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Abstract: Lifelog is a record of one’s personal experiences in daily lives. User’s location is one of the
most common information for logging a human’s life. By understanding one’s spatial mobility we
can figure out other pieces of context such as businesses and activities. With GPS technology we can
collect accurate spatial and temporal details of a movement. However, most GPS receivers generate
a huge amount of data making it difficult to process and store such data. In this paper, we develop
a generic add-on algorithm, feature-first trajectory simplification, to simplify trajectory data in lifelog
applications. It is based on a simple sliding window mechanism counting occurrence of certain
conditions. By automatically identifying feature points such as signal lost and found, stall, and turn,
the proposed scheme provides rich context more than spatio-temporal information of a trajectory.
In experiments with a case study of commuting in personal vehicles, we evaluate the effectiveness of
the scheme. We find the proposed scheme significantly enhances existing simplification algorithms
preserving much richer context of a trajectory.

Keywords: lifelog; feature points; trajectory simplification; context; GPS data

1. Introduction

Lifelog is a record of a person’s daily life in varying amounts of detail [1–3]. It represents the
totality of life experience and one can potentially improve work performance or find unconscious
behavior through self-tracking. Since people divide living space for a specific purpose one can easily
figure out a variety of context such as businesses and activities from location data. For example,
a typical house consists of living room, bedroom, bathroom, kitchen, and dining room. People sleep at
bedroom, watch TV at living room, and cook at kitchen but hardly eat at bathroom. User’s location
has a huge implication and is one of the most common information for logging a person’s life [3–5].
By understanding one’s spatial mobility we can infer the behavior and attitude of the person in various
situations in everyday life.

The availability and affordability of GPS (Global Positioning System) technology provides
a simple yet powerful harness for collecting mobility data [4–6]. With GPS, we can capture consistent
and accurate spatial and temporal details of a movement. However, most GPS receivers generate
a huge amount of data making it difficult to process and store them. To overcome the difficulty,
various simplification algorithms for trajectory data have been proposed. The basic idea is to
discard redundant or less important data points preserving the context of the original trajectory
data. Most of the existing algorithms, however, mainly focus on accuracy and storage size [7–10].
An error-bounded approach tries to minimize the number of data points in simplified trajectory
while it maintains a specified approximation error ε. a size-bounded approach, on the other hand,
tries to minimize the approximation error of simplified trajectory with a specified number of data
points. Typical trajectory simplification is a process to balance between accuracy and storage size.
In the meantime, information loss from the original trajectory is unavoidable under certain criterion.
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There is no one-fits-all solution and application-specific algorithms are desirable to match the type of
information utilized by the applications.

In this paper, we present a generic add-on algorithm for trajectory simplification in lifelog
applications. We call it feature-first trajectory simplification (FFTS). Existing trajectory simplification
algorithms can be classified into two types based on the applications’ mode: Batch (offline) and online
algorithms. Batch algorithms require an entire trajectory data before doing any simplifying operations.
These generally achieve a good balance between accuracy and storage size at the cost of higher
computation. DP, Bellman, TD-TR are examples of a batch algorithm [10–12]. Online algorithms,
on the other hand, work for streaming trajectory data in real-time applications. These generally cannot
achieve optimal results by trying to maintain the relatively important data points within a local buffer
of restricted size. STTrace, SQUISH, DOTS are examples of an online algorithm [10,13,14]. The FFTS
works either by itself or with any existing simplification algorithm, which can be either a batch or
an online algorithm. By identifying feature points, such as signal lost and found, stall, and turn,
it preserves context more than spatio-temporal information of a trajectory. In order to identify feature
points the proposed scheme utilizes additional information such as GPS status, speed, track angle,
etc., which a GPS receiver naturally provides, in addition to the location and timestamp information.
Since it is based on a simple sliding window mechanism its processing complexity and local storage
requirements are very low. Moreover, by splitting original trajectory into segments by the feature points
in advance it provides the opportunity for reducing processing time of its combined algorithm, if any.
In experiments with a case study of commuting in personal vehicles we inspect the effectiveness of the
scheme. The experimental results show that the FFTS preserves much richer context of a trajectory
by taking feature points in simplified trajectory and that the simplification with FFTS outperforms
significantly the one without FFTS at minimal cost in compression rate.

The remainder of this paper is organized as follows. In Section 2, we briefly describe trajectory
data, which most GPS receivers provide by nature. In Section 3, the feature-first trajectory simplification
algorithm is presented in detail. Then, Section 4 provides a comprehensive evaluation and analysis on
the experimental results. Finally, Section 5 summarizes our results and conclusions.

2. GPS Trajectory Data

GPS is a network of satellites and provides users with positioning, navigation, and timing services
in a wide range of personal and commercial applications. GPS satellites continuously send out radio
signals on their orbital information and onboard clock time. a GPS receiver on the ground calculates
its own position based on the signals from the satellites. The positioning works on a simple concept of
trilateration using the locations of orbiting GPS satellites and the distance from those satellites to the
receiver on the Earth [15,16]. In order to determine the coordinates on the three-dimensional space
(longitude, latitude, altitude) of the earth at least three satellites are necessary. In addition, an extra
satellite is used for synchronization of clocks in use. The onboard atomic clocks of the satellites are
highly accurate and are synchronized with each other. The clock at the receiver, however, is not
synchronized precisely with the clocks of the satellites. As of 14 January 2020, there are 31 operational
satellites in the GPS constellation ensuring that at least four satellites are visible at all time anywhere
on the Earth [15].

Most GPS receivers provide data in the form of ready to be used in typical location-based
applications, however, only when they can see at least four satellites. This is called a fix. a GPS receiver
starts spitting out data when you turn it on even if it does not have a fix. The time-to-first-fix (TTFF)
depends on the startup mode of a receiver. a GPS receiver, in general, stores its last valid position and
time information with almanac and ephemeris data to predict which satellites are in visible range.
If a receiver has no such information, then it is up in cold start mode taking several minutes to get a fix.
If a receiver has all the information, then in hot start mode for the quickest fix taking typically dozens
of seconds. In warm start mode it takes longer than a hot start but not as long as a cold start.
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GPS receivers generally output information in NMEA (National Marine Electronics Association)
0183 format, which is an ASCII interface standard for marine electronic devices [17,18]. There are
a few different kinds of NMEA sentence and all sentences begin with the character "$" and end with
the sentence termination delimiter "<CR><LF>". Each NMEA sentence consists of an address field,
a data field, and a checksum such that "$<address>, <data>*<checksum><CR><LF>". The first field
of <address> consists of the talker identifier and the sentence formatter. The talker identifier indicates
where the data comes from and it is "GP" for GPS. The sentence formatter specifies the number of
data subfields in the sentence, the type of data they contain and the order in which the data subfields
are transmitted. The data field <data> in each sentence contains the number of subfields, which is
specified by the sentence formatter, separated by commas ",". Most GPS receivers provide "GPGGA"
(GPS Fix Data), "GPRMC" (Recommended Minimum Specific GNSS Data), "GPGSA" (GNSS DOP and
Active Satellites), "GPGSV" (GNSS Satellites in View) sentences by default. GPGGA and GPRMC are
most commonly used and Figure 1 shows the format of them. You can see that there are redundant data
between sentences and easily imagine the meaning of the subfields for UTC (Coordinated Universal
Time) of position fix, latitude in the northern or southern hemisphere, longitude in the easterly or
westerly, speed over ground in knots, course over ground in degree true. The following is a brief
description of the remaining subfields:

• GPS status: The data set quality (V = invalid, a = valid)
• GPS quality indicator: The GPS fix type (0 = no GPS, 1 = GPS SPS, 2 = DGPS, 3 = GPS PPS).

It indicates whether the GPS receiver has fixed onto satellites’ data and received enough data to
determine the location.

• Horizontal dilution of precision (HDOP): DOP tells the effect of satellite geometry on
measurement accuracy. The precision of the calculated position is reduced when GPS’ four
reference satellites are close together. HDOP describes the influence of satellite geometry on the
position upon a 2D plane. The positional error is proportional to the value of HDOP.

• Altitude, mean sea-level (geoid): The geoid is a theoretical surface, which is defined by the
gravity, of the Earth. It is often used as a reference level for measuring height.

• Geoidal separation: The difference between the WGS-84 earth ellipsoid surface and the geoid in
meter. An ellipsoid is an approximation of the true shape of the Earth for convenient manipulations.

Figure 1. The National Marine Electronics Association (NMEA) format of GPS fix data (GPGGA) and
recommended minimum specific GNSS data (GPRMC) sentences.

In most literatures on GPS trajectory study, only the minimum information of longitude, latitude,
and time is considered. GPS receivers, however, have a processor and an antenna that directly receive
data from the satellites and compute its position on the fly. The processor on a GPS chipset is responsible
for all of the calculations and user interfaces, as well as analog circuits for the antenna. Users can
change the configurations of a GPS receiver for sampling frequency, sentence selection, baud rate, etc.
That is, GPS receivers provide much more information than the minimum by nature and it is a waste
not to use this information in trajectory study.
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3. The Feature-First Trajectory Simplification

We assume that the raw data stream consists of a series GPS data, denoted as P = {pt0, pt1, pt2, . . . ,
ptn, . . . } where ptn = (id, x, y, t, d1, d2, . . . , dm, . . . ) is referred to as a data point. Each data point basically
contains object ID, longitude x, latitude y, and time stamp t. It also has other information dm, which
a GPS receiver provides by nature. In this study, we use the additional information of GPS quality
indicator, number of satellites in use, HDOP from a GPGGA sentence and of GPS status, speed and
course over ground from a GPRMC sentence, as well as UTC time and date, latitude, longitude for
spatial and temporal information. The objective of the feature-first trajectory simplification (FFTS) is to
find a subset of P denoted as P′, which represents P. Each data point in P′ needs to have an additional
attribute of feature type but may exclude extra information other than the minimum of (id, x, y, t)
depending on the applications’ requirements. We define six different types of a feature point for the
simplification:

• LOST point (L): The location where a GPS receiver has problematic satellite signals for a period
longer than a predefined time TfixL.

• FOUND point (F): The location, followed by a LOST point, where a GPS receiver has valid satellite
signals for a period longer than a predefined time TfixF.

• STALL point (S): The location where the object stops moving and remains stationary within
a predefined distance DmaxS for a period longer than a predefined time TmovS.

• GO point (G): The location, followed by a STALL point, where the object moves faster than
a predefined speed SminG for a period longer than a predefined time TmovG.

• TURN point (T): The location where the object turns larger than a predefined angle ΘminT.
• eXTRA tune point (X): The location, between any consecutive feature points within a trajectory,

where applications demand for recording with optional requirements. Certain parameters Xn

may be considered depending on the requirements.

The parameters (TfixL, TfixF, DmaxS, TmovS, SminG, TmovG) are set according to GPS receivers’
quality and configurations. For example, DmaxS is required to tolerate signal noises and errors. If the
positioning signal is 100% accurate without any errors, we may set DmaxS = 0. The other parameters
(ΘminT, Xn) are set according to applications’ demands on simplification. Figure 2 shows a brief
description of the FFTS algorithm. When a new data point pt is collected, FFTS tries to identify whether
it belongs to one of the feature types above. If then, we add pt to P′ ⊂ P. Otherwise, the data point will
be disregarded. To identify a feature point, it utilizes a sliding window and simply counts occurrences
of certain conditions. We denote a window record that consists of the most recent K data point history
SwinK. Let ptc be the data point at current time such that SwinK contains (ptc, ptc−1, ptc−2, . . . , ptc−(K−1)).
We keep SwinK in two portions of front-end window SwinKf and back-end window SwinKb, for our
convenience. The bound between the two is parameterized by B such as SwinKf = (ptc, ptc−1, . . . ,
ptc−(B−1)) and SwinKb = (ptc−B, ptc−(B+1), . . . , ptc−(K−1)). Moreover, we denote p′t the last data point
added to the simplified trajectory P′ and use the symbol "←" to assign a type to its corresponding
feature point. For the type assignment of a feature point we give priority LOST/FOUND > STALL/GO
> TURN > eXTRA in the order. The algorithm is straightforward and easy to see that the running time
of FFTS is O(1) for P′ = {L, F, S, G, T}.
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Figure 2. The feature-first trajectory simplification algorithm.

With a trajectory we first identify potential problematic data points. We need to be aware that
GPS data are subject to various sources of errors including satellite orbit errors, satellite clock errors,
receiver errors, tropospheric and ionospheric errors, multipath errors, etc. [15,16,19]. The GPS quality
indicator in a GPGGA and the GPS status in a GPRMC are mainly used for inspecting the validity of
a location data: Any data with status ‘V’ or fix type ‘0’ is invalid. In addition, we further refer to the
number of satellites in use and the HDOP in a GPGGA. a location data with at least ‘4’ satellites and at
most ‘2’ HDOP is considered reliable. Problematic data results from the loss of satellite signals such
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that the sky is partially or completely blocked. These include when the object is in an underground
area, a tunnel, or even a valley between tall buildings. It is quite common for a GPS receiver to provide
a temporarily invalid data, which is followed by valid data within a single or a couple of seconds.
In order to identify points of LOST we disregard these temporarily invalid data by using the parameter
TfixL. If the last nL consecutive ones among the K data points of SwinK are invalid, then we add ptc−nL
to P′ with LOST status as shown at line 13–15 in Figure 2. The value of nL is determined based on
GPS receiver’s sampling frequency such that nL = TfixL/f op + 1 ≤ K. At the same extent, in the status of
LOST, if the last nF = TfixF/f op + 1 ≤ K consecutive data points of SwinK are valid, then we add ptc to P′

with FOUND status as shown at line 5–9 in Figure 2. a FOUND point will be identified only after the
corresponding LOST point is identified previously. At the beginning, when the P′ is empty, the default
status is LOST. The value of TfixF is not necessarily the same as that of TfixL.

The operation and performance of a GPS receiver greatly depends on the acceleration of the
receiver. Especially, the accuracy of location data for a stationary object is marginal and the same
physical location will have different GPS coordinates from time to time [19,20]. That is, a GPS receiver
does not record exactly the same location when users stay at the same place for a while. High precision
would be desired but it is typical for low-cost GPS receivers and is good enough for most lifelog
applications. With a valid data point we next test a range of low speed by using the speed over
ground field in a GPRMC sentence. Considering the inertial nature of movement we make the decision
conservatively. If the speed of all the K data points of SwinK are slower than a predefined threshold
Sslow then it is in the range of SPDslow. It is shown at line 17 and line 38–44 in Figure 2. In this study,
a speed bound of Sslow = 15 km/h, which is determined empirically, is used.

To identify points of STALL we consider the distance between two location data: (lat1, lon1) and
(lat2, lon2). The Haversine formula gives the great-circle distance between two points [17]:

d = 2R·asin

√sin2
( lat1 − lat2

2

)
+ cos(lat1)· cos(lat2)· sin2

( lon1 − lon2

2

), (1)

where R is earth’s radius. a point of STALL occurs naturally when it is in the range of SPDslow.
Calculate the distance d between any two consecutive data points within SwinK and, among the K − 1
calculations, simply count the case of d ≤ DmaxS. If it is larger than mS ≈ TmovS/f op ≤ K − 1 then we add
ptc − mS to P′ with STALL type as shown at line 18–20 and line 45–51 in Figure 2. The value of mS is
somewhat related to TmovS but not exactly since in the counting we ignore the order of occurrences.
It corresponds to heavy congestion or signal-related complete stops. To identify points of GO we use
the speed over ground subfield in a GPRMC sentence. In the status of STALL, if mG = TmovG/f op + 1 ≤ K
consecutive data points show speed higher than SminG then we add ptc to P′ with GO type as shown at
line 10–12 and line 31–37 in Figure 2. a GO point will be identified only after the corresponding STALL
point is identified previously. Ideally its location is identical to the corresponding STALL point.

To identify points of TURN we consider the course over ground in a GPRMC. As GPS receivers
are concerned, it is the direction that an object is moving in and has little relationship with the direction
the object is pointing to. However, a turn can be detected by calculating the difference in track angles
between two data points. We take and compare the median values of the two sub-windows of SwinK:
SwinKf and SwinKb. By taking median values in track angles we eliminate instantaneous or erroneous
values. If the angle difference is larger than the threshold value ΘminT then we add ptc-B to P′ with
TURN type as shown at line 21–23 and line 51–55 in Figure 2. Note that the track angle, which is used
for waypoint navigation of an object, is not accurate, especially at low speeds. Therefore, we disregard
any data points in the range of SPDslow for the detection of TURN as shown at line 21 in Figure 2.

Note that when a feature point is detected, a data point among (ptc-nL, ptc, ptc−mS, ptc, ptc−B) within
SwinK is added to P′ depending on the type of the feature point {L, F, S, G, T}. In Figure 2 it is shown
at line 4 that the FFTS does not allow to have more than a single feature point within the record of
window SwinK.
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As the final step, for optional requirements in the simplification we may sample extra data points
between two feature points above with eXTRA type as shown at line 24–27 in Figure 2. The FFTS can
collaborate with any existing trajectory simplification scheme, which is either a batch or an online
algorithm, in this step. When the FFTS works by itself this final step may be skipped. In Section 4 of
the case study, two well-known techniques are used as examples: Douglas–Peucker (DP) and uniform
sampling (US) algorithms [10,12].

3.1. Douglas–Peucker (DP) Algorithm

It is a classic line generalization algorithm and is widely used in many geospatial applications.
Initially, it takes the first and the last data points as the end points of a line segment. Next, calculate the
perpendicular distance between the line segment and intermediate data points of the original trajectory.
Then, add the data point with the greatest distance to the simplified one forming two new segments.
Repeat the process with the new segments until the maximum distance for each line segment is less
than a predefined threshold DDP. The computational complexity of DP is O(n2), where n is the number
of data points within a trajectory. This scheme guarantees that the error of a discarded data point is
less than the threshold and shows excellent performance in general. We use the DP as a representative
batch algorithm: First, FFTS splits the original trajectory P into multiple small segments. Any two
consecutive feature points {L, F, S, G, T} become the end points of each segment. Next, the DP algorithm
is applied to each segment independently for the feature points of type X. The optional parameter Xn

becomes the threshold DDP in meter. When the DP is collaborated in FFTS we denote it FFDP.

3.2. Uniform Sampling (US) Algorithm

It is a simple and straightforward scheme. With a stream of data point it down-samples at fixed
time intervals. Though this scheme is trivial to implement it often results in significant information loss,
especially when there are drastic changes in trajectory between sampled data points. We use the US as
a representative online algorithm: Assume that we sample every ith data point using a counter. If FFTS
identifies feature points {L, F, S, G, T} from the trajectory stream P it adds the data point to P′ and resets
the counter. Otherwise, it adds the ith data point to P′ with type X, when the counter is terminated,
and resets the counter. The optional parameter Xn becomes TUS = i/f op in second. When the US is
collaborated in FFTS we denote it FFUS.

4. A Case Study

We collect user’s spatial mobility data using a GPS logger, which is built around the MediaTek’s
MTK3339 chipset [21]. It can track up to 22 satellites on 66 channels in a −165 dBm sensitivity with
a 15 × 15 × 2.5 mm built-in ceramic patch antenna. The GPS logger is configured to generate NMEA
sentences at f op = 1 Hz such that user’s movements are sampled at every second. a single user’s
commute history by a personal automobile is traced for seven different days. Figure 3 provides
a summary of each trajectory data with respect to travel distance and time. Since all the trip pass
through the same route there are little differences in travel distance. One-way trip consists of around
31.6 km on average (between 31.2 and 32.1 km). Any variation in the value comes from the way of
measurements, in which it accumulates point-by-point from its trajectory data. However, there are
noticeable differences in elapsed time depending on traffic conditions. The travel time is 3835 s on
average: The trajectory data of day#5 takes the least time (2822 s) and that of day#6 takes the most
(4649 s) to travel the same commute path.
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Figure 3. User’s commute data of seven days are summarized with respect to distance and time.

4.1. Context of Trajectory by FFTS

The context, which one might want to know in lifelog applications, of the trajectory are clearly the
route and elapsed time for the trip. In addition, information on places of significance and time delay
around the area within the route would be desirable. The FFTS is an effort to simplify a trajectory
data without losing this context. In this experimental study, we set window size K = 6 so that we can
simplify trajectory data with only the last 5 s history. The parameters of (TfixL, TfixF, DmaxS, TmovS,
SminG, TmovG, ΘminT) are set to (4 s, 2 s, 1 m, 3 s, Sslow = 15 km/h, 3 s, 30º). The corresponding thresholds
of (nL, nF, mS, mG) for counting become (5, 3, 3, 4) considering the GPS logger’s sampling frequency
of f op = 1 Hz. Moreover, we set B = 3 to divide SwinK into two sub-windows of SwinKf and SwinKb.
These values are determined empirically. Using feature points of FFTS we can redraw Figure 3 for more
context of the trajectory. Figure 4 provides the same summary on travel distance and time by feature
types. While the travel distance for STALL, which is ideally zero, is marginally constant the travel time
for STALL varies much day-by-day. We expect the same for LOST. From the graph, however, we can
see that the travel distance and time for LOST of day#6 are significantly larger than others.
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Figure 4. Redraw Figure 3 for more context of the trajectory data by feature types.

In order to inspect further the trajectory data of day #6 we visualize its context with normalized
travel distance and time. For comparison, the trajectory data of day#1 is drawn together. There are
four graphs in Figure 5. The upper two are about the trajectory of day#1. The y-axis represents the
type of feature points of F, T, G, S, L. The x-axis represents scale in % with respect to travel time of
3456 s for the top most line graph or scale in % with respect to travel distance of 31.2 km for the second
dotted line graph. The lower two graphs are the same context but about day#6, which we want to
examine. Note that the x-axis of the bottom most line graph is normalized to travel time of 3456 s
of day #1 instead of 4649 s, which becomes 134.5 %, of day #6 for direct comparison between them.
Figure 5 also provides the trajectory data on Google map for convenience. The commute path begins
at the bottom-right point of yellow star labeled by “S (src)” and ends at the top-left point labeled by
“L (dst)”. In between several dots, which represent different feature types, are shown so that we can
match the graphs with the path on the map.

From the graphs we can see three occurrences of LOST and FOUND period. The first one at
the beginning is about start-up periods of the GPS receiver. The start-up time of day#6 takes much
longer than that of day#1. The GPS logger is powered on at the point “S (src)”. The first FOUND
points are shown on the map by a backward-pointing arrow with the label of “F(day#1)” and by
a forward-pointing arrow with the label of “F (day #6)”. In Figure 6, we compare the start-up periods of
the trajectory data with respect to distance and time to fix. When the GPS receiver has an estimation of
current time and position it typically takes up to 3 min to acquire satellite signals. That is, the start-up
of day#1 is normal and seems to be in warm start mode. On the other hand, the start-up of day #6
seems to be in cold start mode and takes more than expected. It happens from time to time and is
affected by the weather condition as well. On the date of day#6 it was rain in heavy fog. The rest two
LOST and FOUND periods correspond to passing tunnels. Those locations can be considered as places
of significance for the commute path [6,22,23].

The occurrences of STALL or TURN might be slightly different time-by-time even on the same
travel path. You may pass a traffic light without stop when it is on green and turn either gently
or fiercely on a curve. However, they can be used for identifying places of significance if we have
trajectory data large in volume. In addition, with the feature points of FFTS in simplification we can
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have much richer context of a trajectory. For example, in Figure 5 we distinguish types of road such as
highway, expressway, and local lane on the commute path. We can say that, while day #6 takes more
time than day #1 by 34.5 %, it spends extra time mostly on expressway and highway. These kinds
of context of a trajectory data with FFTS can be used widely in trajectory data mining and lifelog
applications [4,5,24].

Figure 5. Visualization of the trajectory data of day #1 and day #6 with feature points.

Figure 6. Comparison of start-up periods for the trajectory data.

4.2. Performance of FFTS

In order to quantitatively compare the effectiveness of FFTS we use perpendicular Euclidean distance
(PED) and synchronized Euclidean distance (SED) metrics [7,10,13]. Suppose that pi and pj are two
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consecutive data points of a simplified trajectory P′: pi ∈ P′ and pj ∈ P′. We can consider a data point
pk, which is discarded in the P′, of the original trajectory P between pi and pj: pk ∈ P but pk < P′.
PED measures the shortest distance between pk and the line segment pip j. In contrast, SED finds
a virtual data point p’k on the line segment pip j via interpolation. Then, it measures the distance
between pk and p’k. The total error is the sum of those distances for each data point of the original
trajectory P.

PED =
n∑

k=1

∣∣∣∣(y j − yi
)
xk −

(
x j − xi

)
yk + x jyi − xiy j

∣∣∣∣√(
x j − xi

)2
+

(
y j − yi

)2
, (2)

SED =
n∑

k=1

√
(xk − x′k)

2 +
(
yk − y′k

)2
, (3)

where x′k = xi +
tk−ti
t j−ti

(
x j − xi

)
and y′k = yi +

tk−ti
t j−ti

(
y j − yi

)
.

Figure 7 shows the performance comparison of the original DP and US algorithms by varying
the threshold DDP = 200, 100, 50, 30, 20 m. For the graph we use average PED or average SED such
that they can be independent of the travel time for the same commute path. The performance data
of each trajectory is provided on Tables A1 and A2 in Appendix A. For a fair comparison we set
the parameter TUS of US by the parameter DDP of DP such that the compression rates of them are
comparable. We cannot make them exactly the same because DP is an error-bounded simplification
scheme while US is a size-bounded one. The compression rate of each trajectory is provided on
Table A3 in Appendix A. From the graph we can see that DP significantly outperforms US, as we
expected, with respect to PED. However, surprisingly it is not true with respect to SED: US is better
than DP. In many literatures SED is a prefer metric to PED since it counts on both spatial and temporal
aspects of a trajectory. It seems to result from several causes. First, the DP implementation in this
study relies on perpendicular distance when it adds a data point to the simplified trajectory P′. In SED
calculations, however, it assumes that the object moves at constant speed between two consecutive
sampled data points. For instance, Figure 8 shows five data points of trajectory P. Let us say that pi
and pj are two sampled data points of a simplified trajectory P′. The three discarded data points of pk1,
pk2, pk3 lie unevenly on the original trajectory and their corresponding virtual data points of p’k1, p’k2,
p’k3 lie evenly on the simplified trajectory. In this scenario, SED = a’ + b’ + c’ is clearly larger than PED
= a + b + c. Second, errors in trajectory simplifications tend to be enlarged as the number of missing
points between two sampled data points increases. That is, in Figure 8, if there were a single discarded
data point of pk2, instead of three, then PED = b << a + b + c and SED = b’ << a’ + b’ + c’. At the same
compression rate, the number of missing points between two consecutive sampled data points varies
largely in DP while it is constant in US. That is, in US the SED of each segment can be bounded within
a certain range. However, in DP the SED of a segment can be amplified. Note that this case study is
executed in real situations, which generate highly redundant trajectory data of which compression
rates are easily higher than 95+%. There are many chances to amplify the SED in the simplification.
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Figure 7. Performance comparison of Douglas–Peucker (DP) and uniform sampling (US) algorithms.

Figure 8. Measurements of perpendicular Euclidean distance (PED) and synchronized Euclidean
distance (SED).

Figure 9, Figure 10 show the performance comparison of DP vs. FFDP and US vs. FFUS from
the same perspective, respectively. a line graph is shown together, for your convenience, on the
secondary y-axis. It represents a normalized distance (PED or SED) of the algorithm with FFTS (FFDP
or FFUS) over the original algorithm (DP or US) without FFTS. We can see that a simplification with
FFTS outperforms significantly the one without FFTS. This is true for both PED and SED: For DP the
reduction is 12–45 % in PED and 31–45 % in SED. For US it is 39–52 % in PED and 33–44 % in SED.
Note that FFTS is applied first segmenting the original trajectory by feature points and that the original
algorithm (DP or US) is applied next to the sub-segments for the feature type X. That is, the huge
improvements in performance of using FFTS naturally result from taking more data points as feature
points, in advance, for the simplification. Moreover, note that the number of feature points of type
{L, F, S, G, T} for a travel path is almost constant regardless the value of the parameter Xn (DDP or
TUS). Figure 11 shows the compression rate of different simplification schemes in the experiments.
We can see that the cost of compression rate for the performance improvements is minimal, less than
0.67% point, by applying the FFTS. The decrease in compression rates for this kind of highly redundant
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trajectory data might be negligible. In addition, FFTS segmenting the original trajectory by feature
points may take a benefit in processing time of the combined simplification algorithm.

Figure 9. Performance comparison of DP and first-fix (FF) DP.
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Figure 10. Performance comparison of US and FFUS.

Figure 11. Comparison of compression rates of different simplification scheme.

5. Conclusions

Lifelogging is an activity of recording user’s daily live in varying amounts of detail. User’s location
is a natural form for logging a person’s life since it is of vital importance having an immense implication.
Thanks to the abundant technology of GPS it becomes easier to get location data of moving objects.
However, GPS trajectory data generally is huge in size making it difficult to process and store.
In this paper, we presented a generic add-on algorithm, feature-first trajectory simplification (FFTS),
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for simplifying trajectory data in lifelog applications. It is based on a simple sliding window mechanism
with additional information such as GPS status, speed, track angle, etc., which a GPS receiver provides
by nature, as well as the location and timestamp. Experiments with a real trajectory data showed that
the proposed scheme can preserve rich context more than spatio-temporal information of a trajectory.
By identifying feature points within a trajectory such as signal lost and found, stall, and turn travel
distance and time were analyzed by feature types and were visualized in normalized scale for extra
context. Moreover, from the experimental results we showed that the simplification with FFTS
outperforms significantly the one without FFTS at marginal cost in compression rate.
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Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2016R1D1A1B03933995).
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Appendix A

The performance data of the seven days’ trajectory is provided for better understanding of the
experimental results in Section 4.2.

Table A1. Comparison of average PED of different simplification scheme.

Day#1 Day#2 Day#3 Day#4 Day#5 Day#6 Day#7 Average Stdev

DP

DDP = 200 25.7 30.5 26.7 31.7 31.8 29.6 41.9 31.1 5.3
DDP = 100 22.1 21.7 22.3 17.1 20.8 19.9 21.0 20.7 1.8
DDP = 50 9.3 10.9 8.8 10.4 8.1 8.9 8.4 9.2 1.1
DDP = 30 6.2 5.3 6.0 5.0 3.7 5.2 5.6 5.3 0.8
DDP = 20 4.5 3.5 3.7 3.6 3.0 3.5 4.3 3.7 0.5

US

DDP = 200 45.3 55.2 62.0 51.6 80.6 49.4 99.1 63.3 19.6
DDP = 100 45.9 48.2 49.2 72.3 57.4 37.6 94.1 57.8 19.3
DDP = 50 26.2 28.8 24.5 24.7 27.9 23.2 22.7 25.4 2.3
DDP = 30 18.6 16.5 19.0 14.8 27.0 14.8 22.2 19.0 4.4
DDP = 20 16.5 13.2 14.0 11.8 16.4 11.3 18.7 14.6 2.7

FFDP

DDP = 200 31.4 22.7 25.6 24.1 25.3 24.0 21.3 24.9 3.2
DDP = 100 10.4 13.7 10.6 11.2 12.0 13.6 11.7 11.9 1.3
DDP = 50 7.7 7.1 7.1 6.5 5.9 9.1 7.8 7.3 1.0
DDP = 30 4.0 4.4 4.9 4.4 3.6 4.7 3.8 4.2 0.5
DDP = 20 2.9 3.5 3.4 3.1 2.5 3.4 3.2 3.1 0.3

FFUS

DDP = 200 30.8 25.0 25.8 36.0 41.8 32.4 40.3 33.2 6.6
DDP = 100 22.5 23.7 27.1 29.1 28.2 21.2 19.4 24.5 3.7
DDP = 50 15.7 15.7 12.1 13.7 17.1 13.4 13.1 14.4 1.8
DDP = 30 11.2 11.6 9.9 9.5 11.5 10.4 11.9 10.9 0.9
DDP = 20 7.1 6.8 8.6 10.5 9.1 7.3 9.8 8.4 1.4

Table A2. Comparison of average SED of different simplification scheme.

Day#1 Day#2 Day#3 Day#4 Day#5 Day#6 Day#7 Average Stdev

DP

DDP = 200 177.9 136.0 173.1 171.9 129.1 149.8 256.9 170.7 42.6
DDP = 100 174.2 124.6 168.5 168.5 110.0 118.2 203.8 152.5 35.0
DDP = 50 88.9 71.1 93.3 102.5 87.9 74.6 137.0 93.6 21.9
DDP = 30 81.4 36.6 85.5 63.8 85.9 48.3 86.3 69.7 20.5
DDP = 20 61.8 32.8 67.5 61.8 85.0 39.7 64.1 59.0 17.6

US

DDP = 200 131.0 119.8 128.9 126.1 154.5 125.7 211.7 142.5 32.4
DDP = 100 104.5 88.5 122.8 115.0 99.8 104.2 156.0 113.0 21.9
DDP = 50 59.1 67.3 63.9 53.8 54.7 53.2 56.3 58.3 5.4
DDP = 30 42.6 37.9 41.9 31.6 43.6 28.8 47.5 39.1 6.7
DDP = 20 33.2 26.3 34.9 25.0 32.2 22.2 39.6 30.5 6.2

FFDP

DDP = 200 133.4 102.4 91.6 87.7 107.4 80.2 120.2 103.3 18.8
DDP = 100 115.8 92.8 70.8 72.0 96.0 69.4 104.5 88.8 18.4
DDP = 50 106.9 45.5 58.9 56.7 88.2 61.6 80.1 71.1 21.4
DDP = 30 98.4 38.0 54.3 51.7 85.4 28.8 74.6 61.6 25.4
DDP = 20 92.6 36.2 36.4 34.3 83.0 24.0 52.1 51.2 26.4

FFUS

DDP = 200 76.2 74.0 77.4 75.9 81.3 81.5 100.8 81.0 9.2
DDP = 100 58.4 64.9 67.2 55.0 58.1 55.8 57.1 59.5 4.7
DDP = 50 40.1 46.9 37.3 34.3 37.6 28.1 40.0 37.7 5.8
DDP = 30 31.3 27.1 29.5 20.5 23.3 23.2 33.9 27.0 4.9
DDP = 20 20.0 18.6 22.2 21.0 18.9 15.2 26.5 20.3 3.5
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Table A3. Comparison of compression rates of different simplification scheme.

Day#1 Day#2 Day#3 Day#4 Day#5 Day#6 Day#7 Average Stdev

DP

DDP = 200 99.30 99.39 99.39 99.33 99.22 99.57 99.52 99.39 0.12
DDP = 100 99.18 99.29 99.29 99.19 98.93 99.44 99.22 99.22 0.15
DDP = 50 98.69 98.98 98.86 98.73 98.43 99.11 98.85 98.81 0.22
DDP = 30 98.37 98.45 98.54 98.09 97.90 98.77 98.57 98.38 0.30
DDP = 20 97.99 97.94 98.17 97.77 97.54 98.44 98.32 98.03 0.31

US

DDP = 200 99.27 99.34 99.34 99.28 99.14 99.52 99.47 99.34 0.13
DDP = 100 99.13 99.24 99.24 99.13 98.86 99.39 99.17 99.17 0.16
DDP = 50 98.63 98.93 98.81 98.67 98.36 99.07 98.80 98.75 0.23
DDP = 30 98.31 98.40 98.49 98.03 97.79 98.72 98.53 98.32 0.32
DDP = 20 97.93 97.86 98.12 97.68 97.47 98.40 98.28 97.96 0.33

FFDP

DDP = 200 98.63 98.85 98.78 98.70 98.25 99.03 98.74 98.71 0.24
DDP = 100 98.57 98.78 98.68 98.58 98.15 98.92 98.69 98.62 0.24
DDP = 50 98.40 98.45 98.47 98.23 97.83 98.75 98.48 98.37 0.28
DDP = 30 98.02 98.01 98.22 97.88 97.43 98.38 98.09 98.01 0.30

D_DP = 20 97.76 97.86 97.69 97.42 97.11 98.14 97.77 97.68 0.33

FFUS

DDP = 200 98.51 98.78 98.73 98.61 98.25 98.98 98.78 98.66 0.23
DDP = 100 98.43 98.70 98.61 98.49 97.90 98.92 98.53 98.51 0.32
DDP = 50 98.05 98.42 98.32 98.17 97.68 98.62 98.25 98.22 0.30
DDP = 30 97.79 97.94 98.03 97.54 97.08 98.36 98.09 97.83 0.42
DDP = 20 97.50 97.48 97.76 97.19 96.90 98.08 97.86 97.54 0.40
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