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A B S T R A C T   

Ischemic stroke (IS) is a leading cause of disability, morbidity, and mortality globally. Aging affects immune function and contributes to poor 
outcomes of IS in elderly individuals. However, little is known about how aging-related genes (ARGs) are involved in IS. In this study, the rela-
tionship between ARGs and IS immune microenvironment biomarkers was explored by bioinformatics. Two IS microarray datasets (GSE22255, 
GSE16561) from human blood samples were analyzed and 502 ARGs were identified, from which 29 differentially expressed ARGs were selected. 
Functional analysis revealed that 7 of these ARGs (IL1B, FOS, JUN, CXCL5, PTGS2, TNFAIP3 and TLR4) were involved in five top enriched pathways 
(IL-17 signaling pathway, TNF signaling pathway, Rheumatoid arthritis, NF-kappa B signaling pathway and Pertussis) related to immune responses 
and inflammation. Five hub DE-ARGs (IL2RB, FOS, IL7R, ALDH2 and BIRC2) were identified using machine learning algorithms, and their asso-
ciation with immune-related characteristics was confirmed by additional tests. Single-cell sequencing dataset GSE129788 was retrieved to analyze 
aging molecular-related features, which was in accordance with microarray datasets. Clustering analysis revealed two subtypes of IS, which were 
distinguished by their differential expression of genes related to the NF-kappa B signaling pathway. These findings highlight the importance of ARGs 
in regulating immune responses in IS and suggest potential prevention and treatment strategies as well as guidelines for future research.   

1. Introduction 

Ischemic strokes (IS) take up to 70 % of all strokes [1]. Every year, nearly 14 million people suffer from stroke; of these 5.5 million 
will die. Despite the available treatment strategies, stroke remains a major cause of morbidity, disability, and mortality worldwide, 
thus causing major economic and healthcare burdens (http://world-stroke.org). 

A growing body of evidence suggests that the central nervous system (CNS) and immune system communicate bidirectionally and 
exert profound effects on each other. Briefly, the immune system protects the CNS through the presence of resident immune cells which 
maintain normal neural function during homeostasis, and through the recruitment of peripheral immune cells during disease states [2, 
3]. On the other hand, CNS can regulate function of the immune system via the hypothalamic-pituitary-adrenal (HPA) axis, the 
autonomic nervous system (ANS) and the sympathetic nervous system (SNS) [4,5]. It is noted that neuroinflammation regulated by 
immune system is critical in IS evolution, which is primarily driven by the excessive activation of immune cells present in the brain like 
microglia. Subsequently, it follows with an influx of peripheral immune cells of both the innate and adaptive immune systems into the 
CNS [6]. Numerous studies have demonstrated the critical roles of brain-resident immune cell activation and peripheral immune 
infiltration in both the acute injury phase and the long-term recovery phase of stroke [7]. However, in contrast, while chronic 
inflammation is known to be detrimental in stroke cases, it is worth noting that localized inflammation can also play a role in 
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facilitating the body’s innate regenerative mechanisms within the CNS. This natural process acts as a safeguard, preventing the 
advancement of disease [8]. 

Aging, which is an inevitable biological process happening to everyone as time elapses, is reported as an important determinant of 
ischemic stroke risk and outcome, because over 80 % of ischemic strokes occur in people aged 65 years and older [9–11]. As per 
research findings, there is a greater occurrence of strokes, increased mortality and disability rates among the elderly population. 
Moreover, older patients exhibit higher vulnerability to complications resulting from thrombolytic treatment in comparison to their 
younger counterparts [10,12]. 

Immunosenescence is defined as immune system aging and degeneration, which can be measured by immune function test and 
immune cell count in blood and immune organs [13]. Immunosenescence can contribute to organ aging, scientists discovered that the 
composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke differed significantly 
from that of young male mice, thus immunosenescence is considered to be a potential contributor to age-related brain injury and 
neurodegenerative diseases [13,14], and poorer outcomes have been observed due to aging-originated alterations in the immune 
system of the elderly [15]. 

However, up to now, studies concerning aging and aging-related genes (ARGs) are mostly concentrated on their influences on the 
tumor immune microenvironment [16]. Besides, bioinformatic analysis has discovered the relationship between ARGs and other 
physical diseases concerning the immune microenvironment [17–19], but not IS. According to reports and in line with that, the 
immune microenvironment of the IS can also exhibit immune-related pathways, immune-related markers, and cellular phenotypes, 
which are regulated by the immune system [20]. Consequently, it is a reasonable deduction to propose that the process of aging has a 
notable influence on the regulation of the immune microenvironment within the IS. 

In this particular study, a carefully designed set of bioinformatics methodologies were implemented to investigate the association 
between ARGs and biomarkers of the immune microenvironment in human blood samples obtained from microarray datasets, which 
can extend our understanding of the relationship between IS development and ARGs and illustrate putative aging-related mechanisms 
in potential IS onset and progression. The findings of this study may provide guidelines for future experimental research and improve 
risk assessment-based prevention and treatment of IS. 

2. Methods and materials 

2.1. Collection and processing of ischemic stroke datasets 

The microarray datasets of human blood samples from the GEO database were acquired for our research (https://www.ncbi.nlm. 
nih.gov/geo/): the GSE22255 (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE22255&format=file) [21] and GSE16561 
(https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE16561&format=file) [22] datasets were selected for further analysis. The 
public dataset GSE22255 contains 20 healthy samples and 20 IS samples, and GSE16561 contains 24 healthy samples and 39 IS 
samples (Table S1). Subsequently, the R package "inSilicoMerging" [23] was utilized to combine and integrate these two datasets, 
followed by the application of the ComBat method from the R package "sva" to eliminate batch effects [24]. The process of gene 
annotation involved assigning gene symbols to gene probes using both the GENCODE and ENSEMBL datasets. Probes that did not 
correspond to any gene symbols or those that matched multiple symbols were excluded from the analysis. In cases where duplicate 
gene symbols were present, the gene expression value was calculated as the median value. Besides, In the process of external vali-
dation, the microarray dataset GSE58294 (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE58294&format=file) [25] 

Fig. 1. Workflow of the present study and pathomechanisms of cerebral ischemia.  
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containing gene expression profiles was utilized. At last, 502 ARGs were derived (Table S2) from two aging databases: “Aging Atlas 
(https://ngdc.cncb.ac.cn)” [26] and “GenAge (https://genomics.senescence.info)” [27]. The overall process has been displayed 
accordingly (Fig. 1). 

2.2. Identification of differentially expressed ARGs between IS and control 

In order to identify the differentially expressed ARGs between IS and control group, the microarray datasets were analyzed by the R 
package “limma” and genes with p-value <0.05 and |log2fold-change (FC)|>0.3 were selected as differentially expressed genes (DEGs) 
[28]. By overlapping selected DEGs with ARGs from aging databases, important differentially expressed ARGs (DE-ARGs) were 
revealed. To visualize the clustering of samples, the "factoextra" package was employed for Principal Component Analysis (PCA) in R 
(https://cloud.r-project.org/package=factoextra/). The Wilcoxon rank sum test was applied to demonstrate the expression disparities 
between IS and control, and a heatmap was drawn to display the sample information and DE-ARGs expression levels. At last, the R 
package "ggplot2" was utilized to calculate and visually represent the correlations among these DE-ARGs. 

2.3. Functional enrichment analysis of the DE-ARGs 

Subsequently, to figure out the potential enriched functions of the screened DE-ARGs, a protein-protein interaction (PPI) network 
was built by using the STRING website (https://string-db.org/) and Cytoscape software (V 3.9.1) [29,30]. The metascape (https:// 
metascape.org/) was utilized to perform comprehensive functional gene ontology (GO) analysis, encompassing molecular functions 
(MF), cellular components (CC), and biological processes (BP), along with KEGG pathway investigation. 

2.4. Detection of central ARGs through fusion of four machine learning techniques 

To identify central candidate ARGs among the DE-ARGs, we employed four distinct machine learning methodologies individually: 
LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression, SVM-RFE (Support Vector Machine-Recursive Feature 
Elimination), Boruta algorithm (Boruta), and Random Forest (RF) algorithms, via the R package “glmnet” [31], “e1071” [32], “Boruta” 
[33], “xgboost” [34] and “randomForest” [35], respectively. Then, the outputs of these algorithms were overlapped to screen out the 
central ARGs. 

2.5. Development and evaluation of an artificial neural network (ANN) model utilizing IS-associated hub ARGs 

For the purpose of categorizing the data of gene expression between IS and control, an ANN model was implemented via the R 
package “neuralnet” with the central ARGs identified from the four machine learning algorithms. Then, to test the reliability of our 
predictive model, ROC curve analysis and PCA analysis were utilized. The ROC curve analysis was conducted using the R package 
"pROC". And the PCA displayed the contribution of each hub ARG. 

2.6. Correlation between hub ARGs and immune microenvironment characteristics 

To sort out the relationship between the five hub DE-ARGs and the immune microenvironment characteristics of the IS samples. 17 
immune pathways from the IMMPORT database (https://www.immport.org) were calculated and 22 distinct infiltrating immunocytes 
were quantified using the R package "GSVA" and the single-sample gene set enrichment analysis (ssGSEA) algorithm, along with the 
Cibersortx platform (https://cibersortx.stanford.edu) [36,37], and Wilcoxon rank sum test was also performed to compare the 
quantification outcomes between IS and control. Moreover, we extracted the HLA gene expression data from the IS datasets, and a 
comparison was conducted using the Wilcoxon rank sum test. Furthermore, Spearman’s correlation analysis was employed to 
investigate the potential associations between the five hub ARGs and immunocyte profiles, immune pathways, and HLA gene 
expression levels, respectively. 

2.7. Retrieval and process of single-cell sequencing data 

In order to delve deeper into our discoveries at the level of individual cells, we obtained the publicly available Single-cell 
sequencing (sc-seq) dataset (Table S1) GSE129788 [38] and performed subsequent analyses utilizing R (v4.2.1). The sc-seq data 
were imported using the function ’CreateSeuratObject’ with parameters ‘min.cells = 3’ and ‘min.features = 200’ in the R package 
Seurat [39] (v4.3.0). Then, standard workflow was performed: (a) Low-quality cells expressed ≤250 genes or ≥ 5000 genes or the 
percent of mitochondrial genes is ≥ 5 % were removed [40]. (b) Doublet removal was conducted by the R package DoubletFinder [41] 
(v2.0.3). (c) To account for the influence of cell cycle variability on cell clustering, we assigned a numerical score representing the cell 
cycle phase to each sequenced cell. This score was calculated using the ’CellCycleScoring’ function in Seurat, which considered the 
expression levels of specific genes associated with G1/S and G2/M phases [42]. These calculations were performed using the Seurat 
object as input. To mitigate the influence of cell cycle heterogeneity, the scores were utilized during data scaling to effectively remove 
such variability. (d) To standardize the data, the "NormalizeData" function was employed, followed by the identification of the top 
2000 variably expressed genes using the "FindVariableFeatures" function. Subsequently, the data was scaled using the "ScaleData" 
function, principal components (PCs) were computed through the ’RunPCA’ procedure, and ’ElbowPlot’ visualization was employed to 
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select 20 dimensions as the input for the ’RunUMAP’ function. (e) The R package “harmony” was employed for batch correction among 
different samples [43]. (f) To distinguish the cell clusters, we utilized the FindNeighbors and FindClusters functions, setting the di-
mensions and resolution parameters to 20 and 0.5, respectively. (g) Cells were annotated using a supervised method termed Garnett 
[44] that leverages machine learning to classify each of the cell, markers were retrieved from previous literature [45] and Cell Tax-
onomy database [46], and markers failed to match the data were removed. 

2.8. Analysis of aging molecular-related features in single-cell sequencing data 

We investigated the ageing molecular-related features in sc-seq data and visualized expression levels of hub genes in various cells 
using the DotPlot and FeaturePlot functions. Additionally, the aging-related gene sets of Mus musculus were acquired from the GenAge 
and Aging Atlas databases, and we calculated the scores of the aging signature scores for each cell via the AddModuleScore function, 
which were then visualized using the FeaturePlot function. Subsequently, we compared the ageing signature scores in old and young 
groups using the Wilcoxon test. Afterwards, based on the median score of aging signatures, we further divided samples into aging 
signature-high and aging signature-low subgroups and assessed the correlation between aging signature status and clinical old and 

Fig. 2. Data processing and expression patterns of DE-ARGs in IS. (A, B) UMAP plots showed the merge and batch correction of GSE16561 and 
GSE22255. (C) Volcano plot showed the upregulated and downregulated DE-ARGs in IS compared with control. (D) PCA analysis reveals expression 
disparities between IS and control groups using 29 DE-ARGs. (E) Expression levels of 29 DE-ARGs were compared via the Wilcoxon rank sum test. 
(F) Heatmap showed the 29 DE-ARGs expression patterns and clinical information in IS and control. (G) Heatmap showed correlations between the 
29 DE-ARGs, greatest correlation of negative and positive were displayed in bubble scatter plots beside. Data are expressed as means ± SD, *: P <
0.05; **: P < 0.01; ***: P < 0.001. 
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young. 

2.9. Identification of aging-related molecular subtypes in IS patients 

In order to distinguish different molecular subgroups with distinct gene-expression signatures by a classic method as previously 
reported [47]. An unsupervised clustering analysis was performed by using the R package “ConsensuClusterPlus”. Furthermore, a 
classification into two aging expression subtypes was accomplished, utilizing the expression profiles of 29 DE-ARGs [48]. To guarantee 
the robustness of the clustering process, we conducted 1000 iterations, with each iteration including 80 % of the samples. Then we 
identified the ideal number of clusters by analyzing the cumulative distribution function (CDF) curve of the consensus score. Principal 
Component Analysis (PCA) was employed to examine the distribution of genes within the subtypes. To evaluate the expression patterns 
of the 29 ARGs in the two aging-related subtypes, we performed the Wilcoxon rank sum test. Furthermore, we investigate the 
subtype-associated Reactome pathways and HALLMARKS utilizing the GSVA algorithm [49]. At last, for a supplement, Wilcoxon rank 
sum test was performed again to compare the quantification outcomes of immunocytes, immune-related pathways and HLA expression 
levels between distinct subtypes. 

2.10. Detection of gene modules associated with aging phenotype 

In addition, we aimed to investigate the molecular phenotype characteristics associated with aging, aiming to enhance our un-
derstanding of the underlying molecular mechanisms involved in age-related regulatory processes. DEGs (p < 0.05) between subtype 1 
and subtype 2 were ruled out by the same token, and these DEGs were subjected to the weighted correlation network analysis 
(WGCNA). The module with the most significant correlation coefficient was determined as the key aging molecular phenotype module. 
Subsequently, the functions of the genes within the identified modules were investigated using GO and KEGG analyses. 

Fig. 3. Biological signatures of the 29 DE-ARGs. (A) Protein-protein interaction (PPI) network showed the proteins encoded by DE-ARGs and their 
relationship via the STRING database. (B) Bar graph showed the top 20 functional enrichment pathways in KEGG and GO, in which deeper color 
represented a lower p-value. (C) The network of the top 20 functional enrichment pathways showed the similarity of these enriched terms. Terms 
with a similarity score >0.3 are linked by an edge, and the thickness of the edge signifies the strength of the similarity score. 
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3. Results 

3.1. Differentially expressed ARGs were identified in IS and control 

The combination of the two datasets resulted in a unified training cohort, and the UMAP plot verified the successful batch 
correction(Fig. 2A and B). A total of 29 DE-ARGs were identified (Table S3), in which 27 were upregulated (TLR4, TNFAIP3, 
TNFSF13B, NLRP3, FOS, CD55, HIF1A, BCL10, ALDH2, SESN3, ADIPOR1, LMNB1, LEP, CXCL5, SERPINB2, HMGB2, HSPA1A, JUN, 
BIRC2, PLAUR, CXCL1, IRS2, MXD1, EGR1, BCL2A1, IL1B and PTGS2) and two were downregulated (IL7R and IL2RB) as shown in the 
volcano plot (Fig. 2C). And the PCA showed that the DE-ARGs can well distinguish the IS and control samples (Fig. 2D). Moreover, we 
conducted a statistical analysis (Wilcoxon rank sum test) to compare the expression levels of the differentially expressed ARGs between 

Fig. 4. Utilization of four machine learning algorithms for hub ARGs analysis. (A) The least absolute shrinkage and selection operator (LASSO) 
coefficient profiles of the 29 DE-ARGs. (B) LASSO was used for 10-fold cross-validation for optimum tuning parameter (l) selection. (C) Support 
vector machine recursive feature elimination (SVM-RFE) estimated 10-fold cross-validation error. (D) Random Forest (RF) algorithm showed the 
relationship between the number of decision tree and the model error. (E) RF algorithm showed the rank of importance of the 29 DE-ARGs. (F) 
Boruta algorithm showed the rank of importance of the 29 DE-ARGs. (G) Venn diagram showed that five hub ARGs are screened out through the four 
algorithms above. 
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the IS and control groups (Fig. 2E). Then, the DE-ARGs expression matrix was displayed by a heatmap, which showed the different 
expression patterns and background clinical information of gender and age between groups (Fig. 2F). At last, Spearman correlation 
analysis revealed the correlation between the 29 DE-ARGs, in which TNFSF13B and IL7R were the most negatively correlated pair (r =
0.583, p < 2.2e-16), while HIF1A and BCL2A1 were the most positively correlated pair (r = 0.860, p < 2.2e-16) (Fig. 2G). 

3.2. Inflammation-related expression patterns of the DE-ARGs were revealed 

The PPI network exposed intricate connections among proteins associated with DE-ARGs (Fig. 3A), it showed that IL1B was strongly 
connected to the seven DE-ARGs, TLR4 was related to six DE-ARGs and JUN was closely associated with five DE-ARGs. And IL1B, FOS, 
JUN, CXCL5, PTGS2, TNFAIP3 and TLR4 were mostly involved in the five top enriched pathways (including: NF-kappa B signaling 
pathway, TNF signaling pathway, Rheumatoid arthritis, IL-17 signaling pathway, and Pertussis). 

A bar diagram (Fig. 3B) and corresponding network (Fig. 3C) were depicted to show the results of Metascape analysis, which both 
revealed the functions of DE-ARGs enriched pathways. Analysis of the histogram indicates that terms related to inflammation and 
immune function exhibited the highest level of enrichment, such as NF-kappa B signaling pathway, cellular response to cytokine 
stimulus, cytokine production, and lymphocyte activation etc. 

3.3. Five hub DE-ARGs were identified through fusion of four machine learning algorithms 

Four machine learning algorithms including the LASSO regression algorithm (lambda. min = 0.01173601, and 19 hub DE-ARGs 
were revealed in the optimization model) (Fig. 4A and B), the SVM-RFE algorithm (based on the minimum CV error, a rank of the 
top 14 were selected) (Fig. 4C), the RF algorithm (we set MeanDecreaseGini >1.5 as the rule out standard, and a rank of the top 12 
were selected) (Fig. 4D and E), and the Boruta algorithm (a rank of the top 12/50 % were selected) (Fig. 4F) were utilized to further 
screen out candidate hub AGRs respectively. The candidate DE-ARGs were listed in Table S4. Finally, these candidate hub ARGs were 
subsequently overlapped via a Venn diagram (Fig. 4G), and five hub ARGs were identified (IL2RB, FOS, IL7R, ALDH2 and BIRC2). 

3.4. ANN model based on five hub DE-ARGs can predict disease status 

A constructed ANN model was utilized to classify gene expression data between samples from individuals with IS and the control 
group, relying on the five key ARGs (Fig. 5A; Table S5). The ROC curve showed the strong dependability of our predictive model, the 
classifier built upon hub ARGs. It achieved an AUC of 0.951 in the training cohort and an AUC of 0.862 in the external validation 
cohort, indicating its high performance (Fig. 5B). Principal Component Analysis (PCA) using the five key DE-ARGs validated the 
effective discrimination between IS and healthy samples achieved by the ANN model (Fig. 5C). These above-mentioned results ensured 
the significance of the five hub DE-ARGs in IS. 

3.5. Potential relationship between aging and IS: the role of immune microenvironment 

As we mentioned in the introduction that neuroinflammation plays an important role in the pathogenesis of IS, which is also closely 
associated with aging. Correspondingly, we decided to sort out the relationship between the five hub DE-ARGs and the immune 
microenvironment characteristics of the IS samples, which will provide further comprehension of the underlying mechanisms. Hence 
immunocyte levels, immune-related pathway activities, and HLA gene expression levels were calculated and compared via Wilcoxon 
rank sum test between IS and control. The results showed that regulatory T cells (Tregs), plasma cells, CD8 T cells, resting dendritic 

Fig. 5. Construction of artificial neural network (ANN) model. (A) ANN model has five inputs, four hidden neurons, and two outputs. In the plot, the 
five inputs represent the category values of the five hub DE-ARGs. (B) The ROC curve of the training cohort and external validation cohort showed 
reliable results of the predictive ANN model. (C) Principal component analysis (PCA) showed that the samples could be well distinguished by the 
five hub ARGs between IS and control, the contribution of each gene is represented by a colorful arrow. 

Z. Yao et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21071

8

cells, and activated NK cells were downregulated in IS, while there was an observed upregulation in gamma delta T cells, monocytes, 
activated mast cells, M0 macrophages and neutrophils (Fig. S3A); antigen processing and presentation, TNF family members receptors 
were downregulated in IS, while antimicrobials, chemokines, cytokines, interleukins receptor, TGF-beta family member and TNF 
family members were upregulated in IS (Fig. S3B); HLA− DOB, HLA− DQA1 and HLA− DQB1 were downregulated in IS, while HLA− E 
was upregulated (Fig. S3C). 

Then, Spearman’s correlation analysis was performed on the five hub DE-ARGs expression levels and the quantification outcomes 
of the immune microenvironment characteristics (Fig. 6B, E, H). The greatest positive and negative correlations were shown in scatter 
diagrams beside each correlation heatmap individually. And finally, we found that IL2RB correlated with monocytes the most 
negatively (Fig. 6A) and ALDH2 correlated with monocytes the most positively (Fig. 6C) in the immunocyte infiltration section; IL7R 

Fig. 6. Spearman correlation analyses between the five hub DE-ARGs and immune characteristics. (A) Correlation scatter plot between IL2RB and 
monocytes. (B) Correlation heatmap of the five hub DE-ARGs and the immunocyte infiltrations levels. (C) Correlation scatter plot between ALDH2 
and monocytes. (D) Correlation scatter plot between IL7R and antimicrobials. (E) Correlation heatmap of the five hub DE-ARGs and the enrichment 
scores of immune reactions. (F) Correlation scatter plot between IL2RB and TCR signaling pathway. (G) Correlation scatter plot between BIRC2 and 
HLA-DQB1. (H) Correlation heatmap of the five hub DE-ARGs and the expression of HLA genes. (I) Correlation scatter plot between ALDH2 and HLA- 
DRA. *: P < 0.05; **: P < 0.01; ns: no significance. 
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correlated with antimicrobials the most negatively (Fig. 6D), and IL2RB correlated with TCR signaling pathway the most positively 
(Fig. 6F) in the immune-related pathway section; and BIRC2 correlated with HLA-DQB1 the most negatively (Fig. 6G) and ALDH2 
correlated with HLA− DRA the most positively (Fig. 6I) in the HLA gene section. 

3.6. Single-cell sequencing data revealed the aging-related signature diversity in old and young mouse brains 

After quality control of the sc-seq data, low quality cells and doublets were excluded from the study (Figs. S4A–F). The basic in-
formation of each cell was exhibited (Fig. 7A), and the cells were annotated via Garnett (Fig. S5, Fig. 7B). The comparison of cell type 
proportions between the old and young groups revealed significant differences, particularly notable for Macrophage and Monocyte 
populations (Fig. 7C). Then, we exam the hub gene expression levels in old and young groups using dot plots and feature plots, and we 
did not find the gene Il2rb in the single-cell data, which may be due to the distinct sequencing protocol, and we found that hub gene 

Fig. 7. Aging characteristics on single-cell sequencing resolution. (A) UMAP representation of basic information. (B) UMAP representation of major 
cell types based on canonical markers and signature-based annotation using Garnett. (C) Proportion plots of major cell types in old and young 
samples and groups. (D) Dotplot showed the expression levels of four hub genes in each cell type. (E) Feature plot showed the expression levels of 
four hub genes. (F) Feature plots showed the aging signature in old and young groups. (G) Boxplot showed the aging signature difference in old and 
young groups. (H) Feature plot marked the aging signature status in each cell. (H) Proportion plots of aging signature status in old and young groups. 
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Aldh2 was mainly expressed in natural killer (NK) cells and the expression levels of Fos in Neutrophils were obviously elevated in the 
aged mouse brain (Fig. 7D and E). Subsequently, the aging signatures were evaluated (Fig. 7F), and our investigation indicated a 
notable increase in aging signature scores among individuals in the old group compared to those in the young group (Fig. 7G). We next 
assessed the aging signature status in every cell (Fig. 7H) and found that the clinical old group had a significantly bigger proportion of 
aging signature− high cells (Fig. 7I). 

3.7. Detection of two distinct molecular subtypes associated with aging in IS 

The unsupervised consistent cluster analysis identified two distinct aging-related molecular subtypes in IS (Supplementary 
Figs. 6A–D), which is reliant on expression levels of the differentially expressed key ARGs. Besides, the PCA diagram confirmed that 
subtype 1 and subtype 2 could be well distinguished by the clustering method (Fig. 8A). And the Wilcoxon rank sum test showed that 
BCL10, BCL2A1, CXCL1, IL1B, JUN, NLRP3, PLAUR, PTGS2, SERPINB2 and TNFAIP3 were upregulated in subtype 2, and FOS, HSPA1A 
and TNFSF13B were upregulated in subtype 1 (Fig. 8B). In addition, the functional enrichment pathways and immune characteristics of 
the subtypes were examined. Through the HALLMARKS pathway bar diagram, we found that NF-kappa B-regulated TNF-a signaling 
pathway and spermatogenesis activity were highly enriched in subtype 2, meanwhile, protein secretion activity and reactive oxygen 
species pathway were highly enriched in subtype 1 (Fig. 8C). And through the heatmap of the Reactome pathway, we confirmed that 
the enrichment patterns were quite different between subtypes (Fig. 8D). 

And the supplementary Wilcoxon rank sum test showed that memory B cells, follicular helper T cells, and activated mast cells were 
upregulated in subtype 2; and CD4 naive T cells, monocytes, M0 macrophages and neutrophils were upregulated in subtype 1 (Fig. 9A); 
antigen processing and presentation, chemokines, cytokines and interleukins were upregulated in subtype 2, and chemokine receptors, 
interferon receptors, and TNF family members were upregulated in subtype 1 (Fig. 9B); In subtype 2, the expression levels of HLA-DOB 
and HLA-DRA were found to be elevated, while no upregulation of HLA genes was observed in subtype 1 (Fig. 9C). 

3.8. Biological characteristics of aging-related molecular subtypes 

To gain deeper insights into the molecular mechanisms underlying genes’ involvement in aging-related regulations, DEGs between 
subtype 1 and subtype 2 were screened out (Fig. 10A) and subjected to WGCNA to locate aging molecular phenotype-related genes, and 
the greenyellow module was determined as the key module due to the most significant p-value and the highest correlation coefficients 
(Fig. 10B, Table S6). Following that, GO and KEGG pathway analyses were conducted to delve into the potential mechanisms asso-
ciated with the greenyellow gene network module related to aging. In biological process (BP) enrichment analysis, genes in 

Fig. 8. Unsupervised clustering of the 29 DE-ARGs identified two distinct aging-related subtypes in IS cases. (A) PCA showed a remarkable dif-
ference in transcriptome profiles between the two subtypes. (B) Wilcoxon rank sum test compared the expression levels of the 29 DE-ARGs in the 
two subtypes (Data are expressed as means ± SD, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: no significance). (C, D) The underlying biological 
function characteristics diversity between the distinct subtypes, and the differences of the HALLMARKS pathway and Reactome pathway enrichment 
score between subtype-1 and subtype-2 (C for the HALLMARKS pathway and D for the Reactome pathway). 
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greenyellow module were found to be mostly enriched in nuclear-related transport activities such as RNA, DNA and protein import to 
or export from nuclear. In cellular component (CC) enrichment analysis, genes were found to be involved in nuclear pore, chaperone 
complex, nuclear envelope, SWI/SNF superfamily-type complex and ATPase complex. And in molecular function (MF) enrichment 
analysis, genes were found to be involved in chaperone binding and misfolded protein binding (Fig. 10C). The top ten KEGG pathways 
were shown in the cyclograph (Fig. 10D), which suggest that the greenyellow module genes exhibited significant enrichment in RNA 
transport, T-cell receptor signaling pathway, ribosome biogenesis in eukaryotes, Th17 cell differentiation, and human T-cell leukemia 
virus 1 infection et al. 

4. Discussion 

Immune-related neuroinflammation plays a vital role in IS evolution, and immunosenescence has been identified as a potential 
contributor to age-related brain injury and neurodegenerative diseases as poorer outcomes have been observed in IS due to aging- 
originated alterations in the immune system of the elderly [15]. However, there were no existing microarray or single cell datasets 
originated from IS patients’ brains, which would be the most convincing in gene function analyses. Fortunately, immunosenescence is 
a process which can also be measured by blood [13] so that we acquired all the high-quality microarray datasets of human blood 
samples from GEO database to find out the potential effect of the ARGs in IS. The current investigation utilized diverse bioinformatics 
analyses to detect regulators associated with aging in IS and unveil ARG signatures. The expression and regulation of the ARGs are 
influenced by aging. Revealing their biological functions may contribute to a better comprehension of the ARGs in IS pathogenesis. In 
summary, we identified 29 ARGs closely associated with IS, which informed us of the potential mechanisms of how aging influence IS 
progression and outcomes. 

From the functional enrichment analyses, these DE-ARGs were found to be significantly involved in NF-kappa B signaling pathway. 
And NF-kappa B transcription factors are critical regulators of the development of innate and adaptive immunity [50]. As a conse-
quence of all NF-kappa B proteins sharing a Rel homology domain responsible for DNA binding and dimerization, dysregulation of 
NF-kappa B activity is linked to autoimmune diseases, inflammatory and metabolic disorders, as well as cancer [51–53]. Indeed, 
NF-kappa B signaling pathway has been reported as a key regulator in IS progression and treatment recently [54–56]. In our study, the 
DE-ARGs which participated in the NF-kappa B signaling pathway (BCL10, TNFSF13B, TNFSAIP3, CXCL1, PTGS2, BCL2A1, BIRC2, 
IL1B and TLR4) were found all upregulated in IS. Therefore, our results combined with these above-mentioned findings may indicate 
that aging may influence our immune functions via over-activating the NF-kappa B signaling pathway or at least related to the 
dysfunction of it, and thus more likely to cause excess neuroinflammation in elder IS patients. 

Meanwhile, these DE-ARGs were also involved in cytokine activities such as cellular response to cytokine stimulus and positive 
regulation of cytokine production, as well as IL-17 signaling pathway and TNF signaling pathway. Noteworthy, previous studies have 
demonstrated that many cytokines play vital roles in IS, such as interleukins [57,58], tumor necrosis factor-alpha [59,60], trans-
forming growth factor-beta [61], granulocyte colony stimulating factor [62] and erythropoietin [63]. The results may indicate that 

Fig. 9. Wilcoxon rank sum test of the immune characteristics between the two subtypes. (A) Wilcoxon rank sum test compared the immunocyte 
levels; (B) the immune-related pathway activities; and (C) the HLA gene expression levels between the two subtypes. Data are expressed as means ±
SD, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: no significance. 

Z. Yao et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21071

12

aging may alter cytokine activities and hence influence the outcome of IS. Besides, some other pathways were already thought to be 
important in IS progression, such as apoptosis and response to hypoxia [64,65]. As poorer outcomes have been observed in elder 
patients of IS, we assume that aging may potentially augment the sensitivity of cellular response to hypoxia and contribute to the 
apoptotic process. 

By applying four machine learning algorithms, five hub ARGs were identified (IL2RB, FOS, IL7R, ALDH2, BIRC2), in which ALDH2, 
BIRC2 and FOS were upregulated in IS, and IL2RB, IL7R were downregulated. As previously reported, IL2RB is primarily expressed in 
the hematopoietic system and encodes the interleukin 2 receptor, which serves as a crucial mediator in regulating the immune 
response by integrating signals derived from the pivotal cytokines IL-2 and IL-15; IL2RB mutation or deficiency can lead to immu-
nodeficiency and autoimmunity [66]. ALDH2 is an important detoxification enzyme with a potent effect on ethanol metabolism, and it 
also shields our inner microenvironment from oxidative stress [67,68]. Evidence from an experimental study has also suggested that 
ALDH2 conferred neuroprotection on cerebral ischemic injury and reduced the size of cerebral infarct [69]. Contrarily, 
population-based investigations have demonstrated a strong correlation between ALDH2 genetic polymorphism and the rising prev-
alence of cardiovascular risk factors and stroke occurrences [70,71]. 

The Fos gene family comprises four distinct members, namely FOS, FOSB, FOSL1, and FOSL2. These genes are responsible for 
encoding leucine zipper proteins that have the ability to form a transcription factor complex known as AP-1 by dimerizing with 
proteins from the JUN family. Consequently, the Fos proteins have been implicated in the regulation of various cellular processes such 
as proliferation, differentiation, and transformation (source: https://www.ncbi.nlm.nih.gov/gene/2353). Previous research has pro-
vided evidence indicating the significance of Fos as a crucial connection between hypertension and IS, indicating the possibility of 
utilizing it as a prospective target for stroke prevention and treatment in hypertensive patients by inhibiting apoptosis and oxidative 
stress after onset [72]. And Fos downstream transcript is a functionally promising target to protect IS patients from ischemic brain 
damage and facilitate neurological recovery [73]. 

Fig. 10. Co-expression networks and biological signatures of the DEGs between subtypes. (A) DEGs were identified between subtype 1 and subtype 
2. (B) Correlation heatmap showed the relationship between module eigengenes and the two aging-related subtypes. (C) GO enrichment analysis of 
aging phenotype-related genes in greenyellow module. The outermost ring displayed the ID of pathways, the second outer ring showed the number 
of genes in pathways, and the heights of the columns in the inner ring indicated the value of GeneRatio. (D) Chord plot depicted the relationship 
between greenyellow module genes and KEGG signaling pathways. 
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IL7R is responsible for encoding a protein receptor that specifically interacts with interleukin 7 (IL-7), which has been demon-
strated to have a vital involvement in the development of lymphocytes [74]. Abnormalities in this gene could potentially be linked to a 
condition known as severe combined immunodeficiency, characterized by compromised immune function [75]. BIRC2 encoded 
proteins that inhibit apoptosis by binding to tumor necrosis factor receptor-associated factors TRAF1 and TRAF2, especially the 
apoptosis induced by serum deprivation and menadione, a potent inducer of free radicals (https://www.ncbi.nlm.nih.gov/gene/329). 
It may inform us that BICR2 may be related to IS through apoptosis, but few studies have been reported, hence, how BICR2 plays its 
part in the apoptosis process in IS requires further investigations. 

Owing to all above, BIRC2 and FOS can inhibit apoptosis; IL2RB and IL7R are more related to immune functions, deficiency or 
mutation of the genes can lead to immunodeficiency; ALDH2 encodes detoxification enzyme with potent effect in ethanol metabolism, 
and shield our inner microenvironment from oxidative stress. It has been indicated in the results that ALDH2, BIRC2 and FOS were 
upregulated in IS, and IL2RB, IL7R were downregulated. Therefore, we conclude that the upregulated hub DE-ARGs may present 
protective effects after IS onset, which may be a compensatory mechanism. And the downregulated hub genes may contribute to 
detrimental aging-related immune dysregulation and overcome the protective effects, thus leading to adverse outcomes in IS. In 
addition, other DE-ARGs were also noticed in immune functions, for instance, HIF1A and JUN have been reported to be the key 
immunosuppression-related crosstalk genes in stroke [76]. The upregulation of these two genes in this study may collaborate with 
IL2RB and IL7R, thus contributing to immune dysregulation in IS. These results may provide new insights into how aging influence IS 
development, and further investigations are in demand. 

Next, by comparing the immune characteristics between IS and control, the quantification results of most immune cells, enriched 
immune pathways and HLA genes were elevated in IS, suggesting significant differences in the immune microenvironment of IS and 
control. Besides, Spearman’s correlation analysis revealed a strong relationship between immune microenvironment characteristics 
and DE-ARGs, especially highlighted with ALDH2 and IL2RB. The findings suggest a significant association between the immune 
system and the progression of IS, which is further influenced by the aging process. Next, mouse brain single-cell sequencing data also 
revealed age-related signature diversity emphasized with the proportion of cell types, which were significantly different between the 
old and young mouse brains. Overall, the proportion of monocytes was increased in the old group while the proportion of macrophage 
was decreased. Furthermore, the bubble plot showed the expression of Aldh2 on the NK cell was increased in the old group, and Fos was 
mostly expressed on neutrophil in the old group instead of the young group, which was in accordance with the expression results 
analyzed from peripheral blood microarray datasets. Subsequently, we utilized the ARGs to calculated the aging signature scores for 
each cell, which revealed that the old group had significantly higher aging signature scores and had a significantly bigger proportion of 
aging signature− high cells than the young group. Previous studies have discussed post-stroke immune cell heterogeneity in the brain 
and uncovered distinct functional immune subpopulations in stroke pathophysiology [45]. Similarly in this study, both in CNS and 
peripheral immune system showed potential effects of aging on immune system, these results may indicate that aging largely de-
termines immune function and may thus influence IS outcome, future studies are highly recommended in investigating these findings 
by experimental methods. 

To gain deeper insights into the mechanistic aspects of IS, unsupervised consistent cluster analysis was employed, leading to the 
identification of two discrete aging-related molecular IS subtypes. This highlights the strong influence of aging on the IS immune 
microenvironment. The GSVA results indicated that subtype 2 was enriched in NF-kappa B-regulated TNF-a signaling pathway and 
spermatogenesis activity, whereas subtype 1 was involved in protein secretion activity and reactive oxygen species pathway. And the 
WGCNA results confirmed the differences between groups. In conclusion, these results indicated that IS cases may have two clusters 
characterized by different mechanisms. And the enriched NF-kappa B regulated TNF-a signaling pathway in subtype 2 also 
strengthened the conclusion that aging may influence our immune microenvironment and immune functions via upregulating the NF- 
kappa B signaling pathway, and thus more likely to cause excess neuroinflammation in elder IS patients. Additionally, a recent study 
concerning prostate cancer demonstrated that activation of IL2RB can inhibit the NF-kappa B signaling pathway [77], and it is worth 
noting that the NF-kappa B signaling pathway has been identified as a critical therapeutic target in IS neuroinflammation [78,79], 
which showed the DE-ARGs may participate in the development and progression of IS in subtle ways but need to be studied furtherly. 

5. Conclusions 

In the present study, we identified 29 ARGs closely related to IS. And the DE-ARGs that were significantly involved in the NF-kappa 
B signaling pathway were all upregulated in IS, which indicated that aging may cause excess neuroinflammation in elder IS patients via 
upregulating the NF-kappa B signaling pathway. Next, five hub ARGs were identified (IL2RB, FOS, IL7R, ALDH2, BIRC2) by over-
lapping four machine learning algorithms, which were believed to contribute to immune dysregulation in IS and thus lead to adverse 
outcomes. At last, two distinct aging-related molecular IS subtypes were identified, and the following GSVA and WGCNA results 
provide supporting evidence for the substantial involvement of the NF-kappa B signaling pathway in immune homeostasis regulation 
of IS development. These results may provide new insights into how aging influence IS development and reveal potential therapeutic 
targets. Nevertheless, it is essential to acknowledge that this study is based on in silico analysis, and while the findings are theoretically 
sound, they have not yet been experimentally validated. While the use of an external validation dataset in the present study can serve 
as a viable alternative to experimental validation to some extent, we suggest that experimental validation would be a more robust 
approach. Besides, regarding a possible sex effect in the data, we did account for it in our analysis but did not investigate any potential 
sex-specific effects due to the limited sample size, future investigations will explore this issue. 
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