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Meat species of raw meat and processed meat products were investigated

by 1H NMR spectroscopy with subsequent multivariate data analysis. Sample

preparation was based on aqueous extraction combined with ultrafiltration

in order to reduce macromolecular components in the extracts. 1H

NMR data was analyzed by using a non—targeted approach followed by

principal component analysis (PCA), linear discrimination analysis (LDA), and

cross-validation (CV) embedded in aMonte Carlo (MC) resampling approach. A

total of 379 rawmeat samples (pork, beef, poultry, and lamb) and 81 processed

meat samples (pork, beef, poultry) were collected between the years 2018 and

2021. A 99% correct prediction rate was achieved if the rawmeat samples were

classified according to meat species. Predicting processed meat products was

slightly less successful (93 %) with this approach. Furthermore, identification

of spectral regions that are relevant for the classification via polar chemical

markers was performed. Finally, data on polar metabolites were fused with

previously published 1H NMR data on non-polar metabolites in order to build

a broader classification model and to improve prediction accuracy.

KEYWORDS

1H NMR spectroscopy, meat, authentication, species, multivariate statistical analysis

Introduction

The terms “food fraud” or “food adulteration” gained unfortunate popularity in

recent years, particularly as a result of the horse meat scandal in 2013 (1, 2). Food

fraud generally refers to the act of placing food on the market with characteristics that

do not match those advertised. This may be done intentionally in order to achieve an

economic advantage and tomaximize profits by lowering production costs. Areas of food

adulteration are versatile, examples of this are false declarations of origin, husbandry, and

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.985797
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.985797&domain=pdf&date_stamp=2022-09-30
mailto:mirko.bunzel@kit.edu
https://doi.org/10.3389/fnut.2022.985797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.985797/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Decker et al. 10.3389/fnut.2022.985797

cultivation information, the addition of undeclared ingredients,

and non-compliance with quality and purity specifications (3).

In the area of meat fraud, this applies to changing the

composition of meat and meat products, for example by adding

water and/or undeclared additives. Other possible areas of fraud

in the meat sector include incorrect information about the

geographical origin and whether the meat was organically or

conventionally produced (4). The problem of illegal addition

of cheaper or low-quality meat from other animal species to

meat products received large attention in 2013 as a result

of the horse meat scandal (1, 5, 6). The general interest in

detailed information on food has since grown and in particular

the interest in authenticity and traceability of fresh meat and

processedmeat products has greatly increased. Accurate labeling

is important to consumers for many reasons, such as the fact

that some population groups do not consume specific types of

animals for health, religious, and ethical reasons. Consumers are

only enabled to make an informed purchasing decision if correct

information about the nature of the product is given (3, 7).

Therefore, robust and reliable analytical methods must be

available to detect and trace food fraud. For the identification of

animal species, polymerase chain reaction based techniques and

antibody-based methods have become established procedures

(8, 9). The metabolomics approach is described as a new

potential method for determining the authenticity of meat and

meat products. In food analysis, metabolomics approaches aim

at animal or plant based metabolites of hydrophilic and/or

hydrophobic nature with a lowmolecular weight≤1,000 Da (10,

11). By using proton nuclear magnetic resonance spectroscopy

(1H NMR) it is possible to obtain a characteristic pattern

of metabolites, referred to as “chemical fingerprint,” within a

single NMR spectrum (12). The application of 1H NMR based

metabolomics in the food sector has increased continuously

in recent years, especially in combination with multivariate

statistical methods such as principal component analysis (PCA)

and linear discriminate analysis (LDA) (12–16). As a non—

targeted approach, the entire spectral information of a sample

allows for statements about the authenticity, but also about the

origin of the sample. Thus, this approach is not focused on single

compounds, but all information about a sample is collected

(17, 18). There are a few 1H NMR studies related to meat, such

as distinguishing beef from four countries by analyzing aqueous

meat extracts (19). Another study focuses on the authentication

of beef and horse meat using a low—field NMR spectrometer at

60 MHz to reveal differences in triacylglyceride signatures (20).

In a previously published paper we were able to demonstrate

that analysis of the non-polar metabolites of meat by
1H NMR in combination with multivariate statistics allows

for a differentiation of the meat species (21). Here, we

combine a non-targeted 1H NMR based analysis of polar

meat metabolites with a multivariate statistical approach to

differentiate between various meat species. In order to obtain

a classification model that contains information about both

polar and non-polar metabolites, a mid-level data fusion was

also performed.

Materials and methods

Samples and chemicals

A total of 419 raw meat samples were collected between

the years 2018 and 2021. Most of the samples came from

the state of Baden—Württemberg, Germany, and were taken

by official food inspectors of the German Federal State of

Baden Württemberg; also, some samples were bought at local

supermarkets and butchers. The samples included 185 pork, 115

beef, 71 lamb, and 48 poultry (chicken and turkey) samples

and involved a variety of cuts and mince. A total of 379

meat samples (175 pork, 105 beef, 61 lamb, and 38 poultry)

were used for multivariate data analysis and establishment

of the model. The remaining 40 samples (consisting of 10

pork, 10 beef, 10 lamb, and 10 poultry samples) were used

for external validation (chapter 2.5.4). One chicken sample

was purchased from a local butcher and was used as a

control sample for the method validation. In addition to

raw meat samples, 76 processed meat products of the meat

species beef (19), pork (22), and poultry (23) were also

analyzed (Supplementary Table 1). In addition, five processed

meat products containing poultry/pork (4) and beef/pork (3)

were used to test the robustness of the classification model

against mixtures (Supplementary Table 3).

Sodium dihydrogen phosphate (≥99.0%), 3-(trimethylsilyl)-

propionic acid-d4 sodium salt (TSP, 98.0% atom % D),

and D2O (99.9% atom % D) were purchased from Merck

(Darmstadt, Germany).

Sample preparation

Bones, rind, subcutaneous fat, and innards were removed

from the meat samples. Following mixing, the samples were

freeze-dried and ground in a cryomill (SamplePrep6870 Freezer

Mill, C3 Process and Analysis Technology GmbH, Haar,

Germany). The ground, dry samples were stored in a freezer

(−20◦C) until use. The meat powder (500mg) was extracted

with 6mL of water. After the samples were mixed on a test

tube shaker (Multi Reax, Heidolph, Schwabach, Germany)

for 10min, samples were centrifuged at 3,000 rpm [relative

centrifugal force (RCF), 1,690 x g] for 15min. The aqueous

supernatant was passed through a syringe filter (Chromafil

Xtra PET −45/25, Macherey-Nagel, Düren, Germany) into a

centrifuge tube. The 3 kDa ultrafiltration filters (Vivaspin
R©
,

Sartorius, Goettingen, Germany) were rinsed three times

with 2mL of water each to remove glycerol [10min at
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3,000 rpm, relative centrifugal force (RCF), 1,690 × g].

After the cleaning step, 800 µL of the meat extract was

transferred to the 3 kDa ultrafiltration unit, and samples were

centrifuged at 3,000 rpm [relative centrifugal force (RCF),

1690 × g] for 1.5 h. An aliquot of the obtained filtrate (500

µL) was mixed with 250 µL of 3M sodium dihydrogen

phosphate buffer (pH 6) and 75 µL of TSP (dissolved in

D2O). A 600 µL-aliquot of this mixture was transferred to

a 5-mm Boro 300-5-8 (Deutero, Bad Kreuznach, Germany)

NMR tube.

Method validation

For the method validation a control sample (chicken) was

established in order to verify the sample preparation step

including extraction, and measurement performance. First, the

control sample was extracted five times on three consecutive

days, and second, the extraction was carried out five times by

another person. All extracts were analyzed as described below.

In addition, the control sample was analyzed in each analytical

series including aqueous extraction and 1H NMR measurement

to ensure an issue free sample preparation.

NMR spectroscopy

All spectra were recorded using the same parameters

and under the same conditions. 1H NMR spectra were

measured on a Bruker 400 MHz AVANCE III HD NanoBay

spectrometer (Bruker Biospin GmbH, Reinstetten, Germany)

equipped with a 5-mm BBI (broadband inverse) probe at

300K. A Bruker automatic sample changer Sample Xpress

(Bruker Biospin GmbH, Rheinstetten, Germany) was used.

After a 5-min temperature adjustment, automatic tuning and

matching and automatic shimming were applied. For each

sample an automatic pulse calibration was performed. All 1H

NMR spectra were recorded using the standard Bruker pulse

program noesygppr1d_d7.eba with a relaxation delay (D1) of 4 s

and an acquisition time of 8 s. 1H NMR parameters were as

follows: 128 k time domain data points, 128 scans, 4 dummy

scans, spectral width of 20.5617 ppm, size of FID (TD) 135168,

digmod was baseopt, and receiver gain was 64. Processing was

performed using the Bruker Biospin Topspin software (version

3.2): exponential window function was applied, a zero filling

was performed (SI = 2TD) and line broadening was set to

0.3Hz, followed by a Fourier Transformation, spectral phasing,

and baseline correction. All spectra were referenced to the TSP

signal at 0 ppm. To ensure spectrum quality, the full width at

half maximum of the TSP signal was determined. A limit of

1.2Hz was set and if this was exceeded, the analysis had to

be repeated.

Data analysis

Data reduction and pretreatment of the 1H
NMR spectra

To reduce data and to provide input variables for statistical

analysis, bucketing was performed. The spectral region in the

range of 0.50–9.50 ppm was divided into 1,000 equal segments,

followed by exclusion of the region of residual water (4.84–5.10

ppm). Spectra were normalized to the signal of TSP (−0.5 to

0.5 ppm). A pseudo-scaling effect was achieved by applying a

log transformation. NMR data were analyzed using MATLAB

version 2013b (The Math Works, Natick, MA, USA).

Multivariate statistical data analysis

The potential to predict the animal species of meat by

analyzing 1HNMR data of polar meat metabolites was validated

using a combination of established multivariate statistical tools:

PCA with LDA, and multivariate analysis of variance within

a cross-validation (CV) embedded in a Monte Carlo (MC)

resampling approach. The following classification rule was set:

a test set object was assigned to the class with minimum

distance between test set object and respective class mean, that

is, assignment according to the nearest class mean (NCM).

Model building PCA/LDA and MC embedded CV

A total of 379 meat samples was used to build and validate

the prediction model; the model was built by using 90% of these

samples, and 10% of the samples were used as internal test set.

A PCA was performed in order to reduce the dimensions. PCA

was followed by LDA to get a maximum of class separation.

The quality was assigned by using NCM classification. The

distance between the object of the test set and the class means

of the model set was compared, and the group membership was

assigned. To validate the predictivity of the PCA/LDA, a CV

with ten randomly selected disjunct subsequent test sets was

performed. To avoid any segmentation bias, CV was repeated 10

times with an MC resampling approach (MC = 10) always with

a new random segmentation for each CV step. Lastly, the rate of

correct and false class predictions was calculated for each class to

set up a confusion matrix. With the help of the confusion matrix

the measurement correctness of the CV is represented. In this

matrix, information about the dependence of the true class and

the class assigned by means of classification model is obtained.

External model validation

For an external validation approach, samples of each meat

species that were not used to build themodel were utilized. A test

set of 40 samples (consisting of 10 pork, 10 beef, 10 lamb, and 10

poultry samples) were applied to the classification model, which
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was built from the 379 samples. Results of the assignment are

indicated as distances of the samples to the model mean value

(with a confidence interval of 95%) and as p-values supporting

the decision whether a sample is beef, pork, lamb, or poultry.

Multiple univariate testing for spectral
di�erences between meat species

To detect spectral regions that significantly differ between

the different meat species the Kruskal-Wallis test as a non—

parametric version of a one-way analysis of variance (ANOVA)

was applied with a significance level of α = 0.001, which was

Šidák corrected (24). It is evaluated whether the expectation

values of the means of different statistical samples are different.

Different from ANOVA, the Kruskal-Wallis test is not based on

a Gaussian distribution of the data. Because the Kruskal-Wallis

test operates on a single variable, it has to be applied multiple

times, scanning intensities at each individual ppm-value for

spectral analysis (15, 25).

Identification of possible marker compounds
for the discrimination of meat species via polar
metabolites

The PCA/LDA score plot and loading plot were plotted

using the MATLAB version 2013b (The Math Works, Natick,

MA, USA). By analysis of the loading plots, variables were

extracted that affect the discrimination or separation in the score

plot most strongly. For clarity, four two-class models (pork/beef,

pork/lamb, lamb/beef, and poultry/non-poultry) were used.

Mid-level data fusion

Fusion of the 1H NMR data of the analyses of the non-

polar and polar metabolites was investigated with a mid-

level approach using MATLAB version 2013b with Statistical

Toolbox (The Math Works, Natick, MA, USA). First, the data

sets consisting of 379 samples were separately subjected to

data pretreatment (bucketing, solvent exclusion, normalization,

and log transformation). PCA was then used to perform data

reduction and simultaneous selection of relevant variables from

each data matrix, forming the respective scores. The scores

obtained by PCA were fused in the next step, resulting in a joint

dataset. This dataset was used to construct the LDA.

Results and discussion

Sample preparation and 1H NMR signal
assignments

Polar metabolites in meat derive from numerous low

molecular weight compound classes with high chemical

diversity. These classes include amino acids and their derivatives,

organic acids, carbohydrates, purine derivatives, imidazole

dipeptides, and quaternary ammonium compounds (QAC) (26).

Various extraction protocols are described in the literature to

capture polar meat compounds, but these often only focus

on a single class of compounds, such as amino acids or

imidazole dipeptides (27–30). Here, an extraction procedure was

developed that allows for simultaneous extraction and detection

of the majority of polar metabolites. Although the majority of

low molecular weight metabolites should be included, polymers

may interfere with the analysis. Thus, the initial focus was

on the removal of proteins, since these reduce spectra quality.

Figure 1 shows the 1H NMR spectrum of the polar metabolites

of meat with and without protein removal. Without protein

removal (Figure 1A), broad signals occur in the range of 0.5–

5.0 and 6.5–9.0 ppm, which can be assigned to co-extracted,

non—precipitated proteins. Because these signals largely vary

depending on the individual sample, a reasonable integration of

the low molecular weight metabolite signals was not possible as

also described in literature (31, 32).

In the past, approaches have been described, in which

protein precipitation occurs before or after the actual extraction

(31–33). Also, depending on the extraction solvents, they may

already be suitable to precipitate proteins (23, 34, 35). Here,

different methods of protein removal in polar meat extracts

were investigated and evaluated in terms of reproducibility,

degree of protein removal, associated baseline smoothing, and

sharpness of signals. Ultrafiltration using a 3 kDa filter at room

temperature was found to be the most effective, gentle and

reproducible method for protein removal. The ultra-filtrate,

which was obtained within 1.5 h, was directly measured by

an optimized 1H NMR spectroscopic procedure (Figure 1B).

Assignment of 1H NMR signals was performed according

to existing literature, interpretation of two-dimensional NMR

spectroscopy (hsqcetgp, cosygpppqf, mlevphpr.2) data, and

spectra of commercially available standard compounds. The

spectral region between 0.0 and 5.0 ppm shows signals of a

large number of metabolites (Figure 2A). Numerous signals

with multiplet structures were detected, complicating their

identification. Prominent signals represent lactic acid, α-alanine,

creatine, L-anserine, and L-carnosine. Especially in the 3.0–3.8

ppm range, many different compounds were detected, such as

the α-CH group of α-amino acids, multiplet signals of imidazole

dipeptides, and sugar signals. Also, signals of QAC such as

carnitine, O-acetyl-L-carnitine, betaine, and choline are located

in this region.

Figure 2B shows the spectral region of 5.0–10.0 ppm, in

which predominantly signals of aromatic metabolites such as

phenylalanine and tyrosine are found. Also, proton signals of

the imidazole ring of L-anserine und L-carnosine are present in

the low field. Signals of inosine, inosine monophosphate (IMP),

and hypoxanthine are also located in the aromatic region of

the 1H NMR spectrum. All three metabolites are involved in

postmortem energy metabolism of the muscle and are critical
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FIGURE 1

Comparison of the 400 MHz-1H NMR spectra of a polar meat extract without (A) and after protein removal (B).

for the flavor development of meat. Adenosine triphosphate

(ATP) formed by anaerobic glycolysis is irreversibly degraded

during the process of slaughtering via adenosine diphosphate

and adenosine monophosphate to IMP and ammonia. IMP is

further degraded by dephosphorylation to inosine, which is

subsequently hydrolyzed to hypoxanthine and ribose (22, 36).

Univariate data analysis

Univariate data analysis based on the Kruskal-Wallis test

showed spectral differences between the four meat species pork,

beef, lamb, and poultry. Significant differences of each bucket

between species groups were analyzed with a confidence level

set to 99.9%. A Šidák correction was used to avoid the problem

of multiple testing. The previously selected significance level α

= 0.001 was corrected by the formula 1-(1-α)1/k, with k being

the number of buckets after pretreatment (k = 967) (24). The

corrected significance level was αSID = 1.03∗10−6. A bucket was

considered significantly different when the p-value was below

αSID. Figure 3 shows the results of the Kruskal-Wallis test, with

pink bars indicating buckets, which are different between the

four groups pork, beef, lamb, and poultry. White areas indicate

high p-values which demonstrate spectral regions that do not

contain information on the animal species (15). Obviously,

many areas feature differences, in both high field and low field

spectral regions. Thus, there is a large number of metabolites

that differ among the meat species. Signal regions that do not

reveal differences include, for example, the metabolites lactate

(1.34 ppm; 4.12 ppm), α-alanine (1.48 ppm), and creatine (3.04

ppm, 3.97 ppm). Similarly, the signals close to the residual water

signal, which represent the anomeric protons of α-glucose at

5.24 ppm and β—glucose at 4.64 ppm, respectively, are not

highlighted in pink. In general, the differences found in the
1H NMR spectra were typically attributed to subtle intensity

differences and not due to the presence or absence of class

specific signals. Which metabolites were actually responsible for

the separation in the classification model will be shown later in

the loading plot (37).

Classification of meat species by 1H NMR
spectroscopy and combined multivariate
statistical analysis

For the multivariate statistical analysis all 1H NMR spectra

had to be automatically phased and baseline corrected. The

range between 0.50 and 9.50 ppm was chosen for bucketing and

was divided into 1,000 equal buckets. Following bucketing, the

residual water signal (4.84–5.10 ppm) was excluded, and data

was normalized in order to compensate potential differences

during sample preparation. Normalization was performed to

the internal reference standard TSP (−0.5 to 0.5 ppm), because

formation of complexes with proteins was judged to be unlikely

due to previous protein removal (38). In addition, univariate

data analysis showed that the TSP signal was not different
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FIGURE 2

Representative 1H NMR spectra of an aqueous extract of a meat sample (poultry) recorded in H2O/D2O (10:1, v/v) using a 400 MHz

spectrometer. Chemical shifts were calibrated against the TSP signal at 0 ppm. The residual water signal (4.84–5.10 ppm) was suppressed using

the noesygppr1d_d7.eba experiment. IMP, inosine monophosphate; AA, amino acids; QAC, quaternary ammonium compounds.

in the 379 samples. As the last data pretreatment step, log

transformation was performed to achieve a pseudo-scaling effect

and reduce differences between large and small values in the

data. The transformation reduces larger values in the data set

more than small values (39, 40). With the now pretreated data,

the classification model was subsequently formed and validated.

Because the number of variables (bucket data) was extremely

high for subsequent statistical treatments, PCA was used for

dimension reduction. LDA was applied to the PCA scores in

order to identify the multivariate subspace for maximum class

(meat species) separation (41, 42). For LDA, the scores of the

first 16 dimensions of the PCA were used, describing 98.9% of

the variance of the data. The first three principal components

already represent 97.7% of the total variance of the data. In order

to judge the predictive power and reliability of the model, the

statistical model was validated: internal validation was carried

out by using the 10 fold-CV (ten randomly selected subsequent

test sets) approach, for which the data were divided into a

training set (used to build a model) and a test set (used to

test the prediction ability). With completion of CV, each 1H

NMR spectrum was in the test set once. To overcome the

potential risk of segmentation bias, the CV was carried out

multiple times using a MC resampling approach (14, 15). At

the beginning, shuffling of the complete data set was performed

followed by a repeated 10 fold-CV. This step results in a new

random segmentation into test and training samples. In the

present work ten MC runs were performed, resulting in 100

models with associated confusion matrices. These 100 matrices

were combined into a single confusion matrix. This confusion

matrix was the final result of the embedded MCCV, which

determines the predictive accuracy of the model. Assignment

of test set samples to meat species classes was carried out by

comparing distances between test objects and class means (NCM

method) (12).

Figure 4A shows the result of the embedded MCCV as a

confusion matrix of the obtained classification model for the
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FIGURE 3

Identification of spectroscopic regions that are responsible for the discrimination of the meat species pork, lamb, beef, and poultry. The p-values

according to the Kruskal-Wallis test are color coded (white: high p-value, magenta: low p-value). Low p-values indicate spectral regions

containing information that contribute to the discrimination. Meat species are marked as follows: poultry—red; beef—turquoise; lamb—yellow;

pork—blue. The thick line describes the respective mean value of each individual group, the colored areas around the respective mean value

show ranges of variation within a group.

polar metabolites of the raw meat samples. It can be seen that

the model that is based on polar metabolites is suitable for

the differentiation of the meat species pork, beef, lamb, and

poultry. The confusion matrix demonstrates that the accuracy

of the assignment of the respective meat species to the correct

class is between 97.6 and 100.0%. Accordingly, all meat species

were assigned with a high accuracy. Figure 4B illustrates the

discrimination space of one CV step. The training set for model

building of each class is symbolized by its 95% confidence

ellipsoid, the test set samples are marked as circles. The groups

form clusters with no overlapping areas. It is thus possible to

represent the four meat species in a multi-class model and it is

not necessary to resort to a binary model due to confounding.

Classification-relevant spectral regions
and potential chemical markers

Regions that are relevant for classification can be extracted

from PCA/LDA loading plots, which indicate buckets that

mostly affect clustering of the respective sample (37, 43). In

contrast, the Kruskal-Wallis test (Section 3.2) only indicated

spectral differences between meat species but not, which

metabolites (or spectral regions) are actually responsible for

the discrimination into clusters. For clarity, the loadings are

presented in two-class models (Figure 5). In order to illustrate

the analytically obtained results, the relative distribution in

the sample set was plotted using the Box-Whisker-Plot to

show the location and dispersion of the values for some

classification—relevant metabolites. In the following, a total

of four different two-class models (pork/beef, pork/lamb,

lamb/beef, and poultry/non-poultry) was used.

Figure 5A shows the two-dimensional PCA/LDA score plot

for the differentiation of pork and lamb meat samples via

the polar metabolites, Figure 5B the corresponding loading

plot. The lamb and pork samples are visualized as yellow and

blue dots, both groups show separated clusters along the first

linear discrimination function (LD). Variables that are far from

the origin with respect to the plotted LD affect the model.

Accordingly, variables that are close to the origin are not

significant for the model with respect to the plotted LD (37).

For the negative loading values along LD 1, which correlated

with the scores of the pork samples, the buckets 8.500 and

7.239 ppm showed high negative loading values. Both were

assigned to L-carnosine, which is present in significantly higher

concentrations in pork than in lamb meat. This was confirmed

by the Box—Whisker-Plot in Figure 5C. However, the variance

of the values for the pork group was greater than for the lamb

group. In addition, the bucket at 8.230 ppm was assigned to

hypoxanthine, and choline was identified as being responsible

for the bucket at 3.212 ppm. The Box-Whisker-Plots indicated

increased concentrations of both metabolites in pork meat.

Again, a larger variability of hypoxanthine levels in pork samples

was observed. The positive loading values along LD 1 correlated
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FIGURE 4

Results of the Monte Carlo embedded cross-validation on the performance of the obtained classification model of PCA/LDA to predict the

species of meat using 1H NMR data of polar meat metabolites. (B) shows the discrimination space of a cross validation step. The training set for

model building of each class is symbolized by its 95% confidence ellipsoid, and the test set samples are indicated as circles. (A) shows the

confusion matrix of the embedded MCCV. The x-axis and the y-axis show the assigned class and the correct class, respectively. The confusion

matrix shows the classification assignment in numbers and the accuracies about the probability of the prediction result in percent. Experiment

used: noesygppr1d_d7.eba; 0.50–9.50 ppm; 1,000 buckets; exclusion of the residual water signal (4.84–5.10 ppm); normalization: −0.50 to 0.50

ppm; log transformation; PCA dimensions: 14; 10 CV; 10 Monte Carlo runs.

with the lamb samples; the buckets 3.203 and 3.239 ppm

correspond to signals of O—acetyl-L-carnitine and L-carnitine.

The buckets at 8.275 and 8.374 ppm, respectively, were assigned

to inosine, the buckets at 3.842 and 8.536 ppm to L-anserine. The

Box—Whisker-Plots show an increased concentration in lamb

meat for the four metabolites.

Buckets that were assigned to QAC (L-carnitine, choline,

O—acetyl-L-carnitine), imidazole dipeptides (L-anserine,

L-carnosine), and degradation products of ATP (inosine,

hypoxanthine) were demonstrated to be involved in the

classification of beef/lamb, beef/pork, and/or poultry/non-

poultry (Supplementary Figure 1; Supplementary Table 2). In

literature, especially levels of imidazole dipeptides and their

ratios were described as being species-dependent (29, 44–46).

Mid-level data fusion and method
validation

In a previously published paper, an attempt was made to

build a classification model based on non-polar metabolites

of meat (21). By combining data on polar and non-polar

metabolites, a mid-level data fusion was used to establish a

new classification model that contains maximum metabolite

information. Figure 6 shows three different models with

associated confusion matrices. Data model A describes the

PCA/LDA from 379 samples that were analyzed for their non-

polar metabolites. Accordingly, data model B is constructed

from the same 379 samples that, however, where analyzed

for their polar metabolites (Figure 4). By applying mid—level

data fusion, the scores from previously performed PCAs (both

extraction methods) were combined and used to build a new

classification model (47, 48). Data model C describes the

PCA/LDA that was applied to the fused PCA scores. The

confusion matrices in Figure 6C show that the classification

results can be improved after data fusion. However, because the

classification accuracy already ranged between 92.5 and 100.0%

in data models A and B, data fusion only resulted in moderate

improvements. The beef samples were correctly assigned with

a classification accuracy of 92.5% using data model A. The

remaining 7.5% of the samples were assigned as lamb. Also,

in model A it is evident that the beef cloud (turquoise) and

lamb cloud (yellow) slightly touch each other. In contrast, by

using the model based on polar metabolites (model B) all beef
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FIGURE 5

(A) Two-dimensional PCA/LDA score plot of the sample groups lamb (yellow) and pork (blue). (B) Associated loading plot with the 967 buckets

used. Buckets with the highest positive or highest negative values along LD 1 are marked and correspond to signal regions that are more distinct

in the respective sample group. (C) Box-Whisker-Plots of metabolites that are relevant for the discrimination of pork vs. lamb. Buckets that

showed an e�ect on discrimination in the loading plot were used for the Box-Whisker-Plot. Box-Whisker-Plots of L-carnosine, hypoxanthine,

and choline demonstrate higher concentrations in beef meat. Box Whisker-Plots of L-anserine, inosine, L-carnitine, and O-acetyl-L-carnitine

demonstrate higher concentration sin lamb meat.

samples were correctly assigned. In model B, the clusters of

beef and lamb are also much better separated than in model

A. Data fusion allowed for a correct assignment of 99.2% of all

beef samples (model C). Classification accuracy improved for

lamb based meat by combining data on polar and non-polar

metabolites. In contrast, assignment of poultry based meat was

slightly better when the non-polar compounds were analyzed

(model A) as compared to the analysis of polar metabolites

(model B). Mid-level data fusion (model C) allowed the poultry

samples to be assigned with a classification accuracy of 100%.

Also, due to the lower dispersion of the samples within an

animal species the limits of the 95% confidence interval were
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FIGURE 6

(A) Results of embedded MCCV on the obtained classification model of PCA/LDA to predict the animal species via the 1H NMR spectra of

nonpolar metabolites according the method of (21). Used experiment zg30; 0.50–6.80 ppm; 2,000 buckets; exclusion of the residual water

signal (4.84–5.10 ppm) and methanol signal (3.33–4.40 ppm); normalization: 1.50–4.050 ppm; log transformation; PCA dimensions: 16;10 CV;

10 Monte Carlo runs. (B) Results of embedded MCCV on the obtained classification model of PCA/LDA to predict the animal species i the 1H

NMR spectra of the polar metabolites. Used experiment noesygppr1d_d7.eba; 0.50–9.50 ppm; 1,000 buckets; exclusion of the residual water

signal (4.84–5.10 ppm); normalization: TSP (−0.5 to 0.5 ppm); log transformation; PCA dimensions: 16; 10 CV; 10 Monte Carlo runs. (C) Results

of embedded MCCV on the obtained classification model of PCA/LDA formed by the previously performed mid-level data fusion. By applying

mid-level data fusion, the respective scores generated by the previously performed PCA were combined from both data on polar and non-polar

metabolites, and a new classification model was created.

automatically reduced, and the clusters became smaller. This

can nicely be seen for the poultry samples (red) in model C as

compared to these samples in model A, but also for the beef

samples (turquoise) and the pork samples (blue). As a result,

by combining the data there is an improved spatial separation

of the clusters, and the absolute distances between the clusters

increase. As previously mentioned, application of new samples

to the built classificationmodel was tested, too. Ten new samples

of each species were analyzed as an external validation set for

correct assignment. For each of these ten test samples 1H NMR

spectra of the lipophilic and hydrophilic extracts were recorded.

For all four species, all ten test samples were correctly assigned.

Supplementary Figure 2 shows the cluster models including

the ten test samples, which are highlighted as red stars. All

samples met the specified significance level p-value≥ 0.05. Thus,

combining the different sources of information is reflected in an

improvement of the multivariate system.

Classification of processed meat
products

In addition to raw meat, processed products based on beef,

pork, and poultry meat were studied. All 76 processed meat

products (pork: 31; beef: 18; poultry: 27) were analyzed for

their polar and non-polar metabolites followed by PCA/LDA.

To potentially increase classification and prediction accuracy,

a mid-level data fusion was also performed using the PCA

scores of the two extraction procedures. Data pretreatment was

performed as for the fresh meat samples. Figure 7 shows the

confusion matrix of the polar metabolite classification model

(A). For the PCA/LDA, the scores of the first 14 dimensions

of the PCA were used, describing a total of 93.4% of the

variance in the data. The confusion matrix shows that the

model that is built on polar metabolites is generally suitable for

differentiating the species of pork, beef, and poultry in processed
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FIGURE 7

Results of embedded MCCV on the obtained classification model of PCA/LDA to predict the species of processed meat products via the 1H NMR

spectra of the polar metabolites (A) as well as after mid-level data fusion (B).

meat products. However, the confusion matrix also shows that

the accuracy of the assignment varies between animal species.

For beef based samples, the classification accuracy was as low

as 86.7% with some samples being falsely classified as pork.

Also the cluster model shows that the clusters of pork (blue)

and cattle (turquoise) overlap slightly. Aside from that, a strong

dispersion of the beef product data can be observed, clearly

increasing the limits of the 95% confidence interval. This may

be due to the limited number of beef based samples, which

cover only a small variety of this product class. In contrast,

the accuracy for the pork based products was high, 98.4%,

and acceptable for the poultry-based products, 93.3%, too. The

model of the non-polar metabolites can be seen in previously

published study (21). For the PCA/LDA, the scores of the

first 14 dimensions of the PCA, which describe 99.4% of the

variance in the data, were used. Again, the differentiation of

the three meat species was generally possible. The confusion

matrix showed that the accuracy of assignment is ∼97.0% for

all three groups, thus being more accurate than the classification

model that is based on polar metabolites. Also, the different

clusters were completely separated from each other. However,

particularly in the cluster representing beef based products the

individual data points were highly scattered, increasing the 95%

confidence interval. Combining information of both approaches

(polar and non-polar extraction) in a mid-level data fusion

results in data that are shown in Figure 7B. Overall, the fusion

did not improve classification accuracies, which are similar to

the results of the model that is based on non-polar metabolites.

A minor improvement was seen in the scatter of the individual

data points of the beef based samples, thus reducing the limits

of the 95% confidence interval. Therefore, it can be stated

that the primary goal of increasing the prediction accuracy of

the classification was not achieved by mid-level data fusion.

However, the accuracies of the individual models were already

in a comparably high range.

In order to test the robustness and reliability of both the

model based on polar metabolites and the combined model, five

processed meat products consisting poultry/pork and beef/pork

(Supplementary Table 3) were added to both models as a new

sample set. Figure 8 shows that sample number 5 was assigned

within the 95% confidence interval to the poultry group in the

model that is based on polarmetabolites (A) although the sample

contains 9% of pork meat. In the previously published study on

non-polar metabolites, the robustness of the non-polar model

was also tested with the same five samples. Also, sample number

5 was assigned within the 95% confidence interval to the poultry

group despite containing 9% of pork meat. The samples 1, 2, 3,

and 4 were not assigned to any of the groups in the model that

is based on non-polar metabolites. However, in these samples

the composition of the two meat sources was more balanced

than in sample 5 (21). By using the model that is based on

polar metabolites, samples 1 and 2 were assigned within the 95%
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FIGURE 8

Illustration of the addition of five processed meat products that contain poultry and pork meat (samples 3–5) or beef and pork meat (samples 1

and 2) as new samples to the two models (A) based on polar metabolites, (B) classification model after mid-level data fusion).

confidence interval of the beef group (Figure 8A). By applying

the model that is based on data fusion, all samples were—

correctly—not assigned to any of the groups (Figure 8B). These

results were confirmed by the corresponding p-values, being

smaller than 0.05 (Supplementary Table 3). Thus, data fusion

results in a model that is more robust against mixtures of meat

species in products. However, in the future more samples have

to be added to the model. By increasing the number of samples,

the robustness of the model will also be achieved.
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