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Insulin resistance represents one of the mechanisms underlying the link between type 2 diabetes (T2D) and
Alzheimer's disease (AD), and we explored its in vivo neurobiology related to cognition based on a pathway-
based genetic association analyses. Eighty-seven mild cognitive impairment (MCIs) subjects and 135 matched
controls (HCs) were employed at baseline, and they underwent functional MRI scans, clinical evaluations and
exon sequencings of 20 genes related to brain insulin resistance. A longitudinal study for an average of 35months
was performed to assess their cognitive decline over time. By using cognition as the phenotype, we detected
genes that modified cognitive impairments, including AKT2, PIK3CB, IGF1R, PIK3CD, MTOR, IDE, AKT1S1 and
AKT1. Based on these loci, the mass univariate modeling was utilized to construct the functional network. The
MCIs showed disconnections mainly in the cerebellum-frontal-temporal regions, while compensations may
occur in frontal-parietal regions tomaintain the overall network efficiency.Moreover, the behavioral significance
of the networkwas highlighted, as topological characteristics of themedial temporal lobe and the prefrontal cor-
tex partially determine longitudinal cognitive decline. Our results suggested that the restoration of insulin activ-
ity represents a promising therapeutic target for alleviating cognitive decline associated with T2D and AD.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The interactions between type 2 diabetes (T2D) and Alzheimer's dis-
ease (AD) have received increasing attention. Epidemiologic studies
have shown that AD risk is increased by T2D (Profenno et al., 2010),
and an exploration of the mechanisms regarding how T2D increases
the risk of AD will help to reveal the pathomechanisms of AD and find
ways to relieve cognitive impairments in both diseases. A reasonable
starting point concerning this field is the pathophysiological features
shared by the two diseases, and insulin resistance represents a promis-
ing target. Peripheral insulin resistance represents a key causative factor
for T2D, and its role in AD has also been highlighted. Subjects with pe-
ripheral insulin resistance are more likely to develop AD, and associa-
tions have been detected with peripheral insulin resistance and AD-
related pathology in brains (Rasgon et al., 2011; Sims-Robinson et al.,
2010).

Moreover, it is logical to assume that the dysfunctional insulin sig-
naling within the brain has more a direct and important role in AD pro-
cesses. Accumulating evidence has indicated that the brain itself
develops insulin resistance, including the changed binding and sensitiv-
ity of the insulin pathway-related receptors and the expression levels of
. This is an open access article under
relevant molecules (Moloney et al., 2010; Talbot and Wang, 2014). Re-
cently, disrupted insulin signaling associated with AD was further clar-
ified, as reduced responses of the insulin receptor (IR)/insulin receptor
substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K
pathways were demonstrated in AD brains (Talbot et al., 2012). More
importantly, thedysfunction tookplace independently of diabetic status
and APOE ε4 genotype, and it gradually deteriorated as AD progressed
(Talbot et al., 2012). At the cellular andmolecular level, insulin signaling
interfereswith Aβ degradation and transportation of Aβ out of the brain
to modify Aβ deposition (Carro et al., 2002; Farris et al., 2003). Further,
insulin deficiency promotes the phosphorylation of tau, leading to dete-
riorated accumulations of neurofibrillary tangles (Schubert et al., 2003).
In addition to Aβ and tau, insulin signaling disorders also promote
neuro-inflammation, apoptosis, oxidative stress, impairments of energy
metabolism and synaptic disconnections (Sims-Robinson et al., 2010),
all of which lead to the development of AD. To conclude, brain insulin
signaling plays pivotal roles in AD processes, and further studies are
needed to clarify the in vivo neurobiology of brain insulin resistance un-
derlying cognitive impairment.

Genetic association analyses allow us to solve this issue. Compared
with traditional case/control designs, quantitative trait association stud-
ies massively increase the statistical power to decrease the required
sample sizes (Potkin et al., 2009). Previously, cognitive performances
have been successfully used as quantitative phenotypes, leading to the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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identification of loci that influence brain function and cognition (Almasy
et al., 2008; Papassotiropoulos et al., 2006). Moreover, converging evi-
dences have suggested that the pathophysiological processes of AD
beginmanyyears before the diagnosis of dementia, and the “preclinical”
phase of AD provides critical opportunities to reveal the mechanisms
underlying AD development (Sperling et al., 2011). Mild cognitive im-
pairment (MCI) has been suggested to be a boundary area between nor-
mal aging and dementia, and MCI subjects (MCIs) are high-risk
individuals for AD (Sperling et al., 2011). Therefore, exploring the inter-
actionswith insulin resistance-related genetic polymorphisms and cog-
nitive impairments in the MCIs would support the implications of
insulin resistance in AD process, identify the missing heritage for AD
and lead to novel insights into relieving cognitive declines in both T2D
and AD.

Moreover, genetic imaging studies allow us to assess the in vivo
functional activity of targeted variations. For instance, the APOE geno-
type was suggested to influence the aging trajectory of the default
mode network (DMN) (Shu et al., 2016), and single nucleotide poly-
morphisms (SNPs) of GSK3βwere associated with altered neuronal ac-
tivity mainly within the precuneus (Pcu) and the inferior parietal lobe
(IPL) (Biffi et al., 2010), whereas the influences of insulin resistance on
brain activity are undefined.More importantly, owing to themultifacto-
rial nature of insulin resistance, the joint effects of multi-SNP should be
explored to better reveal insulin-brain interactions, which could be
achieved by mass univariate modeling (Bai et al., 2016a; Bai et al.,
2016b; Inkster et al., 2010).

In the present study, our first aimwas to investigate the associations
of cognitive performances and SNPs corresponding to the brain insulin
resistance pathway. Second, insulin pathway-related brain topological
networks were constructed to access the integrated functional activities
of SNPs with cognitive relevance. Third, to clarify the behavior signifi-
cances of the established network, we explored whether the network
connectivity could predict cognition changes over time.

2. Material and methods

An overview of the research design andmethods is shown in Fig. S1.

2.1. Participants

The Affiliated ZhongDa Hospital of Southeast University Research
Ethics Committee approved the investigation, and each participant pro-
vided written informed consent. At baseline, 87 MCIs and 135 matched
HCs were enrolled via newspaper advertisements and community
health screenings. Every participant went through clinical evaluations,
sequencings of targeted genes and MRI scans. Six HCs and seven MCIs
with genotype call rates b90% were excluded from the genetic set-
based analysis. Further, four HCs were not included in the imaging ge-
netics analysis because of excessive motion artifacts. An average 35-
month follow-up study was performed, and 57 MCIs and 64 HCs
returned for clinical evaluation (the follow-ups of HCs were paused
when comparative numbers of MCIs and HCs participated in the fol-
low-ups). At follow-up, four HCs developed into MCI and seven MCIs
reverted to normal cognition, and all these participants were excluded
in the follow-up analyses. Sixteen of the remaining 50 MCIs converted
into AD (c-MCIs). Finally, 60 HCs and 50 MCIs (including 16 c-MCIs
and 34 nc-MCIs) were employed in the longitudinal analysis.

2.2. Clinical evaluation

Participants underwent the same comprehensive clinical evalua-
tions at baseline and follow-up, including the demographic information,
the history of past illness and neuropsychological testing. The Mini-
Mental State Examination (MMSE) and the Mattis Dementia Rating
Scale-2 (MDRS-2) were used to assess general cognition. The neuropsy-
chological battery mainly comprised the Auditory Verbal Learning Test-
20-min delayed recall (AVLT-20-min DR), the Rey-Osterrieth Complex
Figure Test with 20-min delayed recall, the Trail Making Test - A and
B, the Stroop Color and Word Test A, B, and C, the Verbal Fluency Test,
the Digital Span Test, the Semantic Similarity Test and the Clock Draw-
ing Test, which were used to evaluate episodic memory, visuospatial
function, information processing speed and executive function (detailed
information given in Table S1). The presence or absence of diabetes was
determined by medical history and medical records.

2.3. Inclusion and exclusion criteria

All participants were 54- to 80-year-old Han Chinese. They were all
right-handers and had an education of N8 years. MCIs were employed
according to the recommendations (Albert et al., 2011; McKhann et
al., 2011), as follows: (1) subjective memory impairment; (2) objective
memory impairment: score of AVLT-20-min DR less than or equal to 1.5
standard deviations of age- and education-adjusted norms; (3) no or
minimal impairment of general cognition: MMSE score ≥ 24 or MDRS-
2 score ≥ 120; (4) a Clinical Dementia Rating of 0.5, with at least a 0.5
in the memory domain; (5) relatively intact daily activities: score of ac-
tivities of daily living ≤25; and (6) absence of dementia or insufficient to
meet the Diagnostic and Statistical Manual of Mental Disorders-IV
(DSM-IV) and the National Institute on Aging-Alzheimer's Association
workgroups on diagnostic guidelines for Alzheimer's disease (NIA-
AA). Further, HCs were required to have MMSE scores ≥26 and MDRS-
2 scores N120.

The exclusion criteria were as follows: (1) histories of neurological
or psychiatric diseases; (2) contraindications in the MRI scans; or (3)
gross brain structural abnormalities revealed by MRI scans.

2.4. ALFF analysis

The detailed information about MRI data acquisition and image pre-
processing was provided in Supplementary material. The preprocessed
image data were used for the ALFF analysis. Briefly, the resulting data
were transformed to the frequency domain, and the power spectrum
was acquired. The obtained power spectrum was square root trans-
formed and averaged across frequencies from 0.01 to 0.08 Hz. The aver-
aged square root was taken as the ALFF. To exclude the possibility that
brain activity (i.e., the ALFF) changes were attributed to the different
brain structures, voxel-wise-based gray matter volume correction was
performed (detailed information given in Supplementary material).

2.5. Gene and SNP selections

Although the pathway of peripheral insulin resistance is available in
the KEGG database (http://www.kegg.jp/), the insulin resistancewithin
the brain is our focus. Therefore, we chose genes based on previous
studies, and only the key components that have been demonstrated to
mediate insulin resistance in AD brains were included (i.e., INS, INSR,
IDE, IGF1, IGF1R, IRS1, IRS2, PIK3CA, PIK3CB, PIK3CD, PIK3CG, AKT1,
AKT2, AKT1S1, AKT3, GSK3B, MTOR, ERK, JNK and PDPK1). High-
throughput sequencing was carried out covering the 3′UTR, coding
exon and 5′UTR of the genes mentioned above, extending to the 25
bases from 3′ end and 25 bases from 5′ end by HiSeq Sequencer
(Illumina, Inc., San Diego, CA). In total, 374 SNPs of 20 genes were se-
quenced (details provided in Table S2). Moreover, rs7412 and
rs429358 were also sequenced to determine the APOE genotype,
which was introduced as a covariate.

2.6. Statistical analysis

2.6.1. Demographic and neuropsychological data
At both the baseline and follow-up, a composite Z score analysis for

each cognitive domain was performed, as previously described (Shu et
al., 2016; Xie et al., 2012). Briefly, the individual raw scores for each

http://www.kegg.jp/
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test were transformed to Z scores according to the means and standard
deviations across all the participants (for tests that were measured by
time, the reciprocal of the raw time was used in the subtractions), and
then the composite Z scores for each cognitive domain represented
themean values of the relevant tests (details given in Table S1). To com-
pare the demographic and neuropsychological data between HCs and
MCIs, two-sample t-tests and χ2 tests (only for gender and diabetes)
were utilized. The Z scores for each domain were used as phenotypes
in the next genetic association analyses.

2.6.2. Genetic association analyses to select candidate SNPs with cognitive
significance

Genetic association analyses were performed using the set-based
tests in PLINK v1.08 (http://pngu.mgh.harvard.edu/~purcell/plink/).
SNPs that passed the quality control according to the following criteria
were retained for the association analysis: call rate N 0.95, minor allele
frequency N 0.05 and P N 0.05 for Hardy-Weinberg disequilibrium
tests. Further, participants with a genotype call rates b0.9 were exclud-
ed from the set-based analysis (n = 13). SNPs within one gene were
generated as one set, and the analysis was performed as follows. First,
linear regression analysis for each single SNP was performed, and then
up to five independent (r2 b 0.5) SNPs with P b 0.05 were selected for
each set. Then, 1000 permutations were performed, and the empirical
p-value for each set (EMP) represented the number of times the per-
muted set-statistic exceeded the original one for that set. To exclude
the possibility that the cognitive differences were due to other factors,
the effects of age, gender, education, APOE ε4, group (i.e., MCI or HC)
and diabetes were introduced as covariates. It should be noted that
SNPswith cognitive relevancewere included in the subsequent imaging
genetic analyses.

2.6.3. Mass univariate modeling to select brain regions for network
construction

The analysis was performed in a similar procedure to that of previ-
ous investigations (Bai et al., 2016a; Bai et al., 2016b; Inkster et al.,
2010). For each SNP related to cognitive performance, genotype-disease
interactions were evaluated based on a general linear model. In detail, a
2 × 3 ANOVA for each selected SNP was performed using SPM8 (geno-
type status: 3-level covariates; disease: 2-level covariates, MCI and
HC). It should be noted that for SNPs with MAF b31%, rare homozygous
and heterozygous groups were merged into one group (i.e., 2 × 2
ANOVAs were performed). Moreover, the influences of age, gender, ed-
ucation,APOE ε4 and diabeteswere corrected. TheMonte Carlo stimula-
tions were applied for the imaging space corrections (voxel-wise
P b 0.05, cluster sizes larger than 6165 mm3, FWHM = 6 mm; http://
afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf). The regions
with ALFF differences that survived the Monte Carlo stimulations were
taken as regions of interest (ROIs) to construct the brain network.

2.6.4. Construction of network and explorations of the characteristics
(a) The ROIs mentioned above were defined as nodes of the net-

work, and the Fisher's Z-transformed Pearson's correlation coefficient
(CC) between every two ROIs represented theweighted edges between
the two nodes. During the CC calculations, the effects of motion param-
eters, cerebrospinal fluid and white matter were regressed. As 13 ROIs
were selected (details given in Results), a 13 × 13 matrix was obtained
for each participant. Thus, a network with 13 nodes and 78 undirected
edges was established for each participant.

(b) In addition to the undirected edges (ROI-to-ROI connectivity),
the topological characteristics for each nodewere calculated to better il-
lustrate the overall efficiency of the network. The degree Si described
the extent towhichnodei is relevant to the constructed network accord-
ing to the following formula:

Si ¼
X

j

Wij ð1Þ
where Wij represents the weighted edge connecting node i and node j,
which is the Fisher's Z-transformed CC value between brain region i
and brain region j.

(c) To explore the disease-related differences of the constructed net-
work, every undirected weighted edge and the topological characteris-
tics of each node were compared between the HCs and MCIs. Two-
sample t-tests were utilized, and P b 0.05 was considered statistically
significant.

(d) The multivariate linear regression analyses were utilized to ex-
plore whether the network connectivity was related to the longitudinal
declines for each cognitive domain, which were described as M scores.
Briefly, the longitudinal changes (follow-up raw values minus baseline
raw values) for each individual test were transformed to Z scores, and
the M scores represented the mean values of the relevant tests for
each domain. In order to exclude the possibility that the cognitive de-
clines were attributed to other factors, the effects of age, gender, educa-
tion, APOE and diabetes status were corrected. The analyses were
performed for MCIs and HCs respectively. P b 0.05 was considered sta-
tistically significant. For the ROI-to-ROI connectivity (i.e., edges), the
analyses were performed in HCs as follows:

Mi¼ β0þβ1�Edgesþ β2�Ageþ β3�Genderþ β4�Educationþ β5
� APOEε4þ β6 � Diabetes ð2Þ

We also investigated whether the topological characteristics of the
network influenced the cognitive changes using the same formula:

Mi¼ β0þβ1 � Siþβ2�Ageþ β3�Genderþ β4�Educationþ β5
� APOEε4þ β6 � Diabetes ð3Þ

Furthermore, as mentioned above, there were two subgroups of the
MCIs (i.e., c-MCIs and nc-MCIs). Thus, for the analyses of MCIs, the sub-
group status was also introduced as covariates to correct the effects of
subgroup-related differences. The formula was listed as follows:

Mi¼ β0þβ1
� Edges=Siþβ2�Ageþ β3�Genderþ β4�Educationþ β5
� APOEε4þ β6�Diabetesþ β7 � Subgroup ð4Þ

whereβ0 is the intercept of thefitting line, andβ1 is the effect of the net-
work connectivity (i.e., weighted edges and topological characteristics).
β2,β3,β4,β5,β6 andβ7 are the effects of age, gender, education,APOE ε4,
diabetes and subgroup (i.e., c-MCIs and nc-MCIs, only for the MCIs), re-
spectively, which are covariates of no interest.

3. Results

3.1. Demographic and cognitive data

No significant differences in the demographic data were detected
between the MCIs and HCs (all P N 0.05). At both baseline and follow-
up, the MCIs showed significant deficits in general cognition, episodic
memory, visuospatial function, information processing speed and exec-
utive function (all P b 0.001, as shown in Table 1 and detailed informa-
tion given in Table S1).

3.2. Interaction with brain insulin resistance and cognition

The genetic set-based analyses revealed that eight of the 20 candi-
date genes were associated with cognitive performances at the thresh-
old of EMP b 0.05. ATK2 (rs41275750, rs33933140) and AKT1
(rs3803304, rs2494735)were related to general cognition and informa-
tion processing speed, respectively. IGF1R (rs1815009) and PIK3CB
(rs2305268) influenced episodic memory. Further, associations were
detected between executive function and PIK3CD (rs72633865), IDE
(rs1887922), AKT1S1 (rs3810268) and MTOR (rs4845988, rs3737611,

http://pngu.mgh.harvard.edu/~purcell/plink/
http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf


Table 1
Demographic and neuropsychological data.

Baseline Follow-up

MCI (n = 80) HC (n = 127) P MCI (n = 50) HC (n = 60) P

Age (years) 69.53 ± 7.43 68.88 ± 6.67 0.085 71.14 ± 7.21 71.27 ± 5.86 0.93
Gender (M/F) 47/40 65/70 0.354 28/22 28/32 0.33
Education (years) 11.83 ± 3.18 12.28 ± 2.99 0.178 11.79 ± 3.18 12.66 ± 2.95 0.10
Diabetic (Y/N) 12/75 20/115 0.832 7/43 12/48 0.43
Composite Z scores of each cognitive domain
General cognition −0.62 ± 1.05 0.39 ± 0.52 b0.001 −0.48 ± 1.37 0.35 ± 0.16 b0.001
Episodic memory −0.75 ± 0.70 0.48 ± 0.50 b0.001 −0.73 ± 0.73 0.56 ± 0.46 b0.001
Visuospatial function −0.40 ± 1.12 0.26 ± 0.82 b0.001 −0.42 ± 1.32 0.32 ± 0.50 b0.001
Information processing speed −0.45 ± 0.75 0.29 ± 0.74 b0.001 −0.63 ± 0.92 0.33 ± 0.77 b0.001
Executive function −0.45 ± 0.81 0.29 ± 0.81 b0.001 −0.55 ± 0.96 0.31 ± 0.57 b0.001

Data was represented as mean ± SD. Details are shown in Table S1.
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rs17235612 and rs7524202) (13 SNPs in total, details given in Table 2).
Furthermore, it should be noted that none set influenced the disease
status (i.e., theHC orMCI; for all the 20 sets, P N 0.05 in logistic case/con-
trol analyses, data not shown).

3.3. Gene-based brain network construction

Of the 13 SNPs with cognitive significance, 9 SNPs were identified to
influence neuronal activity (ALFF), as revealed by the MCI-genotype in-
teractions, including rs1815009 (IGF1R), rs1887922 (IDE), rs2305268
(PIK3CB), rs3803304 (AKT1), rs72633865 (PI3KCD), rs17235612 and
rs4845988 (MTOR), rs33933140 and rs41275750 (AKT2). Furthermore,
the regions with ALFF differences that survived the minimum non-sta-
tionaryAlphaSim-correctionwerewidely detected in cerebellar-cortical
regions (13 regions in total and detailed information given in Table 3).

3.4. Characteristics and behavior significances of the network

After AlphaSim-correction, the 13 brain regions remained significant
for the imaging space, which were taken as ROIs to construct the brain
network, and a unidirectional weighted network with 13 nodes and
78 edges was obtained for each participant. The average connectivity
pattern for the HCs and MCIs is illustrated in Fig. 1A, and only the
edges with weights (CC values between two ROIs) larger than 0.3 are
shown.

3.4.1. Weights of edges in the network
As shown in Fig. 1B, of the 78 unidirectional edges, two edges with

significantly increased connectivity were detected in the MCIs com-
pared with the HCs, including the RMFG-to-BPCL (T = 2.04, P = 0.04)
and RSFG-to-LMFG/SFG (T = 2.41, P = 0.017) connectivities. The
MCIs also showed significantly decreased connectivity in the four
edges, including RpCbm-to-LMFG/SFG (T = −2.0, P = 0.047), RSFG-
to-RpCbm (T = −2.423, P = 0.016), RSTG-to-LSTG (T = −2.475,
P = 0.014) and RINS-to-LSTG (T = −2.27, P = 0.024) connectivities.
Table 2
Set-based analysis reveals the cognitive significances of SNPs related to the pathway of brain in

GENE NSNP NSIG ISIG EMP SN

AKT2 8 2 2 0.029 rs4
PIK3CB 1 1 1 0.003 rs2
IGF1R 23 6 1 0.02 rs1
PIK3CD 8 1 1 0.001 rs7
MTOR 47 30 4 0.002 rs4
IDE 7 1 1 0.026 rs1
AKT1S1 5 2 1 0.038 rs3
AKT1 15 6 2 0.01 rs3

NSNP: number of SNPs in set; NSIG: total number of SNPs below p-value 0.05 in the linear reg
terion; EMP, empirical set-based p-value; SNPs, list of single nucleotide polymorphisms.
However, no corrections were found with the cognitive changes and
edge weights in neither HCs nor MCIs (all P N 0.05).

3.4.2. Degrees of nodes in the network
There were not significant disease-related differences concerning

the S values of any of the 13 nodes between the HCs and MCIs (all
P N 0.05), while the topological characteristics showed behavior rele-
vance. As illustrated in Fig.2, for MCIs, the higher node degrees of the
LHip/PHG predicted less decline in episodic memory (β = 0.380, P =
0.007), information processing speed (β = 0.488, P = 0.001) and gen-
eral cognition (β=0.314, P=0.017). However, the oppose associations
were detected between the topological characteristics of LMFG/SFG and
changes of execution (β=−0.333, P=0.024). It should be noted that,
in addition to the S values of the network, the cognitive declines were
also attributed to other factors, including age, education and APOE geno-
type. Moreover, the subgroup-related differences (c-MCIs and nc-MCIs)
regarding the cognitive changes were also detected (detailed informa-
tion was provided in Table S3). No associations between the node de-
grees and cognitive changes were detected for the HCs.

4. Discussion

Using the genetic association analyses, we provided in vivo evidence
that the pathway of brain insulin resistance modifies cognitive perfor-
mance and further showed that the influences occurred in the absence
of diabetes. The functional MRI led to the identification of brain net-
works related to the pathway, which partially reveal the mechanisms
underlying cognitive injury related to brain insulin disorder. Compared
to the matched HCs, the MCIs showed regional deficits in connectivity,
while compensations may take place to maintain the overall efficiency
of the network. However, the node degreemay correspondwith disease
progression because it predicts cognitive changes over time, especially
thedegree ofmedial temporal lobe andprefrontal cortex. Thesefindings
are compatible with the key role of insulin signaling inmaintaining hip-
pocampal function underlying AD development, as shown in postmor-
tem analyses (Talbot et al., 2012).
sulin resistance.

Ps Cognition

1275750, rs33933140 General cognition
305268 Episodic memory
815009 Episodic memory
2633865 Execution
845988,rs3737611, rs17235612,rs7524202 Execution
887922 Execution
810268 Execution
803304, rs2494735 Information processing speed

ression analysis; ISIG: number of significant SNPs also passing linkage disequilibrium-cri-



Table 3
Brain regions extracted from the genotype-by-MCI interactions.

GENE SNP Allele Peak MNI Cluster size
(mm3)

Peak F
value

Brain
region

IGF1R rs1815009 CT −51 −57
48

7425 9.1 LIPL

IDE rs1887922 CT 42 33 39 6210 10.5 RMFG
PIK3CB rs2305268 CT 9 –60 −45 10,017 9.0 RcpCbm

−36 −12
−33

13,689 9.2 LHip/PHG

−12 −12
72

6750 7.1 BPCL

AKT1 rs3803304 CG 69 –36 27 6291 14.9 RSTG
21 51 18 6156 11.2 RSFG

rs2494735 TC NA
PI3KCD rs72633865 CG 18–100 0 8667 14.5 RIOG
MTOR rs17235612 CT 9 –48 −54 11,907 19.6 RcpCbm

69 –30 21 14,067 28.4 RINS
rs4845988 AG −57 −6

−18
15,417 21.4 LMTG

rs3737611 AG NA
rs7524202 TC NA

AKT1S1 rs3810268 CT NA
AKT2 rs33933140 AG −15 6 –30 8883 8.5 LSTG

rs41275750 CG −6 57 18 6237 9.6 LMFG/SFG

All of these regions survived the Monte Carlo correction. LIPL, left inferior parietal lobule;
R/LMFG, right/left middle frontal gyrus; RcpCbm, right cerebellum posterior lobe; LHip/
PHG, left Hippocampus/ParaHippocampal; BPCL, bilateral Paracentral Lobule; R/LSTG,
right/left superior temporal gyrus; R/LSFG, right/left superior frontal gyrus; RIOG, right in-
ferior occipital gyrus; RINS, right insula; LMTG, left middle temporal gyrus.
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4.1. The associationwith brain insulin resistance andAD-related intermedi-
ate phenotypes

IDE is a very promising gene that influences cognitive performance
because of its biological function and location near LOAD linkage
peaks, i.e., the chromosome 10q (Bertram et al., 2000). Various variants
of IDE have been analyzed for their associationswith AD risk in different
races (Bertram et al., 2007), and it has been debatedwhether IDE repre-
sents a potential AD susceptibility gene because inconsistent results
have been obtained (Bertram et al., 2007). However, it has been repli-
cated in several independent samples that rs1887922 exhibits interac-
tions with AD-related quantitative measures, including performances
of MMSE, loads of Aβ plaques and densities of neurofibrillary tangles
(Blomqvist et al., 2005; Prince et al., 2003). Our present result substan-
tiated the previous findings by firstly showing that the influences of
rs1887922 on cognition can also be detected in the Han nationality. In
particular, we further identified that the influences were mainly em-
bodied in executive domain. Thereby, this result might suggest that
brain regions that regulate execution are targets for IDE, such as the pre-
frontal cortex (PFC). Regarding the IGF1R, rs2229765 has gained atten-
tion as a likely AD candidate locus because of its associationwith plasma
levels of IGF-1 (Bonafe et al., 2003). Subsequent studies have suggested
this loci is related to the risk of vascular dementia (Garcia et al., 2006),
while negative results were obtained regarding the associations of
rs2229765 and AD risk in investigations performed in Caucasians
(Garcia et al., 2006). The current study, by using the intermediate phe-
notypes, reported that rs1815009 of IGF1Rmay have a role in determin-
ing AD severity, further supporting the important roles of IGF1R in AD
development.

In terms of the down-streammolecules, we also detected their asso-
ciations with cognition. Highly phosphorylated IRS-1 has been consis-
tently discovered in AD brains (Ma et al., 2009; Moloney et al., 2010;
Talbot et al., 2012), and such phosphorylation suppresses the ability of
IRS-1 to transmit signals to downstream molecules (Boura-Halfon and
Zick, 2009). Feedback inhibition primarily by AKT, MTOR, GSK-3 and
PKC and feedforward inhibition by JNK and IKK regulate the phosphor-
ylation process (Talbot and Wang, 2014), and the expression levels of
these molecules predict memory performances (Talbot et al., 2012), in-
dicating their key roles in AD. Our results are in accordance with the
idea that SNPs of the molecules that control the phosphorylation of
IRS-1 also determine the performances of multiple cognitive domains.
However, it must be noted that the genome-wide association studies
(GWAS) did not highlight the SNPs discussed presently in AD process
(i.e. except for rs2305268, rs72633865 and rs4845998, all the other
SNPs were included in the GWAS analysis, but none of them reached
the genome-wide significance) (Lambert et al., 2013). Furthermore,
our present case/control analyses also obtained negative associations
between MCI status and brain insulin genes (data not shown). Regard-
ing the inconsistence, we could assume that the effect size of each indi-
vidual SNP were too small, and the pathway-based quantitative trait
association studies may better reveal the interactions with AD and
brain insulin resistance. In addition, these results could imply that the
brain insulin disorder may not directly lead to the occurrence of AD,
but play a role in determining the AD severity (i.e., the cognitive impair-
ments). The validations of the functional activities of these loci should
be given great priority. Previous investigations have highlighted the bi-
ological significance of these SNPs. For instance, the genotype of AKT1 in
rs3803304 predicted longevity (Pawlikowska et al., 2009), and
rs33933140 of AKT2 was related to radiation pneumonitis in cancer pa-
tients who received radiation therapy (Tang et al., 2016). However, the
data on their functional activities in AD process are very limited. More-
over, none of the SNPs are missense mutations, meaning that they do
not result in amino acid changes of the relevant proteins. We might as-
sume that these SNPs function by modifying the expression levels of
correspondingmolecules, and this idea must be further verified. By tak-
ing advantages of functional MRI, we attempted to explore the topolog-
ical alterations of brain function associated with insulin resistance,
which helps to reveal gene-brain-behavior interactions.

4.2. The joint actions of the insulin resistance pathway on brain function

Peripheral insulin resistance has been suggested to influence AD-re-
lated MRI markers. For instance, the homeostasis model assessment of
insulin resistance 2, a measure used to quantify insulin resistance,
showed negative associations with volumes of the hippocampus
(Rasgon et al., 2011), the medial prefrontal cortex (mPFC) and medial
temporal regions (Morris et al., 2014). Moreover, positive relations
were detectedwith the peripheral levels of IGF-1 and total brain volume
(Westwood et al., 2014). Regarding the functional network, higher insu-
lin levels resulted in DMN disconnections for participants without
diabetes, especially the connectivity between mPFC and Hip/PHG
(Kenna et al., 2013). Further, deficits of the DMN could also be de-
tected in patients with T2D, and higher insulin resistance predicted
more serious injury of the DMN (Chen et al., 2014). Using genetic as-
sociation analyses, Silver et al. identified genetics variations linked to
insulin resistance that determined brain atrophy over time, includ-
ing HK2, PIK3R3, PIK3CG, ACACA and G6PC (Silver et al., 2012). Our
data extend our understanding as to how brain insulin resistance in-
fluences brain function.

Within the functional network based on the pathway of brain insulin
resistance, the MCIs showed disconnections mainly in the cerebellum-
frontal-temporal cortex, in which reduced response to insulin signaling
were found by molecular analyses (Moloney et al., 2010; Talbot et al.,
2012). These disturbances could represent one of the mechanisms un-
derlying cognitive impairment induced by insulin resistance. Addition-
ally, increased functional activities within the bilateral frontal-parietal
lobes were also found in MCIs. According to the scaffolding theory of
aging and cognition (Reuter-Lorenz and Park, 2014), aging is associated
with improved functional recruitments of the frontal-parietal brain to
compensate for the neural losses of other regions. Therefore, we as-
sumed the increased connectivity in MCIs corresponded to accelerated
compensation to maintain relatively intact cognition. Furthermore, it
may also suggest that the insulin function in frontal-parietal regions



Fig. 1. A. Insulin resistance pathway-based unidirectional weighted networks with 13 nodes and 78 edges for MCIs and HCs. The connectivity about the thresholds (r= 0.3) was shown.
The figurewas created using BrainNet Viewer (http://www.nitrc.org/projects/bnv/). B. Changed ROI-to-ROI connectivity between HCs andMCIs. *Indicates significant differences for MCI
compared with HC, P b 0.05.
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was relatively preserved compared to other regions, which also fits the
findings from the postmortem analyses (Moloney et al., 2010; Talbot et
al., 2012). More importantly, we found behavioral significance of the
functional network.Noneof the edge connectivitieswere related to cog-
nition, but the node degree of the LHip/PHG predicted longitudinal
changes of multiple cognitive domains. Higher node degrees
corresponded to better cognition that was sustained over time. The as-
sociations provided convincing evidence to support that the Hip/PHG
were targeted regions of insulin disorder and the pivotal role of Hip/
PHG in AD processes (Biessels and Reagan, 2015; Talbot et al., 2012). In-
versely, the node degrees of the LMFG/SFG were negatively related
to the changes in execution, which is in line with the key role of
the frontal lobes in controlling execution and is supportive of the
compensatory nature for the increased involvements of frontal
brains. The higher node degree identified a greater need for compen-
sation, suggesting more severe disease. As the disease progressed,
the abilities of the brain to provide effective compensation would
eventually diminish, at which time patients show severe cognitive
deficits (Rao et al., 2015).
4.3. Limitations to be declared

There were several methodological issues in this study. First, as the
pathway of brain insulin resistance has not been completely clarified,
some genes related to the disordermay have beenmissed. Further stud-
ies are needed to better reveal the pathway of brain insulin resistance.
Second, the absent evaluations of AD-related pathology could lead to
the heterogeneity of MCIs, meaning that some MCIs employed may
not meet the criteria of “MCI due to AD” (Dubois et al., 2010). Third,
the intervals between baseline and follow-up investigations appeared
to be long.We cannot better understand the trajectories of cognitive de-
clines for the participants. Especially for the c-MCIs, we did not know
that when they converted into AD, thus the duration of the MCI was
not considered in the analysis. Furthermore, we tried to control the in-
fluences of other demographic and genetic factors in the analysis, but
the age range of the participants was fairly wide. More importantly,
the ages of c-MCIs were significantly larger than the nc-MCIs (detailed
information regarding the demographic and neuropsychological data
was provided in Table S4). Last, owing to the relatively small number

http://www.nitrc.org/projects/bnv/


Fig. 2. The topological pattern and behavior significances. For MCIs, the node degree of LHip/PHG was positively related with the longitudinal changes of episodic memory, information
processing speed and general cognition. However, the oppose associations were detected between the node degree of LMFG/SFG and executive function.
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of participants, we did not perform multiple comparison corrections in
the gene-based analyses.We look forward to further studieswith larger
sample sizes and better experimental designs to verify our present
results.

To conclude, our results identified that neurobiological alterations
related to brain insulin resistance modify AD progress by influencing
the overall efficiency of brain functional networks, providing evidence
that supports that treating insulin resistance represents a promising
therapeutic target for alleviating cognitive declines associated with
T2D and AD.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.12.009.
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