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Simple Summary: Multiple myeloma (MM) is a cancer of plasma cells with a five-year survival rate
of 53%. MM is a heterogeneous disease with diverse clinical courses, consistent with the variable
efficacy of therapeutic strategies and the development of chemoresistance. We used bioinformatic
tools to better understand the molecular mechanisms that underlie failures in the standard treatment
of MM with RVD (revlimid, velcade, and dexamethasone). Using an RNA-seq dataset from the MMRF
CoMMpass study downloaded from the GDC portal, we identified modules positively correlated
to MM vital status. Hub genes from these modules were further grouped based on their biological
function and evaluated for association to patient survival.

Abstract: The molecular mechanisms underlying chemoresistance in some newly diagnosed multiple
myeloma (MM) patients receiving standard therapies (lenalidomide, bortezomib, and dexametha-
sone) are poorly understood. Identifying clinically relevant gene networks associated with death
due to MM may uncover novel mechanisms, drug targets, and prognostic biomarkers to improve
the treatment of the disease. This study used data from the MMRF CoMMpass RNA-seq dataset
(N = 270) for weighted gene co-expression network analysis (WGCNA), which identified 21 modules
of co-expressed genes. Genes differentially expressed in patients with poor outcomes were assessed
using two independent sample t-tests (dead and alive MM patients). The clinical performance of
biomarker candidates was evaluated using overall survival via a log-rank Kaplan–Meier and ROC
test. Four distinct modules (M10, M13, M15, and M20) were significantly correlated with MM vital
status and differentially expressed between the dead (poor outcomes) and the alive MM patients
within two years. The biological functions of modules positively correlated with death (M10, M13,
and M20) were G-protein coupled receptor protein, cell–cell adhesion, cell cycle regulation genes,
and cellular membrane fusion genes. In contrast, a negatively correlated module to MM mortality
(M15) was the regulation of B-cell activation and lymphocyte differentiation. MM biomarkers CTAG2,
MAGEA6, CCND2, NEK2, and E2F2 were co-expressed in positively correlated modules to MM vital
status, which was associated with MM’s lower overall survival.
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1. Introduction

Multiple myeloma (MM) is an incurable hematological malignancy with an unlimited
proliferation of abnormal plasma cells in the bone marrow (BM) and high levels of mon-
oclonal protein in the blood and urine [1]. MM slightly affects more males than females,
with an average age of diagnosis of 65 years. African Americans have the highest incidence,
while Native American/Pacific Islander and Asian persons have the lowest. The American
Cancer Society estimates that 34,920 new cases of MM will be diagnosed in [2] 2021, with
about 12,410 deaths. The advancement of novel chemotherapeutic agents and cell therapy
has greatly improved for MM patients, and the five-year relative survival rate after MM
diagnosis is 53% [1–3]. However, MM remains incurable mainly due to the development of
resistance and disease relapse [4,5]. Therefore, continued exploration of novel prognostic
biomarkers and therapeutic targets is crucial for MM patients.

Although the molecular mechanisms of MM pathogenesis are not well understood,
many biomarkers for MM progression have been described, including CTAG2, MAGEA6,
CCND2, NEK2, and E2F2, some of which could predict clinical prognosis and therapeutic
effectiveness [6]. Stem cell transplant is the only known potential cure for MM in young
patients with few comorbidities. Patients with MM diagnosis may be evaluated for either
autologous stem cell transplantation [7–9].

In general, FDA-approved treatments for MM have increased in the last two decades.
MM patients are now treated with triple-drug combinations to prevent the emergence of
resistant clones. RVD (lenalidomide/revlimid, bortezomib/velcade, and dexamethasone)
are now standard treatments for newly diagnosed MM patients who are either eligible for
the autologous stem cell transplant or not [2,4]. These medications increase the survival rate
of MM patients by targeting several mechanisms. For instance, dexamethasone induces
apoptosis of Plasma Cell Myeloma (PCM) and reduces mitochondrial transmembrane
potential. Lenalidomide has direct antiproliferative effects on plasma cells and activation
of the immune cells within the bone marrow microenvironment. In addition, the binding
of lenalidomide to cereblon (CRBN) triggers a change in CRBN targets initiating their
therapeutic activity [10]. Bortezomib inhibits the action of the 26S proteasome leading to the
inhibition of NF-KB activity and targeting protein homestasis, an important dependency in
normal and malignant plasma cells, and downregulation of adhesion molecule expression
on PCM cells [11]. Each class of agents has evolved as a second- or third-generation therapy
with refined potency and safety compared to their predecessors [12], extending the median
MM survival over 60 months from 24% to 54% [2].

Newer agents improve survival primarily by maintaining the stability of MM [13]. Im-
munotherapies include antibodies to CD38 and SLAMF7 and an antibody–drug conjugate
that targets BCMA. In addition, the FDA approved chimeric antigen receptor (CAR) T cells
for MM patients who have relapsed under conventional therapies. Nevertheless, the cure
for MM remains elusive.

In this study, patient sample RNA-seq data provided by the Multiple Myeloma Re-
search Foundation (MMRF) CoMMpass study (NCT01454297) was analyzed using WGCNA
and other methods including gene set enrichment, Kaplan–Meier (KM) survival analysis,
and ROC analysis to discover the relationships between clinical traits (vital status: “death”
or “alive”) and transcript abundance, thereby identifying hub genes associated with early
deaths due to MM (deaths within the first two years of diagnosis and treatment with
RVD).This study intended to identify the gene expression patterns associated with poor
survival. This study uses WGCNA to identify molecular signatures across transcriptomic
networks of MM patients treated with RVD, while simultaneously testing associations to
MM clinical traits used during the diagnosis and prognosis of the disease. Ultimately, this
study aims to shed more light on understanding the molecular underpinnings of MM.
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2. Materials and Methods
2.1. Data Curation and Normalization

Level 3 deidentified, RNA-seq fragments per kilobase per million mapped reads
(FPKM) data were obtained from The Cancer Genome Atlas (TCGA) MMRF CoMMpass
study, in which bone marrow samples were collected from newly diagnosed MM patients
with informed consent and IRB approval [14]. An overview of the clinical trait details
for the newly diagnosed MM patients, who were initially treated with RVD combination
therapy (Table S1) and expression data availability (n = 270), is provided in (Table 1). The
RNA-seq and clinical data were downloaded on or before 27 September 2019, and analyzed
using a bioinformatics pipeline (Figure 1).

Table 1. Distribution of reported clinical traits among MM patients who received RVD therapy (some
died within two years). After data normalization and outlier removal n = 270.

Clinical Traits Classification Number of Patients

Gender
Male 156/270

Female 114/270

Race
European American 184/270
African American 34/270

Others 52/270

Tumor stages

I 83/270
II 87/270
III 93/270

NA 7/270

MM vital status
Alive 212/270
Dead 58/270
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2.2. Detecting Low Counts, Batch Effect Correction, and Removal of Outliers

The sequencing, alignment, transcript counting, and FPKM for each patient was
performed using RNA-seq data as previously described [15,16]. MMRF CoMMpass
MM RNA-seq FPKM data from multiple research centers (baseline case samples) with
60,478 gene-wise short read-based quantifications were curated to address potential tech-
nical or site-based variance. Batch effect control, normalization, and quality assessment
tests were performed using a Tunable Approach for Median Polish of Ratio (TAMPOR):
https://github.com/edammer/TAMPOR, accessed on 7 April 2022 [17,18]. All samples
were processed together in the sample-gene transcript matrix to capture MM biological
variance and preserve it through normalization. TAMPOR maintained the integrity of
the data through robust batch effect correction by removing batch artifacts manifesting as
batch-wise variance, genes with ≥50% missing or zero values. After this, samples with
≥50% zero values, technical replicates, and cluster outliers (26) were removed.

2.3. Coding Clinical Metadata for Biological Network Analysis

The clinical traits dataset contains phenotypes for each sample. The non-numeric
variables were converted into numeric values. For instance, Gender (“1” = “Male”,
“2” = “Female”, “N.A.” = “Unknown”), Race (“1” = “European American”, “2” = “African
American”, “3 = “Others”), Ethnicity (“1” = “Hispanic or Latino”, “2” = “Not Hispanic or
not Latino”, “3” = “Others”), and MM vital status (“0” = “Alive”, “1” = “Dead”).

2.4. Gene Clustering and Network Analysis

WGCNA is an R package used to identify gene co-expression networks in the MMRF
CoMMpass study by robustly calculating the eigengene, bicor rho, and p-values for each
module and then correlating the first principal component of each module (module eigen-
genes) with clinical traits or phenotypes of interest. The WGCNA package (WGCNA_1.70-3)
was installed from the Comprehensive R Archive Network (CRAN), and all analyses were
carried out in R version 3.6, with some system calls to Python v2.7. To reduce RNA-seq data
dimensionality from thousands of genes (60,478 to 30,598 genes, n = 270 for RVD therapy-
receiving patients) to a few modules, WGCNA was used to assess gene co-expression
profiles across all MM samples.

A sample dissimilarity matrix (1-topology overlap) was constructed by WGCNA and
genes that have similar expression patterns were grouped within the sample cohort. The net-
work was constructed using the WGCNA blockwiseModules function [19], with parameters
as follows: WGCNA dynamic tree-cutting algorithm, CutreeHybrid, power = 7, deepsplit = 2,
minModuleSize = 180, mergeCutHeight = 0.15, TOMDenom = “mean”, corType = “bicor”, net-
workType = “signed”, pamStage = TRUE, pamRespectsDendro = TRUE, reassignThresh = 0.05,
verbose = 3, saveTOMs = FALSE, maxBlockSize larger than the number of genes being clustered
(30,598), and reassignThresh = 0.05. To limit the impact of high technical variation within
RNA-seq data representing differences in transcript abundances across samples, biweight
midcorrelation (bicor) was used instead of Pearson correlation to provide robust correlations
with less weight given to outliers [19]. The WGCNA R-script and outputs for this study
can be downloaded from: https://github.com/pog240/MMRF-WGCNA-ANALYSIS/
(accessed on 26 June 2021).

2.5. Gene Ontology (GO) Enrichment and Upstream Regulator Analysis

Gene Ontology Elite (GO Elite) (version 1.2.5) was used to perform gene set enrich-
ment analysis on the biologically significant modules (M10, M13, M15, and M20) to identify
overall module enrichment of biological functions, molecular processes, and cellular loca-
tions http://www.genmapp.org/go_elite/help_main.htm accessed on 7 April 2022. GO
enrichment analysis used the Ensembl database (Version 62) of pre-defined gene lists
organized by biological process, molecular function, and cellular component. Fisher’s
exact test, adjusted for false discovery, was used to determine overrepresentation or signifi-
cant overlap between WGCNA modules of interest members and pre-defined gene lists.

https://github.com/edammer/TAMPOR
https://github.com/pog240/MMRF-WGCNA-ANALYSIS/
http://www.genmapp.org/go_elite/help_main.htm
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The reference background list was the subset of 30,598 genes with symbols in the final
cleaned-up abundance matrix (22,456 symbols). Additionally, gene set enrichment analysis
(GSEA) was performed using the GSEA molecular signature C2 database (version 6.2) to
identify associations between network modules and curated lists of genes related to various
diseases, particularly cancer. The GSEA C3 database was also used to identify upstream
regulators among the genes of interest in each module [20].

2.6. Differential Gene Expression

Differential expression via two independent sample t-tests, with equal variance, was
conducted to identify gene candidates within significant modules (upregulated and down-
regulated modules) correlated with MM vital status (poor outcomes). An independent
t-test was used to compare differential gene expression among patients who died (n = 58)
versus those who survived within two years (n = 212) on RVD treatments. Data for bone
marrow samples from patients who missed treatment or lacked vital status information
were excluded from differential expression analysis. False discovery rate (FDR) adjustment
was performed using the Benjamini–Hochberg method, with the threshold set at FDR <0.01
for the comparison. A total of 22,515 genes were visualized using the EnhancedVolcano R
package and used for further analysis.

2.7. Protein-Protein Interaction within Modules of Interest

To determine known and predicted Protein–Protein Interaction (PPI) of significant DEGs
in our modules of interest (M10, M13, M15, and M20), a Protein–Protein Interaction functional
clustering enrichment analysis was performed using genes with a log fold change of 1.9 and
above. This analysis was performed using the String database (version 11.0 https://string-
db.org/ (accessed on 5 January 2022) Genes clustered based on their biological function
(k-means) were further analyzed using Enrichr, a web tool, to visualize their collective
functions. This PPI enhanced insight into the biological functions of genes in the modules
of interest [21].

2.8. Geneset Enrichment Analysis

Enrichr, a comprehensive gene set enrichment server: https://maayanlab.cloud/
Enrichr/ (accessed on 7 January 2022) was used to visualize clustergrams and to understand
the overall biological knowledge for further biological discovery on the gene symbol list
within modules of interest [22].

2.9. ROC Analyses

A Receiver Operator Curve (ROC) analysis was performed using the top over-expressed
genes in modules positively correlated with MM vital status to determine if the differen-
tially expressed genes could serve as predictive indicators of MM vital status (M10, M13,
and M20). An EasyROC web tool on the default non-parametric test setting was used to
perform ROC.

2.10. Survival Analyses

The prognostic value of MM patients treated with RVD for two years (n = 270) was
evaluated using a KM plotter (www.kmplot.com (accessed on 10 January 2022)). MM
expression data and their survival information for the samples were uploaded onto
the KM plotter web-based tool. To analyze OS of MM patients, patient’s samples were
split into two groups by median expression (high versus low expression) and assessed
by a Kaplan–Meier survival plot, with the hazard ratio (HR) with 95% confidence
intervals (CIs) and a log-rank (Mantel–Cox) test was used to determine p-values for both
sets of KM analyses.

https://string-db.org/
https://string-db.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
www.kmplot.com
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3. Results
3.1. Transcriptomic Analysis Defines a Network of MM Co-Expression Modules

The transcriptome comprising 30,598 genes across 270 MM case samples was exam-
ined for co-expression modules of gene transcripts and the network biology of MM poor
outcomes was assessed. The distribution of reported clinical traits among MM patients
and their therapy distribution is depicted in (Table S1), respectively. These clinical traits
were obtained from the MMRF CoMMpass dataset. WGCNA identified twenty-one mod-
ule eigengenes (MEs), numbered by their rank from the largest number of genes to the
smallest, M1 to M21 (Figure 2; Table 2), expression correlation metric was determined by
their relatedness and plotted as a dendrogram (Figure 3, upper panel). The relatedness
dendrogram shows that M16 is closely related to M4. M20 is closely related to M17, M10,
M7, and M13. M18 and M21 are separated but are closely related to M11, M9, and M6. Out
of these modules, M10, M13 and M20 are positively associated with poor survival, while
M15 is negatively associated with poor survival.
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Figure 2. Clustering dendrogram of all expressed genes based on consensus topological overlap
with the corresponding module colors and associated clinical traits. The top panel represents the
gene dendrogram obtained by clustering the dissimilarity based on consensus topological overlap
with the corresponding module colors indicated by the color row. Each colored row (module colors)
represents a color-coded module containing a group of highly connected genes. Four biologically
significant modules were identified from the 21 modules output from WGCNA. The relationship
between each relevant clinical trait was assessed for each color-coded module. Bypassing the default
Pearson’s correlation method in WGCNA, we applied biweight midcorrelation as a robust alternative
implemented in its WGCNA function (bicor).

Table 2. Gene networks and their number of genes. The networks are displayed from the largest to
small size of genes.

Table of Modules

Module Name Module Number Number of Cluster Gene per Module

turquoise M1 1861

blue M2 1295
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Table 2. Cont.

Table of Modules

Module Name Module Number Number of Cluster Gene per Module

brown M3 1274

yellow M4 1246

green M5 1216

red M6 1037

black M7 938

pink M8 931

magenta M9 840

purple M10 690

greenyellow M11 659

tan M12 635

salmon M13 568

cyan M14 560

midnightblue M15 534

lightcyan M16 531

grey60 M17 528

lightgreen M18 494

lightyellow M19 435

royalblue M20 307

darkred M21 216
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eigengenes obtained by WGCNA on the consensus correlation. The lower panel shows the
heatmap of module–trait relationships. Each row in the heatmap corresponds to a specific clinical
trait and each column to a module. The module colors are shown at the bottom of each column.
The boxes shaded orange are intended to highlight module–trait correlations with a significant
p-value of < 0.05. Boxes shaded blue and orange denote negative and positive correlations to MM’s
vital status, respectively. While the boxes are shaded, white depicts no correlation. Module–trait bicor
color scale: blue = negative correlation white = no correlation and red = positive correlation indicates
modules with a significant Student t-test p-value that cluster together.

3.2. Identification of Transcript Significant Modules Associated with Mortality and
Functional Annotation

The association of Module Eigengenes (MEs) to MM vital status was assessed by
correlation. This helps determine which modules are candidates for molecular causality
of the trait of interest in MM patients treated with RVD for two years (Table 1). A total
of 21 modules and corresponding module eigengenes were constructed to determine the
module networks of interest associated with vital status. The robust correlation of the
21 modules to vital status helped determine the transcriptome networks of interest. The
red color represents positive gene expression, while the blue color represents negative gene
expression (Figure 2 heatmap). These analyses identified positive correlations with vital
status in the M20 (r = 0.150, p = 0.0039) with 307 genes, the M13 (r = 0.18, p = 0.00043) with
568 genes, and the M10 (r = 0.18, p = 0.001) with 690 genes, but a negative correlation with
vital status for the M15 (r = −0.15, p = 0.0095) with 534 genes. Additionally, we performed
a t-test to compare the expression of MM patients who died and those alive for two years
on RVD treatments (Figure 4).
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and purple modules are positively correlated with vital status of MM patients on standard RVD
therapy. However, the midnight blue module is negatively correlated with MM vital status. The
small circles in the figure depict the outliers in the data.

3.3. Modules Differentiating between Alive and Dead Patients Represent Known Biological
Groundworks of MM

We hypothesized that modules with positive clinical correlations would have high
gene expression based on the vital status trait correlation. In contrast, the negatively
correlated modules would have low expression in MM patients who died while on RVD
treatment. t-test analysis was used to test this hypothesis. A Tukey post hoc test confirms
elevated expression of modules (M10, M13, M20) and lower expression (M15), which
were viewed via Volcano plots (Figure 5). A total of 121 genes were downregulated,
and 676 genes were upregulated when we compared the dead and alive MM patients.
DEGs from positively correlated significant modules with the highest log2 fold change
values were selected as genes of interest, and these genes were in the royal blue module
(Table S2). The biological functions associated with upregulated genes in the royal blue
module are skeletal system morphogenesis [23], G protein-coupled receptor (GPCR) protein
signaling pathways [24], multicellular organismal development, synaptic transmission [25],
and cell–cell adhesion [26]. We observed that some of the top differentially expressed
genes are known MM biomarkers: CTAG2, MAGEA6, MAGEA1, and SSX1, whereas some
genes within the M20 module were differentially expressed, but not well known in the
context of MM biology (SOHLH1, GABRA3, GABRB2, HTR2C, and GLDC). We also noted
the top differentially expressed genes in each vital status-associated module based on
(−log10 (p-value) = 2 and Diff log2 = 1) (Figure 5): NTKR1, MUC1, C1orf226, DCDC1,
TGFB2, CRISPLD1, CD109 and NCALD (M10). CBX2, LINC00484, KIF7 and TMSB158 (M13).
CTAG2, MAGEA6, GABRB2, SOHLH1, AFAP1-AS1, MAGEA1, CASC9, HTR2C, GLDC and
GABRA3 (M20).
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Figure 5. Volcano plots of differential gene expression identify gene transcripts that contain upregu-
lated genes, panel (A), downregulated genes, panel (B), and both upregulated and downregulated
genes, panel (C), based on MM vital status for biologically significant modules. The number of down-
regulated genestranscripts is denoted on the left and the number of upregulated gene transcripts
is denoted on the right. The total number of upregulated genes is 676, while the total number of
downregulated genes is 121. The log2 fold change is plotted on the X-axis, and the negative log10
p-value is plotted on the y-axis. Gene transcripts are colored by module membership.
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To understand how the genes in M20 are biologically connected in terms of their func-
tion, we used the String database. Using the K-means clustering algorithm, differentiated
genes in M20 were clustered into two groups (aqua and red nodes) (Figure 6). Genes
denoted with aqua nodes mostly form the MAGE (Melanoma Antigen Gene) family of genes.
On the other hand, the gene cluster denoted with red nodes is mostly Gamma-aminobutyric
acid receptor genes, which are ligand-gated chloride channels activated by major inhibitory
neurotransmitters in the mammalian brain. GABA genes interact with other genes in the
M20, such as TENM1. MAGE also interacts with HTR2C, a G-protein coupled receptor
and Serotonin receptor. Additionally, MAGE interacts with SOHLH1, a male and female
germline differentiation transcription regulator. (Figure 6).
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3.4. Gene Set Enrichment, ROC Curve, and Kaplan–Meier Analyses

To summarize our differentially expressed genes’ biological function and enable
further downstream analysis between the blue and the red gene sets cluster from the
string database, we used Enrichr. Enrichr can assign the genes their GO terms, which
it retrieves from more than 192 gene set libraries (https://maayanlab.cloud/Enrichr/
(accessed on 15 January 2022)). The tool mapped most of our significant differentially
expressed genes (GABRB2, SOHLH1, MAGEA1, GABRA3, HTR2C, GABRG1, and GABRG2)
to mobilized CD34 primary cells with a p-value of 0.02 and odds ratio of 3.5 (Table S3).
CD34 is expressed on hematopoietic stem cells and non-hematopoietic cells (mesenchymal
stem cells, endothelial cells, etc.) [27–30]. It has been shown previously that CD34 (+)
cells frequently underwent cellular division and formed rapid colonies [31] Next, we
hypothesized that genes associated with CD34 (hematopoietic stem cell) mobilization could
be used to predict poor outcomes in MM (Figure S1).

To identify specific genes associated with poor outcomes in MM, we conducted
Receiver Operating Characteristic (ROC) analysis. Among our gene list, NTRK1 (0.71),
GABRB2 (0.67), SOHLH1 (0.65), GABRA3 (0.64), DCDC1 (0.64), MAGEA1 (0.63),
and HTR2C (0.63) have the highest AUC scores of predicting poor outcomes in MM
(Table 3). At the same time, GABRG1 (0.57) and GABRG2 (0.60) have the lowest AUC
scores for predicting poor outcomes in MM. To improve the predictive ability of AUC,
we combined the AUCs of the highest predictive scores, and there were no significant
differences. The ROC result from the MMRF dataset shows that our genes of interest from
the royalblue module are not promising MM biomarkers due to their low AUC values, but
they have significant p-values. To validate this result, we downloaded a microarray dataset

https://maayanlab.cloud/Enrichr/
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of 602 individuals with MM disease from the Gene Expression Omnibus (GEO) database
(GSE83503) [32]. The dataset was log2 transformed before the ROC analysis and processed
similarly as the MMRF dataset. The AUC scores from GEO dataset aligned with that of the
MMRF CoMMpass database (Table S6A,B).

Table 3. ROC AUC scores and p-values for the top 10 genes based on their log fold change values.

Module Name Gene AUC z p-Value

Royalblue

CTAG2 0.64854 3.5529 3.8 × 10−4

MAGEA6 0.63382 3.0658 2.17 × 10−3

GABRB2 0.66859 4.19179 3.00 × 10−5

SOHLH1 0.64846 3.47324 5.4 × 10−4

AFAP1_AS1 0.62386 3.05481 2.30 × 10−3

MAGEA1 0.62911 3.14134 1.68 × 10−3

CASC9 0.61675 2.63932 8.31 × 10−3

HTR2C 0.6261 2.87452 4.05 × 10−3

GLDC 0.63476 3.31424 9.2 × 10−4

GABRA3 0.63484 3.15689 2.60 × 10−3

The input genes had AUC scores above 0.6. GABRB2 (0.669), CTAG2 (0.649), SOHLH1 (0.648), GLDC (0.635) and
GABRA3 (0.635) have the highest AUC scores.

To determine the effect of differentially expressed hub genes on MM overall survival
outcomes, we performed a log-rank Kaplan–Meier (KM) analysis using a KM plotter (Figure 7).
Hub genes were selected for this analysis as they would make good therapeutic candidates
due to their ability to regulate multiple gene expressions. Differentially expressed hub genes
(p-value < 0.05, kME > 0.7, Log Fold Change (LFC) ≥ 0.5) from the modules positively
correlated with MM vital status (M10, M13 and M20) were evaluated (Table S4, Figure S2).
KM analysis showed significant difference in the OS of patients with low vs. high expression
of our genes of interest. However, M10 did not satisfy the cutoff points. Additionally, a KM
plotter was used to calculate the Pearson correlation between the genes in M20 and M13,
respectively. MAGEA6 and GABRA3 in M20 have a positive linear correlation of 90%, while
KIF14 and CENPF in M13 have a positive linear correlation of 94% (Table S5A,B).
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and HTR2C) were analyzed using KMplotter. The patient samples were split based on the median
expression. The red lines denote samples with high gene expression, and the black lines refers to
samples with low expression. Hazard ratios (HR) are reported for low expression of the genes.

4. Discussion

MM is a heterogeneous hematological malignancy, so it is crucial to explore the molecu-
lar mechanisms to better understand the disease. The complexity of molecular mechanisms
of cancer can be deciphered using a network biology approach [33]. A network biology
approach was applied in our study to identify gene transcript co-expression networks
driven by MM gene expressions and correlate them to our clinical outcome of interest (vital
status). The modules that are highly correlated with the clinical traits have both known
and novel mechanisms of MM.

WGCNA, a novel transcriptomic analysis tool, was used to identify transcript expres-
sion signatures among MM patient samples derived from a RNAseq dataset. Co-expression
networks are calculated without supervision and display clusters of genes controlled by
the same transcription factors, have the same function, and therefore are co-regulated.
Genes of the same signaling pathway can enrich module members [34]. WGCNA identified
twenty-one modules, and their expression was correlated with our clinical trait of interest
(MM vital status).

Out of the 21 modules, four modules were correlated with MM vital status. Three had
positive correlations (M10, M13, and M20), and one demonstrated negative correlations
(M15). We selected hub genes from the positive correlated modules based on a combined
cutoff point (p-value < 0.05, kME ≥ 0.7 and LFC ≥ 0.5). Genes in M10 did not satisfy
the specified criteria (p-value < 0.05, kME ≥ 0.7 and LFC ≥ 0.5) to be nominated as hub
genes of interest. Therefore, genes from this module were not considered as part of the
predictive analysis. The remaining two modules (M13 and M20) provide insights on the
molecular signatures of MM vital status (mortality): cell proliferation, GCPR, and cell–cell
adhesion. M13 contained genes involved with cell cycle regulation (proliferation genes),
and M20 modules included genes involved in inhibitory synaptic transmission and MAGE.
Previously, it has been shown that MM patients with high expression of cell cycle regulatory
genes (proliferation genes) is associated with a central, independent prognostic factor) [35]
and melanoma-associated antigen genes [36] have lower overall survival by mediating
myeloma cell survival and drug resistance. In this study, we observed higher expression of
cell cycle regulator genes (proliferation genes) (M13) in patients who experienced death,
consistent with the poor clinical outcomes reported in the study mentioned above. Our
study agrees with previous findings that detailed MM with higher expression of cell cycle
regulation genes may be associated with poor outcomes [37]. The M13 and M20 modules
contain both hub genes (kME ≥ 0.7) and differentially significant genes (p < 0.05 and fold
change > 1.5) of MM (NEK2, KIF14, CENPF, GABRA3, RRM2, MAGEA6, MAGEA1, HTR2C,
and CTAG2) that can be strongly associated with lower overall survival in newly diagnosed
MM on RVD treatments.

In this study, we performed K-means clustering on the highly differentially expressed
genes from the M20 module into two groups; C1 comprises mainly the MAGE genes, while
C2 comprises mostly inhibitory neurotransmitter receptors. Enrichr mapped most of the
genes in C1 and C2 to CD34 (+) cells that is primarily known for being a surface marker for
hematopoietic stem cells (HSCs) and progenitor cells. Additionally, CD34+ is also expressed
in some cancer stem cells [29]. Although, the MM stem cells remain a point of controversy.
Our data suggest that CD34 expression by MM cases correlates with poor survival.

Pearson correlation between the genes in M20 shows that MAGEA6 and GABRA3 have
a positive linear correlation of 90%. MAGEA6 is a known targeted anti-cancer therapy for
MM and has predicted poor outcomes [38]. GABRA3, on the other hand, is a novel gene
that does not support the known biology of MM. Therefore, additional functional studies
of these genes (MAGEA6 and GABRA3) are needed to confirm whether they can serve as
druggable targets to reverse poor outcomes in MM.
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Gamma-aminobutyric acid (GABA) receptors, including GABA type A receptor al-
pha3 subunit (GABRA3), are GPCRs and major signal transducers in the vertebrate brain.
GABRA3 may be located on the membrane of MM cells [39]. GABA is produced by immune
cells such as CD4+, CD8+ T cells, macrophages, and dendritic cells [40]. GABRA3 induces
calcium flux via membrane depolarization [41]. GABRA3 increases intracellular calcium
signaling following GABA interactions with GABRA3 [42]. Increased intracellular calcium
activates cyclic AMP and MAPK (ERK1/2), leading to the eventual phosphorylation of
the cAMP-responsive element-binding protein (CREB) [43]. The activation of CREB and
NF-kB has been shown to initiate the cell growth, proliferation, survival, and progression of
solid and hematogenous cancers. Ling Yan and colleagues showed that overexpression of
GABRA2, GABRA3, GABRB3, GABRG2, GABRG3, GABRD, and GABRE might be diagnostic
for colon adenocarcinoma [44]. Functional studies to elucidate the role of GABRA3 in the
GABA receptor complex in association with poor prognosis will further provide insight
into the mechanisms involved.

Interestingly, GABA levels in cancer patients are altered due to pain management
medication gabapentin, which increases GABA synthesis [45]. Gabapentin may have
been prescribed to the MM patients of the CoMMpass study, with neuropathy caused
by chemotherapies such as bortezomib [46]. Hence, we cannot exclude the possibility
that GABA-modulating treatments may be upstream modulators of not only GABRA3 but
also the other functional GABA channel members co-expressed in MM patients. However,
importantly, GABA-mediated signaling in the modulation of the immune system is well
established [47], with unexplored roles in plasma (B) cell function [47]. Moreover, bioelectric
conductance of drug-modifiable ion channels regulating cellular organization, including
that of GABA receptors, is an emerging theme in developmental, cancer, and aging biology,
with the potential to treat developmental defects, to address limited regenerative capacity,
and importantly, to modify distorted signaling in cancers like MM.

Other genes from the M20 module are MAGEA1 (which encodes melanoma-associated
antigens), also from M20, are known MM signature genes [48] that have been previously
shown to promote the survival of clonogenic precursors’ survival MM cells by reducing
the rate of spontaneous and chemotherapy-induced apoptosis. Therefore, these genes
may represent attractive targets for novel myeloma-specific therapies [6]. CTAG2 (encodes
cancer-testis antigen 2) and MAGEA1 were shown to be expressed consistently in myeloid
and round-cell liposarcomas [48]; hence, these genes are used as immunotherapy targets in
the treatment of these cancers. The two remaining M20 hub genes, SOHLH1, a transcription
factor involved in spermatogenesis and folliculogenesis [49], and AFAP1-AS1, have also
been demonstrated to promote triple-negative breast cancer cell proliferation and inva-
sion [50]. Of note, there is the simultaneous expression of T-cell antigens on the myeloma
cells from some groups of patients with MM. These T-cell antigens expressed are CD4, CD3,
and CD2 [51]. However, the CD3E in the M20 module could be as a result of impurity that
was not removed.

The M13 module’s top differentially expressed genes are mostly cell cycle regulator
genes: CBX2, LINC00484, KIF7, and TMSB15. To identify genes that are differentially
expressed and are hub genes, for more inclusion of genes from other positively corre-
lated modules, we set another criterion for p-value (<0.05) and kME (>0.7; CENPF, KIF14,
RRM2, and NEK2) from the M13 module which became the top differentially expressed
genes as previously described. These genes are mostly cell cycle regulators and are as-
sociated with lower overall survival in MM patients. A recent study showed that NEK2
is a serine/threonine kinase whose expression is correlated with drug resistance in MM
patients [52]. However, the M10 module did not meet our criteria set for differentially
expressed genes.

The M15 module is negatively correlated with MM vital status whose module members
improved MM overall survival (XXYLT1-AS2, LINC00996, KCNMB2, MIR320D1, and
CHST3). Interestingly, a previous study showed overexpression of the XXYLT1-AS2 gene
exerted a protective role against inflammatory response by blocking NF-κB activity [53]. The



Cancers 2022, 14, 2228 14 of 17

XXYLT1-AS2 gene inhibited cell proliferation and migration, reduced adhesion molecule
expression (VCAM-1), and restrained the adhesion of monocytes to endothelial cells [53].
NF-κB activity, cell to cell adhesion, and proliferation genes cause poor outcomes or lower
overall survival in MM. Blocking these activities could serve as a protective mechanism
and therapeutic target for promoting MM overall survival.

This study has its limitations. Firstly, it would be more reliable to validate the sig-
nificance of prognostic model in real world clinical MM cohorts. Secondly, the biological
functions and the underlying molecular mechanism of key hub genes in MM still need to
be explored in future in vitro and in vivo studies.

5. Conclusions

This study utilized WGCNA to identify both known and unknown molecular sig-
natures in newly diagnosed MM patients. The molecular mechanisms responsible for
poor outcomes in MM have not been thoroughly characterized. Our study identified three
networks associated with MM vital status (poor outcomes). The modules represent known
and novel genes associated with MM poor outcomes and can be a resource for the MM
research community. The hub genes of these modules, for example CTAG2, MAGEA6,
MAGEA1, GABRA3, HTR2C, NEK2, KIF14, CENPF, and RRM2 could be explored further as
new therapeutic targets or predictive clinical markers of MM outcomes.
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