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In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between
the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading
frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from
severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regu-
lates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar func-
tions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the
endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers
through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the
measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective
channel for monovalent cations, although Li+ partially reduced the inward current. Furthermore, viral production
decreasedwhen the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence
indicates that theHCoV-229EORF4a protein is functionally analogous to the SARS-CoV 3a protein,which also acts as
a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins—
Channels for Cellular Networking.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Coronaviruses (CoVs) are positive-stranded, enveloped RNA viruses
belonging to the family Coronaviridae, orderNidovirales. CoVs arewidely
distributed among vertebrates and cause respiratory, enteric or neuro-
logic disease [1]. Historically, only five human CoVs (HCoVs) were
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recognized, including HCoV-229E [2], HCoV-OC43 [3], SARS-CoV [4–6],
HCoV-NL63 [7] and HCoV-HKU1 [8]. However, a novel human CoV
was recently isolated froma patient in Saudi Arabiawith acute pneumo-
nia and renal failure andwas proposed to be a novel species in the genus
Betacoronavirus [9,10].

The HCoV genome is 27–32 Kb in size and consists of a set of
canonical genes: 5′-capped–replicase–spike (S)–envelop (E)–membrane
(M)–nucleocapsid (N)–3′-polyadenylated [1]. In addition, some species-
specific accessory open reading frames (ORFs) are interspersed among
the structural genes. A locus located between S and E is conserved in all
CoV genomes [11], and its encoding protein has been studied in several
different CoVs. Studies have shown that the SARS-CoV 3a protein has
ion channel activity [12], regulates virus production [13] and induces
host cell apoptosis [14]. In HCoV-NL63, the ORF3 protein was shown to
beN-glycosylated and to function as a structural viral protein [15]. Similar
to HCoVs, porcine epidemic diarrhea virus (PEDV) and transmissible
gastroenteritis virus (TGEV) ORF3 proteins were shown to be involved
in viral pathogenicity [16–18]. These results suggest the importance of
this accessory protein for the life cycle of CoVs. HCoV-229E encodes
ORF4a, a truncated accessory protein at this locus, but its function is
still unknown.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.bbamem.2013.07.025&domain=pdf
http://dx.doi.org/10.1016/j.bbamem.2013.07.025
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In this study, we investigated the expression, molecular properties
and functions of the HCoV-229E ORF4a protein and found that it may
be a new viroporin. The ORF4a protein formed disulfide-linked homo-
oligomers and was predicted to possess three transmembrane domains
(TMDs), which indicate that ORF4a could function as an ion channel.
The putative ion channel activity of ORF4a was proven in Xenopus
oocytes and yeast by the two-electrode voltage clamp (TEVC) and the
yeast potassium uptake complementation assay, respectively. Further-
more, the production of HCoV-229E was reduced in infected human
hepatocellular carcinoma (Huh-7) cells when ORF4a expression was
blocked by siRNA. In conclusion, our study supports that the HCoV-
229E protein may function as a viroporin to regulate virus production.
This findingwill be helpful for understanding HCoV-229E pathogenesis,
and it suggests a novel target for developing drugs against HCoV-229E.
2. Materials and methods

2.1. Cell culture, transfection and virus infection

HEK293T and Huh-7 cells were cultured in Dulbecco's modified
Eagle's medium (DMEM; Thermo Fisher Scientific, Beijing, China)
supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island,
NY, USA), penicillin (100 U/ml) and streptomycin (100 μg/ml) at 37 °C
in a humidified atmosphere with 5% CO2. 293T and Huh-7 cells were
transfected with plasmids using Lipofectamine 2000 reagent (Invitrogen,
Grand Island, NY, USA), following the manufacturer's instructions. Huh-7
cells were inoculated with HCoV-229E (VR-740) (ATCC, Manassas, VA,
USA) at amultiplicity of infection (MOI) of 0.1 for 1 h inmediumwithout
serum. Cellswere thenwashedwith phosphate-buffered saline (PBS) and
cultured with DMEM supplemented with 2% FBS at 37 °C for 2–5 d.
2.2. Plasmids

Total RNA from the HCoV-229E infected cells were extracted using
Trizol reagent (Invitrogen, Carlsbad, CA, USA) following manufacturer's
instruction. cDNA was synthesized by the ReverTra Ace qPCR RT kit
(Toyobo, Osaka, Japan). The ORF4a coding sequence with HA or
Flag tag at the C-terminus was cloned into the pCAGGS vector (a
kind gift from Jun-ichi Miyazaki, Osaka University) for expression.
The HCoV-229E ORF4a-HA sequence was subcloned into the pNWP
vector (a kind gift from Jian Fei, Shanghai Institute of Biological Science)
for cRNA in vitro transcription. The ORF4a-HA sequence was also
subcloned into a yeast expression vector pYES2 (a kind gift from Wei
Song, Shanghai Institute of Biological Science) for the yeast potassium
uptake complementation assay. The pYES2 vector contains a URA3
gene as a selectable marker for positive transformants in ura-negative
hosts. The exogenous gene is controlled by the GAL1 promoter, and its
expression was induced in the presence of galactose. All plasmids
were verified by direct sequencing.
2.3. Antibodies

The polyclonal antibody anti-ORF4awas obtained from theAntibody
Research Center (Shanghai Institute of Biochemistry and Cellular Biolo-
gy, Chinese Academy of Sciences). The anti-HA monoclonal antibody
(MMS-101P) was purchased from Covance (Berkeley, CA, USA), and the
anti-Flag monoclonal antibody (F3165) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Anti-HA (H6908) and anti-Flag (F7425)
polyclonal antibodies were both purchased from Sigma-Aldrich (St.
Louis, MO, USA). For immunofluorescence analysis, the ERGIC53 an-
tibody (B-9), a murine monoclonal antibody against the endoplasmic
reticulum/Golgi intermediate compartment (ERGIC), was utilized (Santa
Cruz Biotechnology, Santa Cruz, CA, USA).
2.4. Immunoprecipitation and Western blot

For immunoprecipitation, transfected 293T cells were lysed in
RIPA buffer with protease inhibitor. Cell lysates were centrifuged at
15,000 ×g for 20 min at 4 °C, and the supernatant was incubated
with EZview Red anti-Flag M2 affinity gel (F2426, Sigma-Aldrich,
St. Louis, MO, USA) at 4 °C overnight. The gels were then washed 5
times with RIPA buffer and lysed in SDS loading buffer for further
analysis. The lysates were separated by 12% SDS-PAGE and transferred
to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The immu-
noblot analysis was performed as described previously [12].

2.5. Immunofluorescence and confocal microscopy

Huh-7 cells were transiently transfected with the ORF4a-HA expres-
sion plasmid on pretreated glass slides in 24-well plate. Twenty-four
hours after transfection, cells were washed with PBS, fixed with 4% para-
formaldehyde (PFA) and then permeabilizedwith 0.3% Triton X-100. The
cells were blocked and immunolabeled with polyclonal anti-HA and
monoclonal anti-ERGIC53 antibodies, followed by a Cy3-conjugated
goat anti-rabbit antibody (111-165-045, Jackson, West Grove, PA, USA)
and an Alexa Fluor 488-conjugated goat anti-mouse antibody (A11029,
Molecular Probes, Invitrogen, Carlsbad, CA, USA). Localization of the
ORF4a protein was examined using a TCS SP2 confocal microscope
(Leica Microsystems, Wetzlar, Germany).

2.6. Electrophysiological measurements

HCoV-229E ORF4a-HA cRNA was synthesized from the pNWP-
ORF4a-HA vector using the mMESSAGE mMACHINE high-yield capped
RNA transcription SP6 kit (Ambion, Austin, TX, USA). For current record-
ing, Xenopus laevis oocytes were obtained and maintained as described
previously [12]. Healthy oocytes in stage V to VI were injected with
20–25 ng of cRNA. Injected oocytes were incubated at 18 °C in an
ND-96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2,
2.5 mM pyruvate and 5 mM HEPES, adjusted to pH 7.4 with NaOH)
and were used for electrophysiology analysis 36–48 h after cRNA injec-
tion. A two-electrode voltage clamp (OC-725C, Warner Instruments,
Hamden, CT, USA) was used to record the currents from the plasma
membranes of Xenopus oocytes. The standard voltage-clamp proto-
col consisted of rectangular voltage steps from −150 to +30 mV
in 10-mV increments applied from a holding voltage of −60 mV.
The microelectrodes were filled with 3 M KCl and had a resistance of
1–2 MΩ. During the current recording, the oocytes were bathed in the
ORi solution (90 mM NaCl, 2 mM KCl, 2 mM CaCl2 and 5 mM HEPES,
pH = 7.4 with NaOH) at room temperature (approximately 22 °C).
For the ion substitution assay, a bath solution containing 92 mM XCl
(LiCl, NaCl, KCl, RbCl or CsCl), 2 mM CaCl2 and 5 mM HEPES, adjusted
to pH 7.4 with Tris base, was used. Current recording and analysis were
performed with pClamp 10.0 software (Molecular Devices, Sunnyvale,
CA, USA).

2.7. Yeast potassium uptake complementation assay

Either the empty pYES2 or the pYES2-ORF4a-HA vector was
transformed into a potassium uptake-deficient yeast strain W303
R5421 (ura3-52 his3Δ200 leu2Δ1 trp1Δ1 ade2 trk1Δ::HIS3 trk2Δ::HIS3)
(a kind gift from Richard F. Gaber, Northwestern University) using the
lithium acetate procedure. Yeast potassium uptake complementation
experiments were performed as previously described [18,19]. Briefly,
transformants were selected on yeast nitrogen-based (YNB)media with-
out uracil, supplemented with the required amino acid and 100 mMKCl.
Yeast cells from the same stock were diluted and grown in parallel on
media without uracil, supplementedwith 100 mMor 0.2 mMKCl. Plates
were kept at 30 °C during the growth experiments.
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2.8. HCoV-229E ORF4a siRNA knockdown

siRNAs targeting HCoV-229E ORF4awere designed as previously de-
scribed [18] and chemically synthesized by the Genepharma Company
(Shanghai, China). The siORF4a sequence was the following: sense 5′-
UUUCUCAACUAAACUUCCUdTdT-3′, and antisense 5′-AGGAAGUUUA
GUUGAGAAAdTdT-3′. Huh-7 cells were transfected with 100 pmol
siRNA using the X-tremeGENE siRNA transfection reagent (Roche,
Mannheim, Germany). After incubation for 24 h, cells were infected
with HCoV-229E at an MOI of 0.1. Forty-eight hours after infection,
the amount of extracellular infectious virus was measured by TCID50

assay.
3. Results

3.1. Comparison of HCoV-229E ORF4a amino acid sequence with SARS-CoV
3a

CoVs were classified into four genera by The International Commit-
tee on Taxonomy of Viruses (ICTV). The HCoV-229E and SARS-CoV are
belonging to the genera Alphacoronavirus and Betacoronavirus, respec-
tively [20]. The ORF4a of HCoV-229E is only 133 amino acids in size,
while it occurs with 274 amino acids to the homologous SARS-CoV 3a
protein. The amino acid sequence alignment revealed that ORF4a and
3a share about 17% identity, though 3a has a much longer protein se-
quence (Fig. 1A). Application of transmembrane domain (TMD) pre-
diction programs revealed that the ORF4a protein was predicted to
possess three TMDswith an extracellular N-terminus and an intracellu-
lar C-terminus: TM1 (Val-40 to Leu-59), TM1 (Leu-71 to Ser-89) and
TM3 (Ala-95 to Leu-115) (Fig. 1B). This predicted membrane topology
of ORF4a is similar to SARS-CoV 3a protein, except for a truncated cy-
toplasmic peptide [12,21]. In spite of a low degree of protein sequence
identity, HCoV-229E ORF4a has the general structure similar to SARS-
CoV 3a.
Fig. 1. Sequence alignment and structure prediction of HCoV-229E ORF4a. (A) Amino acid sequ
identical residues, the “:” indicates conserved substitution and the “.” indicates semi-conserve
Three different programs were used to predict the TMs of ORF4a, including DAS, Phobius and T
3.2. Identification of the ORF4a protein in HCoV-229E-infected cells

To identify the expression of ORF4a inHCoV-229E (VR-740, ATCC) in
infected Huh-7 cells, a rabbit polyclonal antiserum against a peptide
derived from the predicted ORF4a protein was used in a Western blot
assay. A specific band with a corresponding molecular weight (approx-
imately 17 kDa) can be observed in the HCoV-229E-infected Huh-7 cell
lysates but not in the lysates from mock-infected cells (Fig. 2A). Next,
we attempted to determine the intracellular localization of the ORF4a
protein. The expression plasmid containing the HCoV-229E ORF4a se-
quencewith anHA tag at theC-terminuswas constructed and transfected
into the Huh-7 cells. As shown in Fig. 2B, the ORF4a protein co-localized
with the ERGIC. This is consistentwith the localization of the homologous
HCoV-NL63 ORF3 [15] and SARS-CoV 3a proteins [22,23]. The similarity
of structural topology and localization between ORF4a and 3a suggests
that the two proteins possess similar properties or functions.
3.3. The ORF4a protein forms homo-oligomers through covalent disulfide
bonds

Because the SARS-CoV 3a protein could form cysteine-linked
homodimers and homotetramers [12], we suspected that the HCoV-
229E ORF4a protein might also form homo-oligomers. To address this
question, we first performed a coimmunoprecipitation assay. The
ORF4a-HA protein coimmunoprecipitated with the ORF4a-Flag protein
(Fig. 3A), suggesting that the ORF4a proteins form homo-oligomers.
Next, to assess whether disulfide bonds are involved in the ORF4a pro-
tein polymerization, we treated or untreated the immunoprecipates
with β-mercaptoethanol (β-ME), which reduces disulfide bonds within
proteins, before running SDS-PAGE gels. As shown in Fig. 3B, when
the immunoprecipates were not treated with β-ME, the monomers
(17 kDa) and putative dimers (34 kDa), trimers (51 kDa), tetramers
(68 kDa) and pentamers (85 kDa) were detected by immunoblot
analysis using an anti-Flag antibody. However, the oligomer bands
ence alignment of HCoV-229E ORF4a with SARS-CoV 3a using ClustalW2. The “*” indicates
d substitution. (B) Prediction of the transmembrane (TM) domains of the ORF4a protein.
MHMM. The red letters indicate the putative TMs.



Fig. 2. The expression and subcellular localization of the HCoV-229E ORF4a protein. (A) The ORF4a protein was detected in HCoV-299E-infected Huh-7 cells usingWestern blot analysis.
Huh-7 cells were infected with HCoV-229E at an MOI of 0.1 or mock-infected as a control. (B) Subcellular localization of the ORF4a protein in transfected Huh-7 cells. The ORF4a protein
was detected with rabbit anti-HA antibody and visualized with Cy3-conjugated goat anti-rabbit antibody (red). ERGIC was detected with mouse anti-ERGIC-53 antibody (B-9) and visu-
alizedwith Alexa Fluor 488-conjugated goat anti-mouse antibody (green). The nuclei were counterstainedwith DAPI (blue). Yellow signals inmerged pictures show colocalization.White
box and arrow correspond to colocalization analysis of fluorescence intensities (arbitrary units) of the dyes that were measured by ImageJ software, and shown next to the image. Bars
represent 25 μm.
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were abolished after treatment with β-ME, suggesting that disulfide
bridges were necessary for ORF4a oligomer formation.
3.4. The ORF4a protein serves as ion channels in Xenopus oocytes and yeast

In our previous study, we demonstrated that the SARS-CoV 3a and
PEDV ORF3 proteins induce membrane current on Xenopus oocytes
[12,18]. As described above, the ORF4a protein might be a transmem-
brane protein and form homo-oligomers in the membrane, which point-
ed to ion channel formation as a potential function for this protein. To
Fig. 3.TheORF4aprotein forms homo-oligomers. (A)HEK293T cellswere transfectedwith
pCAGGS-ORF4a-HA or pCAGGS-ORF4a-Flag plasmids and subjected to immunoprecipita-
tion with a monoclonal anti-Flag antibody. The associated HA-tagged ORF4a protein was
detected usingWestern blot analysis with a polyclonal anti-HA antibody. (B) The HEK293
cells were transfected with pCAGGS-ORF4a-Flag. Cell lysates were immunoprecipitated
with anti-Flag antibody and treated or not treated with β-mercaptoethanol (β-ME). The
ORF4a proteins were detected by immunoblot analysis using the anti-Flag antibody. The
arrows indicate bands corresponding to the monomer and putative oligomers.
assess theputative ion channel activity of ORF4a, healthyXenopusoocytes
were injected with C-terminally HA-tagged ORF4a complementary RNA
(cRNA), and oocyte membrane currents were recorded using a two-
electrode voltage clamp. All procedures followed those described previ-
ously [24].Macroscopic currentswere recorded in theORF4a-HA cRNA-
injected oocytes and were compared to uninjected oocytes (control
oocytes) of the same batch (Fig. 4A). Fig. 4B displays the current–
voltage (I/V) relationship recorded from oocytes expressing ORF4a
protein and control oocytes. Intriguingly, the channel conductance
was approximately linear from−100 to +30 mV but exhibited an en-
hanced slope from−150 to−100 mV (Fig. 4B). These results revealed
that the ORF4a protein could enhance oocyte membrane permeability
and generate an instantaneous current that was voltage-dependent.

To further characterize the ion channel activity of ORF4a, we
performed a yeast potassium uptake complementation assay with a
potassium uptake-deficient strain of Saccharomyces cerevisiae, which
grow poorly on low-potassiummedium. As shown in Fig. 4C, the growth
of mutant yeast in the low-potassium (0.2 mM) medium could be res-
cued when expressing the ORF4a protein, whereas yeast transformed
with an empty vector only grewwell on high-potassium (100 mM)me-
dium. These results indicated that the ORF4a protein could also form ion
channels in the yeast plasmamembrane and increase its permeability to
K+ ions. Therefore, the HCoV-229E ORF4a protein forms ion channels in
Xenopus oocytes and yeast membrane.

3.5. Selectivity of ORF4a ion channel to different monovalent cations

Because the ORF4a channel is permeable to K+ in yeast, we next
assessed whether ORF4a could transport other cations. By performing
two electrode voltage clamp experiments, we evaluated the selectivity
of ORF4a ion channels to different monovalent cations. Ion substitution

image of Fig.�2
image of Fig.�3


Fig. 4. The ORF4a protein forms ion channels in Xenopus oocytes and yeast. (A) Representative current traces were recorded by two-electrode voltage clamp (TEVC) step from −150 to
+30 mV in non-injected control oocytes andORF4a-HA-expressing oocytes of the same batch. (B) The I/V relationship of voltage dependencies of steady-state currents in control oocytes
(filled circles) andORF4a-HA-expressing oocytes (filled squares). Current valueswere averaged across all oocyte batches tested. Data represent themean ± SEM. (C) Complementation of
a potassium uptake-deficient strain of S. cerevisiae with a pYES2-ORF4a-HA or pYES2 empty vector. The transformed yeast was grown on media containing 100 mM KCl or 0.2 mM KCl.
Yeast was diluted as indicated and inoculated on the plates.
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revealed that replacing the external monovalent cations with Na+, K+,
Rb+ or Cs+ had no statistically significant effect on inward current am-
plitude, but the Li+ partially reduced the inward current in all oocyte
batches tested (Fig. 5A and B). At positive voltages there was an indica-
tion of outward current only for K+ and Rb+, suggesting Li+, Na+ and
Cs+ exhibited some inhibitory effect on outward current in this positive
potential range (Fig. 5A). Since the constant field theory is invalid to es-
timate the permeability of many ion channels [25], we focused to calcu-
late the ion selectivity of ORF4a tomonovalent cations from the ratios of
slope conductances at negative potentials. As shown in Fig. 5C, the rela-
tive conductances of ORF4a to the monovalent cations were not signifi-
cantly different. Thus, ORF4a protein may form a non-selective channel
for monovalent cations.
3.6. The suppression of ORF4a expression in virus-infected cells results in
decreasing HCoV-229E production

A growing family of viral proteins, named viroporins, is significant in
the viral life cycle and has attracted increasing attention from re-
searchers [26–31]. Viroporins share common characteristics: they are
small proteinswith 50–120 amino acids and contain at least one hydro-
phobic transmembrane domain that oligomerizes in the membrane to
form hydrophilic pores. These pores permeabilize membranes by
transporting ions or small molecules, and these activities participate in
many steps of the viral life cycle, such as the entry, assembly and release
of viral particles [12,32–34]. As described above, the ORF4a protein pos-
sesses the features of viroporins, suggesting that the HCoV-229E ORF4a
protein could be a newmember of the viroporin family. To confirm this,
the correlation between ORF4a expression and virus production was
tested. A siRNA specifically targeted to the HCoV-229E ORF4a gene
was designed (siORF4a), and its knockdown efficiency was determined
usingWestern blot analysis (Fig. 6A). The viral infectious particles in the
supernatant were titered by TCID50 assay. As shown in Fig. 6B, the
amount of extracellular infectious virus was significantly reduced
when 100 pmol siORF4a was used. These results suggested that the
ORF4a protein acts as a viroporin and is necessary for HCoV-229E
propagation.
4. Discussion

Previously, we showed that the SARS 3a protein forms a viral ion
channel and regulates virus production. Although the protein sequence
alignment showed a little sequence homology between HCoV-229E
ORF4a and SARS 3a protein, our data suggest that their functional char-
acteristics are nearly the same. In this study, we confirmed that the
ORF4a protein is a newmember of the viroporins that contains the com-
mon features of this family, such as oligomerization, enhancement of
membrane permeability and regulation of virus production. Using the
polyclonal antibody anti-ORF4a, we demonstrated that the ORF4a pro-
tein could be expressed in HCoV-229E-infected cells. We also analyzed
the localization of the ORF4a protein and determined that it was local-
ized to the ERGIC, which is the assembling and budding site of CoVs
[1], suggesting that the ORF4a proteinmight participate in the assembly
or release process during HCoV-229E infection. Additionally, we found
that the ORF4a protein self-oligomerized, which is an outstanding fea-
ture of ion channels [26]. Based on this result, we assumed that the
ORF4a protein could form an ion channel. To confirm this, we tested
the ion channel activity in both Xenopus oocytes and yeast cells. Indeed,
ORF4a expressed in Xenopus oocytes or yeast could conduct ions and
enhance membrane permeability. Most viroporins were structured by
disulfide bonds or noncovalent interactions to form a tetrameric or
pentameric channel [35,36]. The ORF4a protein has only two cysteines
at its C-terminus, suggesting that the ORF4a protein is linked by pro-
tein–protein disulfide bonds to form a homo-pentamer channel struc-
ture. The exact number of monomers and the ion channel structure
still need to be investigated.

Because ORF4a could form ion channels at the yeast cell membrane
and render it permeable to K+,we tested the ion selectivity of the ORF4a
protein to themonovalent cations. According to the conductance ratios,
ORF4a proteinmay form a non-selective channel to themonovalent cat-
ions. Other viroporins, such as the HIV-1 Vpu and the HCV p7, also have
been reported to form cation-selective channels and show equal selec-
tivity for Na+ and K+ [37,38]. Mehnert et al. have studied the selectivity
of Vpu TM peptide to different monovalent cations in vitro using artifi-
cial lipid membrane and show a conductance increase in the series
Li+ b Na+ b K+ b Rb+ b Cs+ [39]. Another viroporin, Kcv, encoded by

image of Fig.�4


Fig. 5. Selectivity of ORF4a channel to different monovalent cations. (A) The I/V relationship
of the currents conducted by ORF4a channel in the presence of different cations. The endog-
enous currents under identical conditionswere subtracted. (B) Inward currents at−150 mV
were recorded by TEVC with different cations in the bath solution. (C) Conductance
ratio (GX/GK, where X represents the other cations) is the slope conductance calculat-
ed from −100 to −150 mV. Data represent the mean ± SEM (n = 6–7).

Fig. 6. The suppression of ORF4a expression inhibits virus production. (A) siRNA targeting
the HCoV-229E ORF4a gene (siORF4a) or control siRNA (siControl) was transfected into
Huh-7 cells before virus infection. The suppression efficiency of siORF4a was detected
using a Western blot assay 48 h post-infection. (B) Supernatants containing infectious
virus particles from siRNA-treated cells were titered by TCID50 assay. Data represent the
mean ± SD and were generated from three independent experiments (*P b 0.05, com-
pared with siControl).
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the Paramecium bursaria chlorella virus 1 was reported to form a
potassium channel and the permeability sequence of Kcv to mono-
valent cations is Rb+ N K+ N Cs+ ≫ Li+ ≥ Na+ [40,41]. The typical
characteristic of ion channels is the selectivity for one type of ions [42]
and this may involve in its viral life cycle regulation [43]. Considering
the essential role of viroporins in the viral life cycle, channel inhibitors
have become attractive drugs for an antiviral therapy [44–48]. Since the
ORF4a channel showed the similar selectivity for monovalent cations to
viroporins above, the inhibitors of these viroporins could have the capac-
ity to block ORF4a channel, which should be further investigated.

The influenza A virus M2 protein is the first reported viroporin; it
participates in the viral entry process by conducting protons across
the viral envelope to trigger uncoating in the endosome [43,49]. HCV p7
was reported to have ion channel activity in 2003 [28,50] and shown to
be crucial for efficient assembly and release of HCV particles [51]. Recent-
ly, Wozniak et al. demonstrated that intracellular H+ conductance medi-
ated by p7 could prevent acidification of the acidic compartments and
was required for the virus production [52]. Here, we found that the
number of extracellular infectious HCoV-229E particles decreased
when ORF4a channel expression was suppressed by siRNA in infected
cells. This demonstrates that the ORF4a protein acts as a viroporin
that regulates viral production, although the details of this mechanism
are unknown.

Besides their specific ion channel activity, viroporin may interact
with host proteins to achieve their own ends. Vpu, a protein unique to
HIV-1, is themostwell studied viroporin in this field. Hsu et al. reported
that Vpu induced membrane potential depolarization by interacting
with a host endogenous K+ channel TASK-1 to promote the release of
viral particles [53,54]. Tetherin (also known as BST2 and CD317) is an
interferon-induced transmembrane glycoprotein that tethers nascent
virons on the membrane to restrict the virus release. Vpu counteracts
the action of tetherin via downregulation of tetherin from the plasma
membrane [55,56]. Vpu interacts with tetherin and the resulting
tetherin degradation via a ubiquitin pathway was found to be relevant
for this counteraction [57–59]. The SARS-CoV 3a protein has been re-
ported to interactwith caveolin-1,which is themajor structural compo-
nent of caveolae [60,61]. In view of the caveolae that was involved in
cell cycle regulation [62] and virus uptake [63], SARS-CoV 3a was pro-
posed to participate in these processes. Whether ORF4a protein inter-
acts with host factors to perform functions independent of its ion
channel activity need further investigation.

In summary, this study investigated the molecular properties and
functions of the HCoV-229E ORF4a protein. Based on these data, we
could confirm that the ORF4a protein is a viroporin that regulates
virus production. This study contributes to a deeper understanding of
the HCoV-229E life cycle. In addition, the identification of ORF4a as a
viroporinmay provide a good target for developing novel drugs against
HCoV-229E.
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