0.8) with 1,482/1,989 eQTL SNPs

(75%) from Stage II (see Methods). In the WTCHG V2 analysis,

451 SNPs were in LD (r2.0.8) with 1,357/1,932 (70%) eQTL

SNPs (Table S5). The percentage of tagged eQTL SNPs in the

overlap analysis was greater than for the WTCHG V2 analysis,

possibly explained by the increased percentage of rarer eQTL

SNPs in the WTCHG V2 analysis: 54% of untagged SNPs had a

minor allele frequency (MAF) #0.1 compared to 33% in the

overlap analysis (Figure S2).

We examined the association between 535 SNPs from the

overlap analysis with 37 QTs (corresponding to 141 probe-QT

correlations and 1,498 eQTL associations), 451 SNPs from

WTCHG V2 analysis with 41 QTs (268 probe-QT correlations

and 1,370 eQTL associations), 242 SNPs with 38 QTs from Twin

V2 (161 probe-QT correlations and 252 eQTL associations) and

101 SNPs with 36 QTs from the meta-analysis (105 probe-QT

correlations and 102 eQTL associations). After removal of

associations with inaccurate annotations or outliers in gene

expression, we found 15 non-overlapping loci associated with 10

different QTs with a p-value,0.01 (Table 3). For these 16 SNP-

QT associations with p,0.01, eQTL associations were tested in

the full set of 86 twin families (161 individuals) to obtain a more

precise estimate of significance (Table 3). For 8/15 of the

associations, the constituting eQTL evidence was based on the

overlap analysis (+/2 Twin V2), whereas 5/15 associations had

eQTL evidence from WTCHG V2 or Twin V2 only. Three

associations showed eQTL evidence from the meta-analysis (one

association was overlapping with the overlap analysis).

Only one of the QTs, phosphate, appeared to have contributing

cis eQTL associations, for rs10511409 and rs7647266 (r2 = 0.25) on

expression probe ILMN_27140, with supporting evidence from all

HapMap datasets and the Twin V2 dataset or the meta-analysis,

respectively. However, although ILMN_27140 had been selected

because of its nominal correlation with phosphate levels in the 299

twins, the association between these SNPs and phosphate levels in

2,905 twins was non-significant after FDR correction (p.0.11).

All other QT-associated eQTL results were in trans, with

marginal evidence for rs17596670 or rs313289 (r2 = 0.89) and

ILMN_19002 (chloride concentration), and rs716618 and

ILMN_552 (height). However, none of the corresponding QT-

SNP associations were significant in the larger cohort of 2,905

twins after FDR correction [33]. Only the trans association from

Table 2. Number of probes with eQTL SNPs derived from GWA analysis of 546 (overlap analysis) and 718 (WTCHG V2) expression
probes in 57 HapMap founders and 86 unrelated twins.

Dataset
eQTL p value
threshold

No. mapped
probes with eQTLa

No. Ensembl
genes No. eQTLs

No
SNPs

No. probes with
cis eQTL SNPs

No. cis
eQTLsb

Overlap eQTL analysis

WTCHG V2/WTCHG V1/Sanger V1 ,1023 131 135 2,017 1,989 5 58

Dataset-specific eQTL analysis

WTCHG V2 ,5*1027 297 251 1,954 1,932 5 39

Twin V2 ,5*1027 131 110 252 242 10 42

Meta-eQTL analysis

WTCHG V2+Twin V2 ,5*1027 85 73 102 101 9 18

aProbes annotated to genomic location in build 36.
bcis eQTL were defined as an SNP-probe association where the distance from probe genomic midpoint to SNP genomic location was less than or equal to 1 Mb; all other

eQTLs were defined as trans eQTLs.
doi:10.1371/journal.pone.0022070.t002

Quantitative Trait-eQTL Associations from LCLs
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WTCHG V2 for diastolic blood pressure remained significant

(FDR adjusted p = 0.03).

Stage IV: Follow-up of SNP-QT associations in
independent cohorts

We were able to test 9/16 QT-SNP associations (five QTs) for

replication in five large-scale consortia datasets (Figure 1; Table 3):

three GWAs from Soranzo et al. (2009) (height, N = 5,828);

Genmets (C-reactive protein (crp), N = 1,097) [34]; ENGAGE

(triglycerides, N = 16,129) [35]; GlobalBP (diastolic blood pres-

sure, N = 26,644) [36]; and KORA (phosphate, N = 1,756) [37].

We were unable to identify suitably large replication cohorts for

hip circumference, serum chloride and potassium, hip and femoral

neck BMD. None of the cohorts had gene expression data

available to replicate the gene-expression-QT correlation.

The cis associations between rs10511409 and rs7647266 and

ILMN_27140 had been selected because of its nominal correlation

with phosphate levels in the 299 twins. Subsequent analyses in an

independent dataset of 1,756 individuals (KORA) did not provide

evidence that these SNPs were associated with phosphate levels

(p.0.09). Of the associations between QTs and SNPs which

showed consistent trans eQTL evidence (for diastolic blood

pressure, triglycerides, crp and height), only one association,

between height and rs1482455 (tagging eQTL SNP rs716618 with

r2 = 0.84) reached borderline significance (p = 0.01) in a meta-

analysis of 5,828 females. However, this result was not significant

after applying a Bonferroni correction allowing for the nine

independent tests conducted (p,0.006).

Investigation of published eQTL-QT associations
Several significant cis eQTL-QT associations have been

published for QTs also included in our study, including

associations with body mass index (BMI), plasma low-density

lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol

(HDL) and triglycerides (Table S6) [12–14,38]. Although none of

these findings were derived from LCLs (fresh lymphocytes, liver or

adipose tissue were used), we set out to investigate whether the

associations could be detected in our datasets. Of the relevant 29

expression probes (25 genes) only 19 were expressed in the LCL

dataset of 299 twins. None of the QT-expression probe

correlations in the LCLs from the 299 female twins were

nominally significant (p,1023). Suggestive evidence was found

for the correlations between the expression probes targeting

FADS1 and FADS3 and HDL (p = 4*1023) but eQTL analysis in

the three HapMap or Twin V2 datasets did not confirm the

reported significant cis eQTL associations.

Power and sample size issues and potential limitations
In any association study, power and sample size of the study

design need careful consideration prior to analysis. Given the

multi-stage design in our study, the complex correlation

structure between QTs and between expression probes, the

unknown effect sizes of QT-expression trait correlations (Stage

I) and eQTLs (Stage II), the tagging of eQTL SNPs (Stage III)

and the availability of suitable replication cohorts (Stage IV),

simulation-based power calculations were unfeasible. Instead -

given that an important aim of the study was to examine the

utility of LCL-derived eQTL signals in relation to complex

trait analysis - we adopted a much simplified scenario and

calculated the likely power and sample sizes needed for cis

eQTL detection. We estimated sample sizes required for a

single expression trait in a GWA using single-SNP type I error

rates of 5*1027 and 1.0*1023 with 80% and 50% power

(Figure 4) [39].

Figure 3. Density plot of heritability estimates of gene expression probes for different analysis stages.
doi:10.1371/journal.pone.0022070.g003
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Our results suggest that thousands of individuals would be

needed to reliably detect effect sizes that explain a small

proportion of the QTL variance (in additive models) of the

expression trait at 5*1027 or even 1.0*1023 significance thresholds

with .80% power (Figure 4). For the cis eQTLs found in Stage II,

a large portion of the QTL variance appeared to be explained by

the association ranging between 18%–51% in the overlap analysis,

37%–59% in the WTCHG V2 analysis and 27%–77% in the

Twin V2 analysis.

Discussion

Many GWAs have been conducted to find genetic variants

underlying complex traits. A number of eQTL studies have

identified genetic variants underlying gene expression mostly in

LCLs. A few studies in humans have adopted an integrated

approach using datasets in which genotypes and gene expression

profiles – from adipose and liver tissue or lymphocytes – were

correlated with a clinical trait [12–14]. Here, we investigated the

potential of integrating gene expression data from LCLs and

genotype data for a large number of clinical QTs (N = 44). Our

multistage study, which incorporated eQTL signals from three

sources of publicly available LCL expression data from 57

HapMap founders as well as an independent dataset of 161 twins,

did not result in the identification of robust eQTL associations

relevant to the 44 QTs. Using LCLs, we also failed to replicate

previous reported eQTL associations with BMI, LDL, HDL and

triglycerides levels derived from fresh lymphocytes, adipose and

liver tissue [12–14,38]. Additional power calculations suggested

that integrated approaches to detect cis eQTL associations relevant

to QTs in LCL expression data are likely to require much larger

sample sizes than currently are thought necessary or available.

For many clinical phenotypes, comprehensive collections of

relevant human tissues are not commonly available. Although

previous studies have found a large number of eQTLs detected in

LCLs with large effect sizes which could also be detected in

primary tissues [21,22], the question is whether these LCL

expression profiles have any relevance to downstream clinical

traits. When we focussed on expression probes nominally

correlated with clinical QTs, we did not detect any large effect

eQTLs for these probes. Moreover, several studies have

highlighted cell type- or tissue specific genetic effects where others

found that a substantial numbers of eQTLs are shared across

tissues [12,20]. Hence, the detection of tissue-specific eQTLs with

smaller effect sizes is likely to be more important for QTs.

Although the proportion of expression variance explained by

the cis eQTL SNPs in our analyses appeared considerable, effect

sizes derived from small datasets are likely to be subject to the

‘winner’s curse’ [40]. In the overlap analysis of three HapMap

datasets, the proportion of expression variance explained by each

of 58 cis eQTL SNPs ranged from 17–46%, yet only two of these

signals were replicated in the Twin V2 analysis. Whilst we do not

currently know the spectrum of effect sizes for cis eQTL SNPs, and

assume that some of these will be of considerable magnitude, the

effect sizes of trans eQTLs are likely to be much smaller and similar

to those observed in complex traits. Moreover, the additional

multiple testing burden inherent to trans vs. cis analysis further

increases the likely sample sizes required.

It is perhaps not surprising that only one suggestive eQTL-QT

association among 44 QTs was observed in our study. In addition

to the size of the datasets employed for eQTL detection, we were

limited by the size of the twin sample with available LCLs

(N = 299) to detect expression probe-QT correlations. Neverthe-

less, our results showed that the expression probe sets filtered at

each stage of analysis had progressively increasing heritability

levels, suggesting an enrichment of genetically relevant signals.

Further limitations arose because only 76% of the QT-correlated

probes were annotated across different expression platforms.

Testing SNPs tagging the eQTL SNPs for association with the

relevant QT in the twin cohort, we were able to follow up only 70–

75% of the eQTL SNPs due to the coverage of the available

genotyping data. This strategy will result in a loss of power

compared with testing the eQTL SNP itself, but has been

minimised by focussing on highly correlated tags (r2.0.8, at least

80% power of eQTL SNP). An alternative approach to increase

power would be to perform imputation in the twins, although

current methodology [41] is not well calibrated for related

individuals. In addition, we were able to test only 56% of our

results for replication in large cohorts with GWA data and we

Figure 4. Sample sizes required to identify cis eQTL associations with 80% and 50% power at p,5*1027 and p,1*1023.
doi:10.1371/journal.pone.0022070.g004
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could only test the most promising association between rs1051140

and phosphate levels, based on a cis eQTL signal, in an

independent dataset of 1,756 individuals. Given the sample sizes

required for the GWA detection of SNPs with QTs, the size of this

replication cohort may have been insufficient. Although some of

these problems may be resolved with the advent of large-scale

genotyping and gene expression profiling in large epidemiological

biobanks, they are nevertheless real issues inherent to currently

available datasets.

Because the physiology of specific cell types changes with

disease/QT, or the phenotype is manifested in specific tissues

exclusively, it appears logical that correlations between QT and

gene expression should be detectable in tissues relevant to the QT

in question. Although the number of nominally significant

correlations between QT and expression probes was more than

expected by chance in our study, it was lower than in previous

studies using gene expression profiling on liver or adipose tissue or

blood [12,14] suggesting that the effect sizes in LCLs might be

reduced compared to expression profiling in vivo tissues. Indeed, in

a recent study, 72% of the expression traits identified from adipose

tissue were significantly correlated with BMI whereas in blood this

was only 9%. More than 10% of the BMI variation was explained

by 16% of these expression traits whereas none of the correlated

expression traits in blood reached this level of correlation [12].

The extent to which eQTLs will be shared across tissues and cell

types is still unknown. We failed to confirm previously published

eQTL-QT associations derived from fresh lymphocytes, adipose

and liver tissue in the LCLs. The low percentage of overlap of

probe detection (66%) in LCLs suggests that some transcripts are

only expressed in specific tissues or have a better annotation on

other platforms. Indeed, in an eQTL analysis of three cell types

(LCLs, fibroblasts and T-cells), Dimas et al. (2009) detected cell

type-specific genetic effects, with 69%–80% of genetic variants

acting in a cell type-specific manner [20]. Emilsson et al. (2008)

showed little difference in the number of cis eQTLs mapped in

adipose tissue and blood with approximately 50% overlap

confirming that there is both common and tissue-specific genetic

control [12]. Highly significant cis eQTLs (unrelated to disease/

QT) have been found in LCLs [6–8,11] and some of these eQTLs

findings were replicated in lymphocytes [6,13]. Nica et al. (2010)

and Nicolae et al. (2010) observed a significant overrepresentation

of cis eQTLs in the LCLs of the HapMap individuals among

GWAS SNPs for immunity related traits as compared to random

SNPs [42,43]. Taken together, we speculate that the utility of

LCLs might be more powerful for traits with a more direct

immunological relevance.

The reproducibility of gene expression measurements has been

questioned, and lack of concordance attributed to the small sample

sizes and technical variability although this might also be a

reflection of the different annotation or statistical methods used

[24–26]. In our integrative approach, we found a few potential

QT-eQTL signals (a cis eQTL for phosphate and a trans eQTL for

height) which emerged only after three individually underpowered

eQTL HapMap datasets of HapMap founders were combined at a

nominal significance level. Notably, we also found suggestive

evidence for these eQTL associations in the 161 twins for which

we had genotypic and gene expression data available. This

highlights the fact that although the use of multiple gene

expression HapMap datasets can reduce the number of false

positive results caused by platform-specific technical artefacts

(technical replication), it cannot resolve low power to detect eQTL

signals due to small sample size (requiring biological replication)

and is hampered by the reduced number of the QT-correlated

probes (76%) that were annotated across platforms.

A few studies have adopted a different approach to detect QT-

related expression traits with small effect sizes by constructing of

co-expression networks. Specifically, they identified modules of co-

expressed probes and investigated the average correlation between

the expression probes in the module and obesity-related clinical

traits [12,14]. This is a potentially attractive and more powerful

approach, given that in theory it better reflects the complex nature

of gene expression networks, in which many expression traits will

not necessarily be causative of but mostly reactive to disease, and

in which each individual expression trait is likely only to have a

small effect [44]. Networks built on correlations between

expression traits, however, are likely to be noisy, as ultimately

any biases (experimental or otherwise) acting on expression levels

may cause artificial results if correlated with the clinical trait in

question. Although promising, it is at present unclear to what

extent the limitations that have hindered single expression trait

analyses impact on network or other types of multivariate analyses

of expression traits.

Although integrating genotype and gene expression with

multiple QTs in large datasets has the potential to improve our

understanding of common traits, our study found that approaches

using LCLs with currently available sample sizes are underpow-

ered. To detect associations between eQTLs and clinical

phenotypes, larger sample sizes are required and – if available -

datasets profiled on a tissue relevant to the clinical trait in question

should also be used. Such datasets will become available in the

near future, enabling a fuller exploration of the use of integrated

‘omics’ analyses in uncovering genetic origins of complex traits.

Methods

Study participants and QTs (Stage I & Stage III)
Study subjects comprised 6,533 female twins (age-range 19–81

years) from the St Thomas’ UK Adult Twin registry (www.

twinsuk.ac.uk). Twins were recruited from the general population

through national media campaigns in the UK and shown to be

comparable to age-matched population singletons in terms of

disease-related and lifestyle characteristics [45]. The study was

approved by St Thomas’ Hospital Research Ethics Committee

and all twins provided informed written consent.

Zygosity was determined with a standardized questionnaire and

confirmed through genotyping [46]. The study was approved by

St Thomas’ Hospital Research Ethics Committee and all twins

provided informed written consent. Administered questionnaires

provided information for an extensive range of demographic

variables and medical history. We selected 44 QTs including

blood pressure (systolic and diastolic blood pressure (first and

second measurements), sodium), BMD (lumbar spine, total hip,

femoral neck, and total forearm), bone (alkalinephosphatase,

calcium, vitamin D, phosphate and crp), and liver function

markers (albumin, bilirubin, total protein concentration and

gamma glutamyl transpeptidase activity), fat-related (triglycerides,

weight, BMI, total fat mass(g), total lean mass(g), central fat mass

(g), total fat mass (%), central fat mass (%), hip and waist

circumference, leptin, and adiponectin) and glycemic traits (fasting

insulin and glucose concentrations), electrolytes (bicarbonate, urea,

albumin corrected calcium, chloride, magnesium and potassium)

and lipids (cholesterol, HDL and LDL) and other (creatinine,

height and telomere length) (Text S1). The total sample of female

6,533 twins (1,428 monozygotic (MZ) and 1,829 dizygotic (DZ)

pairs, 12 singletons, one trio and a quadruple) was used for QT

heritability calculations. For the 44 QTs, phenotypic data was

available between 37%–99% of the twins. LCLs were available for

299 (101 MZ and 43 DZ pairs and 11 singletons) of the 6,533
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twins of which had between 43%–99% phenotypic data available

(Stage I). For the confirmation of QT-eQTL SNP associations,

genotypic data (Human Hap 300 k Duo chip, (Illumina, San

Diego, USA)) was available for 2,905 of the 6,533 female twins.

For 161 of the 2,905 female twins (86 families), LCL gene

expression and genotypic data was available.

Gene expression datasets
In Stage II, three datasets consisting of 60 CEU HapMap

founders were used: one publicly available dataset and two

generated for this study. The 299 twins were profiled using the

Illumina WG-6 Expression BeadChip V2; the 60 HapMap

individuals on the Illumina WG-6 Expression BeadChip V1 and

V2 (Table S3) (referred to as WTCHG V1 and V2 respectively). In

addition, we downloaded a publicly available gene expression

dataset [11] from the Gene Expression Omnibus website

(GSE6536) corresponding to the same HapMap individuals and

profiled on the Illumina WG-6 Expression Bead Chip V1. The

Illumina Human WG-6 V1 Sentrix BeadArray contains 47,296

probes representing 24,385 RefSeq annotated transcripts. The

Illumina Human-6 V2 Sentrix BeadArray contains 48,702 unique

probes representing 28,567 RefSeq annotated transcripts. LCLs

for the 299 twins were generated by the European Collection of

Cell Cultures, and cell pellets transported to the WTCHG. LCLs

from the 60 HapMap CEU individuals were purchased from

Coriell and cultured at WTCHG. The resultant data were parsed

with the software package BeadStudio (Illumina software) to

produce raw intensity values for all probes. Signal was checked for

quality using hybridisation and labelling controls internal to each

array and subtracted for background within the statistical scripting

environment, R v2.9.1 (http://cran.r-project.org/). Signal was

transformed and normalised using the variance stabilization

algorithm (vsn) and quantile normalization as implemented in

the vsn2 Bioconductor (http://www.bioconductor.org/) package

[47]. Transformed and normalised signal distributions for each

sample were investigated with unsupervised analysis and three

outliers NA11829, NA11839, NA12056 were removed from

WTCHG V1 and V2. We selected probes with an Illumina score

of .0.95 in at least six individuals (10%) and had no SNPs with

MAF.5% in their sequence, corresponding to 19,573 (twins),

20,200 (WTCHG V2) and 17,484 (WTCHG V1); 18,838 probes

overlapped between the twins and WTCHG V2. As detection

scores were not provided for the Stranger V1 dataset, the full

dataset was used [11]. Expression probes were sequence matched

to NCBI Build 36.1 (hg18) using the blastn algorithm to obtain a

physical position from which Ensembl transcript identifiers were

extracted and matched between Illumina’s expression profiling

arrays. (Text S1, Table S3 and S4).

Statistical analysis
Correlations between QTs and gene expression probes

(Stage I). For QTs measured at multiple time points, the

timepoint closest to extraction of the lymphocytes was used.

Outlying values for each QT were identified and removed on basis

of the distribution of the larger twin cohort. Skewed distributions

of QTs were logarithmically or square root transformed to

normalise distributions before analyses. To investigate the

correlation structure of the QTs, PCA was performed using the

NIPALS algorithm and Pearson correlations among the 44 QTs

were calculated.

Phenotype correlations between 19,573 normalised gene

expression levels and 44 QTs were computed using mixed models

(lmer) implemented in the R package lme4. For logistical reasons

beyond our control, twin pairs were always assessed and measured

together. Mixed models were adjusted for correlation of measure-

ments due to relatedness of the twins.

Possible confounders were identified by comparing the log

likelihood of the mixed model with and without the possible

confounder for each phenotype. In the mixed model, we included

age, number of flask days, RNA Integrity Number as fixed effects

and twin relationship as random effect.

eQTL analyses in the HapMap and Twin datasets

(Stage II). Nominally significant correlated expression probes

(P,1023) were tested for association in cis or trans with 2.2 million

autosomal SNPs (r2,1.0; MAF .0.05, HapMap release 22, NCBI

build 36) in three datasets of CEU HapMap founders or with

296,308 SNPs (MAF.0.05) in 86 unrelated twins that were

profiled and genotyped from Stage I. Probes selected in Stage I

(939 probes) that were not mapped to an autosomal genomic

location in build 36 or mapped to multiple locations resulting in

718 probes used in the WTCHG V2 analysis or Twin V2 analysis.

We were able to annotate 546 of the 718 V2 probes to 1,050 V1

probes and this set was analysed in the overlap analysis consisting

of three HapMap datasets. For each of the selected expression

probes and for each SNP, an one degree of freedom test (Wald

test) was fitted using PLINK [48]. The genotypes were coded as 0,

1 and 2 and these allele counts were tested for an additive

genotypic effect with the normalised gene expression values in

each of the three HapMap datasets separately or Twin V2 dataset.

Nominal significance thresholds of p,1*1023 in all three

HapMap datasets or p,5*1027 (a commonly used GWA

threshold previously employed by the Wellcome Trust Case

Control Consortium [3]) in the WTCHG V2 or Twin V2 dataset

were applied. Fixed-effects meta-analyses on WTCHG V2 and

Twin V2 for 229 eQTL associations were performed using

estimates of the allelic effect size and standard error [31]. eQTL

associations from the overlap analyses and meta-analyses were

checked for different directional genotypic effects. Associations in

cis were defined as a SNP-probe association where the distance

from probe genomic midpoint to SNP genomic location was less

than or equal to 1 Mb [11]. All other associations were defined as

associations in trans [11]. Given the redundancy of the V1 probes

compared to the V2 probes and the correlation between

expression probes, we used Illumina V2 probe identifiers as an

annotation reference.

SNP-QT associations in the twin cohort (Stage III). For

the TwinsUK cohort, 2,167 samples were successfully genotyped

with the Illumina HumanHap 300 k Duo Beadchip (Illumina, San

Diego, USA). For the second individual of a MZ pair, genotypes

were copied from the other genotyped MZ individual of the pair.

After applying strict quality control filters we retained 296,308

autosomal SNPs with a MAF.0.05 and 2,905 female twins (Text

S1). From the eQTL analysis in Stage II, we selected 1,989 eQTL

SNPs from the overlap analysis and 1,932 eQTL SNPs from the

WTCHG V2 analysis. Pairwise r2 values and MAF from the

International HapMap Project [30] were used to assess which

SNPs were in LD (r2.0.8) with the eQTL SNPs and to compare

MAF distributions. From the SNPs in LD with the eQTL SNPs,

535 SNPs for the overlap analysis and 451 SNPs for the WTCHG

V2 analysis were present on the Illumina HumanHap 300 k Duo

Beadchip, successfully genotyped in the twin cohort and had

passed QC. These SNP sets, which tagged (r2.0.8) 1,482/1,989 of

the eQTL SNPs from the overlap analysis and 1,357/1,932 from

the WTCHG V2 analysis, were tested for association with 37 QTs

and 41 QTs, respectively. In addition, 242 SNPs from the Twin

V2 and 101 SNPs from the meta-analysis were tested for

association with 38 QTs and 36 QTs, respectively. Genotyped

eQTL SNPs or their proxies were tested for association with the
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correlating QT in the twin cohort using a linear mixed model

adjusted for family relationship and zygosity. We tested the

additive genotypic effect of the SNP, coded as 0, 1, and 2 with the

transformed QT using the lmer function in the lme4 R package

and assessed significance by applying a FDR [33]. Adjustment for

age did not modify the association between the SNPs and the

clinical phenotypes (except for telomere length, data not shown).

SNP-QT associations (p,0.01) were checked for outlying values in

gene expression distributions. For the remaining 16 SNP-QT

associations with p,0.01, eQTL associations were tested in the

full set of 86 twin families (161 individuals), using a linear mixed

model adjusted for family relationship and zygosity.
Follow-up of SNP-QT associations in independent cohorts

(Stage IV). In order to confirm the nine SNP-QT associations in

independent cohorts, we obtained results of relevant meta-analyses

conducted by five different consortia. To confirm the height

association, three SNPs (rs1482455, rs9342097, rs9353441) were

tested in 5,828 European females from three GWA studies: the

British 1958 Birth Cohort, the Rotterdam Study and EPIC Norfolk

study. Meta-analysis statistics were obtained using a weighted z-

statistics [49]. For the three crp associations, five SNPs were

examined for association in a subcohort (Genmets) of the

Health2000 population cohort consisting of 1,097 European

women with metabolic syndrome and matched healthy controls

using an additive model adjusted for case-control status and age [34].

SNP (rs2266917) was tested for association with triglyceride levels in

the ENGAGE cohort datasets comprising 16,129 individuals from

14 GWA studies (excluding TwinsUK individuals) using a fixed-

effects meta-analysis with reciprocal weighting [35]. For the

associations with diastolic blood pressure, three SNPs (rs200969,

rs149900 and rs12150466) were examined in 26,644 women of the

Global BPgen consortium blood comprising 17 GWAS studies using

inverse variance weighting [36]. In the population-based KORA

study comprising two follow-up populations of 1,756 (F3:829,

F4:927) women of European descent, we examined two SNPs,

rs10511409 and rs7647266, for association with phosphate levels

using an inverse variance meta-analysis [37].

Gene set enrichment, heritability estimates and power
calculations

We used DAVID to conduct GO term enrichment analysis

[32]. A Fisher Exact test was used to assess significance and a FDR

was used to adjust for multiple testing [33]. Heritabilities were

calculated using a structural equation modelling framework in Mx

[50]. Sample sizes needed to detect eQTLs with effects varying

between 0.01 and 0.4 of QTL variance explained, assuming a

significance threshold a of 5*1027 or 1.0*1023, and 50% or 80%

power, were conducted using the Genetic Power Calculator [39].
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