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Summary 
This study was designed to identify the target molecules of the natural killer (NK) cell-mediated 
recognition of normal allogeneic target cells. As previously shown, the gene(s) governing the 
first NK-defined allospecificity (specificity 1) were found to be localized in the major 
histocompatibility complex region between BF gene and HLA-A. In addition, the analysis of 
a previously described family revealed that a donor (donor 81) was heterozygous for three distinct 
NK-defined allospecificities (specificities 1, 2, and 5). HLA variants were derived from the 
B-Epstein-Barr virus cell line of donor 81 by 3' irradiation followed by negative selection using 
monoclonal antibodies specific for the appropriate HLA allele. Several variants were derived that 
lacked one or more class I antigen expressions. These variants were analyzed for the susceptibility 
to lysis by NK clones recognizing different allospecificities. The loss of HLA-A did not modify 
the phenotype (i.e., "resistance to lysis"). On the other hand, a variant lacking expression of 
all class I antigens became susceptible to lysis by all alloreactive clones. Variants characterized 
by the selective loss of class I antigens coded for by the maternal chromosome became susceptible 
to lysis by anti-2-specific clones. Conversely, variants selectively lacking class I antigens coded 
for by paternal chromosome became susceptible to lysis by anti-1 and anti-5 clones (but not 
by anti-2 clones). Since the Cw3 allele was lost in the variant that acquired susceptibility to 
lysis by anti-2 clones and, in informative families, it was found to cosegregate with the character 
"resistance to lysis" by anti-2 clones, we analyzed whether Cw3 could represent the element 
conferring selective resistance to lysis by anti-2 clones. To this end, murine P815 cells transfected 
with HLA Cw3 (or with other HLA class I genes) were used as target cells in a cytolytic assay 
in which effector cells were represented by alloreactive NK clones directed against different 
specificities. Anti-2-specific clones efficiently lysed untransfected or A2-, A3-, and A24-transfected 
P815 cells, while they failed to lyse Cw3-transfected ceUs. NK clones recognizing specificities 
other than specificity 2 lysed untransfected or Cw3-transfected cells. Thus, the loss of Cw3 resulted 
in the de novo appearance of susceptibility to lysis, and transfection of the HLA-negative P815 
ceils with Cw3 resulted in resistance to lysis by anti-2 clones. Therefore, we can infer that Cw3 
expression on (both human and routine) target cells confers sdective protection from lysis mediated 
by anti-2 NK clones. 

N 'K cells are generally thought to lyse tumor cells or virus- 
infected cells in a nonspecific fashion (1, 2). Recent 

studies, however, have challenged this concept since periph- 
eral blood-derived CD3-CD16 + NK cells were shown to 

be capable of specific recognition of allogeneic cells (3). In 
addition, the finding that this ability was clonally distributed, 
and that NK clones derived from single individuals appeared 
to recognize different allospecificities, supported the notion 
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of the existence of an NK cell repertoire (4, 5). So far, five 
distinct allospecificities have been defned. A major question 
arising from these studies is the nature of the target mole- 
cules recognized by alloreactive NK clones. Genetic analysis 
performed on three of the NK-defined specificities (termed 
1, 2, and 3, respectively) indicated that the corresponding 
characters "susceptibility to lysis" were inherited in a reces- 
sive manner, while the characters "resistance to lysis" were 
dominantly inherited (5). A similar mode of inheritance was 
also suggested for specificities 4 and 5. In addition, the anal- 
ysis of the segregation of these characters and of the HLA 
haplotypes indicated that the corresponding genes were local- 
ized on chromosome 6 (5). Further analysis of informative 
families, which included donors with recombinant HLA 
haplotypes, allowed us to map the gene(s) controlling the 
susceptibility or resistance to lysis by clones recognizing 
specificity 1. Thus, the gene(s) was found to be localized in 
the MHC region telomeric to BF gene (complement cluster) 
and centromeric to the HLA-A locus (6). 

In an attempt to identify the genes encoding for the mole- 
cules recognized by aUoreactive NK clones, we used, as a source 
of target cells, an EBV-transformed B cell line derived from 
a donor heterozygous for three distinct NK-defned specificities 
(specificities 1, 2, and 5). We further analyzed a series of cell 
variants derived from this cell line and lacking surface ex- 
pression of one or more HLA class I molecules. The loss of 
expression of HLA-Cw3 was found to be associated with the 
de novo appearance of susceptibility to NK dones recognizing 
specificity 2. In addition, murine P815 cells transfected with 
HLA-Cw3 (but not with other HLA class I genes) acquired 
resistance to lysis by anti-2-specific NK clones. 

Materiah and Methods 
Antibodies. mAbs OKT3 (anti-CD3; Ortho Pharmaceutical, 

Raritan, NJ), HP2.6 (anti-CD4), B9.4 (anti-CD8), W6-32 (anti- 
HLA class I [7]), 131 (derived in our laboratory, specific for an 
epitope shared by HLA-A1, A3, All, and A24), BB7.2 (anti- 
HLA-A2 [8]), BT3/4 (anti-HLA-DQwl [9]; kindly provided by 
G. Corte, IST, Genova), XlI1358.4 (anti-HLA-DQw2 [10]; kindly 
provided by C. Mazzilli, Universita"La Sapienza", Roma), CCCLll 
(anti-HLA-Cwl, 3, 11 [11]; kindly provided byJ. Strominger, HHar- 
vard University, Boston, MA and W. Brown), F4/326 (anti-HLA- 
C [11]; kindly provided by J. Strominger and B. Du Pont) were 
used in this study. 

Cell Cultures. PBMC were isolated by Ficoll-Hypaque density 
gradient centrifugation from peripheral blood of normal donors. 
B cell-enriched fractions were prepared from FBMC by removing 
cells capable of forming rosettes with sheep erythrocytes. B cells 
were infected with EBV according to published methods (12). PHA 
blasts were obtained by culturing PBL for 4 d with 0.5% PHA 
(vol/vol) in the presence of IL-2 (100 U/ml). 

Derivation of HLA-defective Cell Variants. Cell variants were ob- 
tained after 3' irradiation of B-EBV cell line with 200-300 tad (1 
red = 0.01 Gy) using a cesium source. Cells were then cultured 
in the presence of peritoneal macrophages for 4-6 d before im- 
munoselection with mAb and magnetic beads (Dynal, Oslo, 
Norway). To this end, 5 x 107 mutagenized B-EBV cells were 
negatively selected using magnetic beads coated with anti-mouse 
IgG (13) after incubation with saturating amounts of 131 (anti- 

HLA-A11) mAb to generate variant 81-B2. BB7.2 (anti-HLA-A2) 
mAb was used to select variant 81.TA. W6-32 (anti-HLA class I) 
mAb was used to select variant 81.0A. Finally, the combined use 
of 131 mAb and BT3/4 (anti-DQwl) mAb was used to generate 
variant 81.G, while the combined use of BB7.2 mAb and XII1358.4 
(anti-DQw2) mAb was used to generate variant 81TB. The recov- 
ered cells were cultured in the presence of peritoneal macrophages 
and the procedures of negative selection described above were 
repeated at least three times at different culture intervals. 

HLA Gene Transfectants. Murine P815 cells transfected with 
the thymidine kinase (TK) 1 and HLA-Cw3 genes (clone 
444/C9.3), with TK and HLA-A24 genes (done 452/D1), were 
kindly provided by Drs. Janet L. Maryanski (Ludwig Institut, 
Lausanne) and B. Jordan (Luminy, Merscilla) (14). P815 cells trans- 
fected with HLA-A2 (clone 3.32.3) or with HLA-A3 (clone 2.23.2) 
(15) were kindly provided by Dr. Giovanna Chimini (Luminy, Mer- 
scilla). 

Isolation and Cloning of CD3-CD16 + Lymphocytes and Evaluation 
of Cytolytic Activity. PBL derived from normal donors were iso- 
lated on Ficoll-Hypaque gradients and cells were then incubated 
with a mixture of anti-CD3 (OKT3; Ortho Pharmaceutical), anti- 
CD4 (HP26), and anti-CD8 (B9.4) mAbs, followed by treatment 
with rabbit complement for 1 h at 37~ as previously described 
(3-5). 

Viable cells were isolated by Ficoll-Hypaque gradients and cloned 
under limiting dilution conditions in the presence of irradiated feeder 
cells, 0.1% PHA (Gibco Ltd., Paisley, Scotland), and a source of 
exogenous Ib2 (rlL-2; Cetus Corp., Emeryville, CA), as previously 
described for both T and NK cell cloning (16, 17). 

The cytolytic activity of cloned cells was tested in a 4-h SlCr- 
release assay in which effector cells were tested against B-EBV cells 
or PHA blasts derived from different allogeneic donors. B-EBV 
cell variants and murine P815 cells transfected with HLA-A2, A3, 
A24, or Cw3, or untransfected P815 were used as targets in other 
series of experiments. All these target cells were used at 5 x 
103/well, for a final E/T cell ratio of 10:1. Percent specific lysis 
was determined as previously described (3-5). 

Flow Cytofluorometric Analysis. l0 s ceils were stained with the 
appropriate mAb followed by fluoresceinated goat anti-mouse Ig. 
Control aliquots were stained with the fluorescent reagent alone. 
All samples were then analyzed on a flow cytometer (FACStar| 
Becton Dickinson & Co., Mountain View, CA) gated to exclude 
nonviable cells. The percentage of positive cells was calculated on 
histograms displaying log10 of fluorescence (in arbitrary units) vs. 
number of cells. An electronic gate was positioned on the basis 
of 99% of autofluorescent-negative cells, Fluorescent cells trespassing 
the gate were considered as positive. 

HLA Typing. The B-EBV cell lines were typed for HLA-A, 
B, C using the standard National Institutes of Health lym- 
phocytotoxicity technique (18). A set of 240 well-standardized al- 
loantisera, locally produced or derived from the international ex- 
change, were allowed to type all the HLA class I specificities defined 
at the 10th Histocompatibility Workshop (18). 

A long incubation lymphocytoto~icity technique was carried out 
in order to type the following DR and DQ specificities: DR1, DR2, 
DR3, DR4, DR.5, DRw6, DR7, DRwS, DRw9, DRwl0, 
DRw53, DQwl, DQw2, and DQw3. 

HLA class II typing was performed using 120 well-standardized 
anti-class II alloantisera and two different batches of complement. 

Southern Blotting. 12/~g of the genomic DNA extracted from 
the cell variants (19) was digested with the PvulI restriction en- 

1 Abbreviation used in this paper: TK, thymidine kinase. 
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zyme. DNA was size fractionated by electrophoresis on a 0.7% 
agarose gel, blotted, and hybridized as described (19). The probe 
used was a 1.4-kb PstI cDNA fragment of pHLA-2 (20) and was 
labeled by random priming (21). 

HLA-C PCR Amplification. Selective amplification of the 
H'LA-C locus was obtained by the use of two degenerated syn- 
thetic oligonucleotides primers designed on the basis of the pub- 
lished HLA-C sequences (22). 50-/~1 reaction mixtures containing 
1/~g of genomic DNA, 25 pmol of AC1 primer (CGACGMCGM- 
GAGTCCRAGAG), and AC2 primer (CCGKCCTCGCTCTGG- 
TTGTA) (22), in which M = A or C, R = A or G, and K = 
T or G, 200/~M or each dNTP, 1 mM DTT, 2 mM MgC12, 50 
mM KC1, 10 mM Tris/HC1, pH 8.3, 200/~g ENase A, 200/~g 
of gelatine, and 1.25 U Taq polymerase (Perkin Elmer Cetus, Nor- 
walk, CT) were overlaid with paratran oil and subjected to 30 rounds 
of temperature cycling with a DNA thermal cycler (Perkin Elmer 
Cetus). A typical cycle was 30 s at 96"C (denature), 30 s at 60~ 
(anneal), and 30 s at 72~ (elongate). The samples were extracted, 
ethanol precipitated, and resuspended in 50 #1 of Tris/HCl EDTA 
(TE). Dot blots were prepared spotting on nitrocellulose mem- 
branes (Nitroplus MSI; Westboro, MA), and the amplified samples 
were denatured in 0.4 N NaOH. Two oligonucleotides recognizing 
mutually exclusive sequences were designed: HYBC1 derived from 
a Cw3-related sequence (GACCGAG'IGAGCCTGCGGA) (22) and 
HYBC2 derived from a Cw4-related sequence (GACCGAGTG- 
AGCCTGCGGA) (22a) were end-hbeled (21) and used to hybridize 
the dot blots. Hybridization was performed at 62~ overnight in 
3x SSPE, 5x Denhardt's solution, 0.5% SDS, and 2 x 106 
cpm/ml. The filters were washed 10 min at room temperature in 
0.1x SSPE and 0.1% SDS, and stringent wash was performed with 
the same solution used before but for 10 min at 50~ Filters were 
exposed to a x-ray film (Hyperfilm-MP; Amersham, UK). 

Results  

Analysis of family A (described in a previous report [10]) 
for the pattern of  segregation of  the five NK specificities 
identified so far revealed the existence of a donor (donor 81) 
heterozygous for specifidties 1, 2, and 5. Donor 81 was gener- 
ated by the mating between donor 82 (resistant to lysis by 
clones anti-1 or anti-5, but  susceptible to anti-2 clones), and 
donor 51 (susceptible to lysis by anti-1 or anti-5 clones, but  
resistant to lysis by anti-2 clones) (Fig. 1). Given the reces- 
sive mode of inheritance of the various NK-defined spedficities 
(i.e., susceptibility to lysis by different groups of  alloreactive 
NK clones), and on the basis of the segregation pattern of 
the HLA haplotypes, it is evident that the maternal (donor 
51) chromosome d carries the dominant allele for specificity 
2 and the recessive allde for specificities 1 and 5 (Fig. 1). Con- 
versely, the paternal (donor 82) chromosome y7 carries the 
recessive allde for specificity 2 and the dominant alleles for 
specificities 1 and 5 (Fig. 1). It should be stressed that donor 
81, being heterozygous for specificities 1, 2, and 5, was resis- 
tant to lysis by clones recognizing specificities 1, 2, or 5. 

Generation of B-EBV-transformed Cell Lines. To obtain im- 
mortalized cells from donors 81, 82, and 51, B ceU-enriched 
mononuclear calls derived from these donors were infected 
with EBV. B-EBV-infected cell lines were tested for their sus- 
ceptibility to lysis by NK clones expressing different spe- 
cificities. As shown in Table 1, the EBV-transformed cell lines 
maintained the same pattern of  susceptibility or resistance 
to lysis as the PHA blasts derived from the same donor. In 

SPECIFICITY 1 SPECIFICITY 2 SPECIFICITY 5 

82 51 

y7 ( ~  d 

82 51 

y7 ~ )  d 

MHC haplotypes 

d o n o r  82 d o n o r  51 

DQwl DRw6 B5 Cw6 A32 DQw3 DR5 BI8 Cw7 A2 
X7 -.rx\\-+-~x\x~.Lx'xx.~.~X.\x.x.-mx\.~- b 

DQwl DRw6 B35 Cw4 A] I DQW2 OR7 Bw62 CW3 A2 

82 51 

I 
81 

y7 o d  

d o n o r  81 

DQw2 DR7 Bw62 Cw3 A2 
d -;~- 

DQWl DRw6 B35 Cw4 Al l  
y7 ~ . - - t \ \ \ " ~ . - - ~ \ \ ' x ~ , , , ~ \ ~  

Figure 1. Mode of inheritance of 
the character "susceptibility to lysis" 
by NK clones recognizing spe- 
cificities 1, 2, and 5. Circles indi- 
cate female donors and squares in- 
dicate male donors. Filled symbols 
represent susceptible donors and 
open symbols represent resistant 
donors. Small letters identify sero- 
logically defined MHC haplotypes, 
including markers for the HLA A, 
B, C, DR, and DQ loci. The var- 
ious alleles expressed by donors 82, 
51, and 81 are indicated. The effector 
cells used were represented by the 
NK clone H12 for specificity 1. 
Clones ALE-5 and Mary 25 have 
been used for specificity 2. For 
specificity 5, clones AGD48 and 
AO16 have been used (for details, 
see reference 5). It is important to 
note that, given the recessive mode 
of inheritance of the various NK- 
defined specificities and on the basis 
of the segregation pattern of the 
I-ILA hapiotypes, the maternal chro- 
mosome d carries the dominant al- 
lele for specificity 2 and the reces- 
sive allele for specificities 1 and 5. 
On the other hand, the paternal 
chromosome y7 carries the recessive 
allele for specificity 2 and the dom- 
inant alleles for specificities 1 and 5. 
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Table 1. Comparison between Susceptibility to Lysis by Alloreactive 
NK Clones of EBV-transformed Cell Lines and PHA Blasts 
Derived from the Same Donors 

Target cells from donor 

82 51 81 

PHA PHA PHA 
Clones blasts* B-EBV blasts B-EBV blasts B-EBV 

G r o u p  1 '  

EMI 14 2s 0 60 72 0 2 
EMI 11 2 2 57 50 0 0 

CES26 0 5 66 56 2 2 

Group 2 
ANNA33 32 41 2 5 0 5 
ANNAP 44 38 0 2 2 2 
MARY 25 39 41 0 2 0 8 

Group 5 
AB12 0 0 45 55 0 2 

A51-17 0 2 70 72 0 2 

* In this test target cells were labeled with stCr. 
* AUoreactive clones belonging to the various groups of specifidties were 
obtained as described in a previous report (5). 
S Results are expressed as percent of slCr release at an E /T  ratio of 10:1. 

view of these data, B-EBV cell lines appeared to represent 
a suitable target for the analysis of the NK-defined al- 
lospecificities. The analysis of the HLA haplotypes in donor 
81 revealed that the alleles HLA-A2 and DQw2 were inherited 
from the mother (donor 51), while the aUdes HLA-All and 
DQwl were inherited from the father (donor 82). The oc- 
currence of the above segregation pattern was confirmed in 
the B-EBV ceU lines, by the use of appropriate allde-specific 
mAbs. Thus, the B-EBV cell line derived from donor 81 was 
homogeneously stained by mAbs specific for All, A2, DQwl, 
and DQw2. On the other hand, the line derived from donor 
82 was stained by anti-All and anti-DQwl mAbs but not 
by mAbs specific for A2 or DQw2. Conversely, B-EBV cells 
derived from donor 51 were stained by anti-A2 and anti-DQw2 
mAbs but not by anti-All or anti-DQwl mAbs. 

Generation of Cell Variants Lacking the Expression of MHC 
Class I Surface Antigens from the 81 B-EBV Cell Line. On 
the basis of the above data, we generated a series of call vari- 
ants induced by 3' irradiations of the B-EBV-transformed cell 
line derived from donor 81. In view of the availability of mAbs 
specific for HLA antigens coded for by maternal or paternal 
MHC regions, it was possible to select variants lacking 
maternal or paternal MHC regions. Thus, 3,-irradiated cells 
were depleted of ceils expressing one or another HLA allele 
by appropriate mAb-coated Dynabeads. The variant termed 
81.B2 was negatively sdected by depletion of All + cells; the 
81.G variant was obtained by the combined use of anti-All 

and anti-DQwl mAbs; the 81.TA variant was selected by the 
use of anti-A2 mAb, whereas the 81.TB variant was obtained 
by the combined use of anti-A2 and anti-DQw2 mAbs. Fi- 
naUy, the 81.OA variant was obtained by the use of W6-32 
mAb (reactive with a common determinant of MHC class 
I molecules). The above variants were analyzed by indirect 
immunofluorescence and FACS | analysis for the expression 
of the various HLA markers above. We also analyzed the ex- 
pression of the HLA-Cw3 allele, which is expressed by donor 
81 and 51, but not by donor 82 (Fig. 1). 

As shown in Fig. 2, the 81.B2 variant lost the HLA-A11 
only, whereas the 81.G variant lost both HLA-A11 and DQwl 
(both coded for by the paternal chromosome). It should be 
noted that both 81.B2 and 81.G variants expressed the maternal 
HLA antigens A2 and DQw2 (Fig. 2). The 81.TA variant 
lost the HLA-A2 only, while the 81.TB variant lost both 
HLA-A2 and DQw2 (both of these variants expressed the 
paternal HLA markers All and DQwl). In addition, the anal- 
ysis of the expression of HLA-Cw3 in the various variants 
revealed that this HLA marker was lost only in the 81.TB 
variant. Finally, the 81.OA variant lacked all class I markers 
(note also the lack of reactivity with the W6-32 mAb), 
whereas the class II antigens DQwl and DQw2 were nor- 
mally expressed. 

To gain a more complete representation of the various MHC 
antigens expressed by the various variants, a conventional FILA 
typing was further performed. Data are shown in Table 2. 
It is evident that the 81.B2 variant selectively lost the expres- 
sion of the All allele, while all of the other MHC products 
analyzed (including Cw4, B35, DRw6, DRw52, and DQwl) 
were detected. On the other hand, none of the paternal MHC 
antigens were detected in the 81.G variant. The TA variant 
selectively lost the A2 antigen (but it expressed Cw3, Bw62, 
DR7, DRw53, and DQw2), while the 81.TB variant lost 
all of the MHC antigens of the maternal haplotype. Different 
from the above variants, which selectively lost one or more 
of either the maternal or the paternal HLA antigens, the 81.OA 
variant failed to express all of the class I antigens, whereas 
both maternal and paternal class II antigens were expressed. 

Molecular Characterization of the B-EBV Cell Variants. To 
better characterize the HLA-defective variants, we performed 
Southern blot analysis by the use of the PstI fragment (of 
the pHLA-2 probe) specific for all class I genes (20). The 
genomic DNA derived from different cell variants was digested 
with the PvulI restriction enzyme to analyze the HLA class 
I region (23). RFLP analysis of the parental 81 cell line showed 
two informative bands of '~4.2 and ~3.7 kb, respectively. 
The 4.2-kb band was detectable in the mother (donor 51), 
but not in the father (donor 82) (Fig. 3 A). Conversely, the 
3.7-kb band was present in the father, but not in the mother. 
The 81.B2 and 81.TA variants expressed a RFLP pattern iden- 
tical to that of the parental 81 cell line. On the other hand, 
the variant 81.TB lost the 4.2-kb band (inherited from the 
mother), while the variant 81.G lost the 3.7-kb band (in- 
herited from the father) (Fig. 3 A). Finally, the 81.OA variant 
expressed both bands as in the 81 parental cell line. One of 
the possible explanations regarding the variants 81.TA and 
81.B2 may be the occurrence of a point mutation in the class 
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Figure  2. Surface phenotype of B-EBV cell line from donors 82 (father), 51 (mother), and 81 (sibling), and of the HLA-defective cell variants derived 
from the 81 cell line. The mAbs used in these experiments were represented by BT3/4 (anti-HLA-DQwl), XII1358.4 (anti-DQw2), F4/326 (anti-HLA- 
C), CCCL l l  (anti-Cwl, 3, 11), BB7.2 (anti-HLA-A2), 131 (specific for an epitope shared by HLA-A1, A3, Al l ,  A24), and W6-32 (anti-HLA class 
I). The right panel summarized the MHC alleles expressed by the variants. Small letters refer to the MHC haplotype. 

I region, undetectable with this type of analysis (24), leading 
to selective lack of expression of either maternal or paternal 
HLA-A molecules, respectively. On the other hand, evidence 
of a deletion of either maternal or paternal MHC region was 
obtained in the 81.TB and 81.G variants, on the basis of the 
absence of either the maternal (4.2 kb) or the paternal (3.7 

kb) bands. Finally, the expression of both bands in 81.OA 
variant, which express neither maternal nor paternal class I 
antigens, suggests a defect in the regulation of class I expres- 
sion in this variant. 

Further evidence that 81.G and 81.TB variants indeed rep- 
resent deletion mutants of the paternal or maternal MHC 

T a b l e  2. HLA Typing of HLA-defective Variants Derived frora the EBV-transformed B Cell Line Obtained frora Donor 81 

Maternal  H L A  haplotype  Paternal H L A  haplotype  

Cell 
line A2 C w 3  Bw62 D R 7  D R w 5 3  D Q w 2  A l l  C w 4  B35 D R w 6  D R w 5 2  D Q w l  

81 + + + + + + + + + + + + 

81 B2 + + + + + + - + + + + + 

81 G + + + + + + . . . . . .  

81 T A  - + + + + + + + + + + + 

81 TB . . . . . .  + + + + + + 

81 O A  - - - + + + - - - + + + 

HLA-defective variants were obtained as described in Materials and Methods. HLA typing was performed using a standard complement-dependent 
microcytotoxicity assay. + ,  presence of the antigen; - ,  absence of the antigen. 
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Figure 3. Molecular characterization of cell variants derived from the 
81 B-EBV cell line. (A) Southern blot analysis of PvulI-digested genomic 
DNA with a dass I probe (HLA-2). From left to right, samples were de- 
rived from the BEBV cell line of donors 51 (mother), 82 (father), 81, and 
the various HLA-defective cell variants derived from the 81 cell line. Note 
that the 4.2-kb band, present in donor 81, was inherited from the mother 
and is lost in variant 81 TB. On the other hand, the 3.7-kb band was 
inherited from the father and is lost in the 81.G cell variant. (B) Selective 
amplification of HLA-C locus by PCR. Two degenerated synthetic oligo- 
nudeotide primers designed on the basis of the published HLA-C sequences 
were utilized for amplification. Amplified DNA from the B-EBV cell line 
from donors 82 (father), 51 (mother), and 81 and of the HLA-defective 
cell variants derived from the 81 cell line was spotted on nitrocellulose 
membranes. Two oligonudeotides recognizing mutually exr.lusive sequences 
were synthetized. HYBC1 derived from a Cw3 sequence (GACCGAGT- 
GAGCCTGCGGA) and HYBC2 derived from a Cw4 (22a) sequence 
(GACCGAGTGAGCC'IGCGGA) were end-labeled and used to hybridize 
the dot blots. 

region, respectively, was obtained by PCR analysis of the 
HLA-C locus. The synthetic oligonucleotides utilized to hy- 
bridize the amplified HLA-C locus were found to be inform- 
ative since they segregated in the mother or in the father, 
respectively. Therefore, they could discriminate between Cw3 
and Cw4 alleles (Fig. 3 B). Thus, the lack of hybridization 
with the HYBC1 oligonudeotide in the 81.TB cell variant 
(as well as in the paternal 82 cell line) is consistent with a 
deletion of the Cw3 gene. On the other hand, the lack of 
hybridization of the HYBC2 oligonucleotide in the 81.G cell 
variant (and in the maternal 51 cell line) is in agreement with 
the absence of the gene coding for Cw4 (Fig. 3 B). 

Analysis of HLA-defective Cell Variants for Susceptibility to 
Lysis by Alloreactive N K  Clones. We next analyzed whether 
cell variants that selectively lost surface expression of one or 

more HLA antigens (derived from either paternal or maternal 
chromosomes) were susceptible to lysis by alloreactive NK 
clones. Since donor 81 is heterozygous for specificities 1, 2, 
and 5, we used a series of clones recognizing specificities 1, 
2, and 5. Clones recognizing these specificities were previ- 
ously defined as group 1, group 2, and group 5 (or anti-l, 
anti-2, or anti-5 clones). As shown in Table 3, both 81.B2 
and 81.TA cell variants, which selectively lost HLA-A antigens 
(either the paternal Al l  or the maternal A2 allele), similar 
to the parental 81 cell line, were both resistant to lysis by 
anti-l, anti-2, or anti-5 clones. On the other hand, the 81.G 
variant was susceptible to lysis by anti-1 and anti-5 dones 
but resistant to anti-2 clones. Conversely, the 81.TB variant 
was susceptible to lysis by anti-2 clones, but resistant to anti-1 
and anti-5 clones. Finally, the 81.OA cell variant was lysed 
by all groups of alloreactive NK clones tested. Thus, on the 
basis of these data, it appears that the selective loss of HLA-A 
(as in variants 81.B2 and 81.TA) does not modify the suscep- 
tibility to lysis of these cell variants as compared with the 
81 parental cell line. On the other hand, the loss of all paternal 
HLA antigens resulted in a de novo appearance of suscepti- 
bility to lysis by anti-1 and anti-5 clones. Conversely, the loss 
of all maternal HLA antigens led to the susceptibility to anti-2 
clones. Finally, the lack of expression of all class I but not 
of class II antigens (as in the 81.OA cell variants) resulted 
in susceptibility to anti-l, anti-2, and anti-5 clones. 

Taken together, these data suggest that one or more HLA 
class I antigens (with the exception of HLA-A) may be in- 
volved in the induction of resistance to lysis by alloreactive 

Table 3. Susceptibility or Resistance to Lysis by Alloreactive NK 
Clones of the SLA-defective Variants Derived from 81 Cell Line 

Target cells* 

Clones 82 51 81 81.B2 81.G 81.TA 81.TB 81.0A 

Group 1' 

EMI 14 0 s 64 2 0 67 4 6 80 

EMI 11 0 62 0 0 57 0 0 86 

CES26 0 65 0 2 60 2 0 100 

Group 2 

ANNA33 38 0 0 2 0 2 38 ND 

ANNAP 32 0 2 3 0 0 26 100 

MARY 25 78 0 5 2 0 0 49 96 

Group 5 

AB12 0 50 0 0 50 0 0 90 

A51-17 0 58 0 0 64 0 3 95 

* In this test target cells were labeled with 5tCr. 
* Alloreactive clones belonging to the various groups of specifidties were 
obtained as described in a previous report (5). 
$ Results are expressed as percent of slCr release at an E/T ratio of 10:1. 
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NK clones recognizing specificities 1, 2, and 5. It should be 
noted that HLA-Cw3 was lost in the 81.TB variant, which 
acquired the susceptibility to lysis by anti-2 clones. In addi- 
tion, analysis of the representative family "A" (which includes 
donors 82, 51, and 81, and which has been extensively de- 
scribed in previous reports [4, 5]) indicated that all family 
members expressing the HLA-Cw3 allele were resistant to 
lysis by anti-2 clones, thus suggesting a possible protective 
role mediated by this HLA allele. 

Transfection ofP815 Cells with Cw3 Gene Confers Selective 
Protection frora Lysis by Anti-2 NK Clones, We further ana- 
lyzed whether HLA-Cw3 represented the "protective element" 
conferring resistance to lysis by anti-2 dones. To directly assess 
this possibility, we used, as target cells, murine P815 cells 
transfected with human HLA-Cw3 (14). Control target calls 

Tab le  4. Susceptibility or Resistance to Lysis by Different Group 
of NK Clones of P815-transfected Cells 

Target cells* 

Clones P815 P815-A2 P815-A3 P815-A24 P815-Cw3 

Group 15 

ES1 82s 76 72 72 72 

ES9 65 63 68 67 68 

ES10 42 43 50 53 70 

Group 2 
ANNA20 50 43 51 49 2 
ANNAP 35 38 30 32 3 
ANNA37 32 38 35 35 0 

Group 3 
A51.40 65 69 59 71 63 
A51.51 68 71 70 73 69 
A51.43 70 58 63 75 72 

Group 5 
AB.12 70 85 77 81 75 
A51.17 62 68 71 70 75 

Clones with 
undefined 
specificities 

ABM. 1 75 72 66 82 77 
ABM.12 77 78 80 80 65 
A51.11 63 70 82 78 82 
A51.25 85 68 75 70 75 

* In this test target cells were represented by untransfected P815 murine 
cell line or by P815 transfected with different HLA class I genes as described 
in Materials and Methods. The target cells were labeled with 51Cr. 
* Alloreactive clones belonging to the various groups of specificities were 
obtained as described (5). 
$ Results are expressed as percent of SlCr release at an E/T ratio of 10:1. 

were represented by untransfected P815 cells or by P815 cells 
transfected with HLA-A2, A3 (15), or A24 (14). As shown 
in Table 4, anti-2-specific NK clones efficiently lysed untrans- 
fected P815 cells. Importantly, transfection with Cw3 con- 
ferred a complete resistance to lysis by anti-2 clones. On the 
other hand, transfection with HLA-A2, A3, or A24 did not 
modify the susceptibility to lysis ofP815 cells by anti-2 clones. 
Note that clones with other specificities efficiently lysed in 
Cw3-transfected cells (as well as the other HLA class I trans- 
fectants tested). 

Discussion 

A number of previous studies indicated that the expres- 
sion of class I molecules by target cells may confer resistance 
to lysis mediated by polyclonal populations of NK cells. In 
the present study we provide the first direct evidence that 
a given HLA class I allele selectively protects target cells from 
lysis mediated by a defined group of NK clones. Indeed, we 
show that the HLA-Cw3 allele is selectively involved in the 
protection from lysis mediated by NK clones recognizing 
specificity 2. The specificity of this phenomenon is further 
supported by the finding that NK clones recognizing other 
allospecificities efl~ciendy lysed HLA-Cw3-positive target cells. 

In addition, transfection of P815 murine cells with Cw3 
but not with other HLA class I alleles conferred protection 
of these target cells from anti-2 clones. These data indicate 
that only certain HLA alleles are involved in the protection 
from NK dories recognizing a defined specificity. This would 
imply that, similar to T lymphocytes, alloreactive NK cells 
also may specifically recognize appropriate HLA class I al- 
leles. Our data do not exclude the possibility that other HLA 
alleles may also function as protective dements from clones 
with specificity 2, but they provide clear evidence that this 
property is not shared by all HLA alldes. 

Our present findings are consistent with the hypothesis 
that NK cells recognize either polymorphic epitopes of dass 
I molecules or structures (e.g., peptides) selectively bound 
to certain HLA alleles. In this context, it is noteworthy that, 
in several informative families, the character "resistance to 
lysis" by group 2 clones cosegregated not only with the Cw3 
allele, but also with Cwl  and Cw7 alleles. Importantly, these 
HLA-C alleles were found to share amino acid positions 77 
(serine) and 80 (asparagine) in the putative peptide-binding 
site of HLA-C (25). It is possible to hypothesize that this 
epitope(s) may be involved in the mechanism of protection 
from group 2 NK clones. In a similar context, Storkus et 
al. (26) have identified an epitope characterized by an asparagine 
at position 74 shared by A3, All ,  A24, Aw68, Aw69, B7, 
and B27 that appears to confer protection from lysis medi- 
ated by fresh polyclonal NK cells. According to the hypoth- 
esis that NK cells recognize sdf-polymorphic epitopes, the 
NK-mediated specific recognition would require the existence 
of clonally distributed surface receptors delivering a signal 
resulting in inhibition of NK-mediated cytolysis (27, 28). Thus, 
the lack of an appropriate HLA allele would result in cytol- 
),sis, while the expression of this allele would confer resis- 
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tance to lysis by NK tones with a given specificity. In accor- 
dance with this hypothesis, only allogendc target cells lacking 
in both chromosomes the "protective" HLA alleles would 
be susceptible to lysis by a given NK done. This explanation 
is also compatible with the recessive mode of inheritance of 
the character "susceptibility to lysis" and with the dominant 
mode of inheritance of the character "resistance to lysis", which 
have been previously documented for all five NK-defined 
specificities. 

An alternative hypothesis, also compatible with our data, 
is that appropriate class I alleles may mask a self-epitope that 
represents the actual target structure recognized by NK cells. 
The lack of the appropriate HLA allele (as, for example, the 
Cw3 allele in our defective variants) would result in unmasking 
of the epitope that would thus be available for binding to 

receptors on NK cells. According to this hypothesis, the in- 
teraction between ligand and receptors would result in NK 
cell activation leading to triggering of the lytic machinery 
and target cell lysis. 

Whatever the explanation would be, our data further sup- 
port the notion that different NK cells express surface receptors 
for different specifidties. In this context, we recently described 
tonally distributed triggering surface molecules termed GL183 
and EB6 (29, 30). These molecules belong to a novel 58-kD 
NK-specific family, which define at least four different NK 
subsets. More importantly, these subsets correlated with the 
ability of the cells to recognize different aUospecificities, thus 
suggesting that they may be part of a receptor structure in- 
volved in the donally distributed specific recognition, by 
human NK cells. 
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