
ORIGINAL RESEARCH
published: 11 January 2022

doi: 10.3389/fneur.2021.724800

Frontiers in Neurology | www.frontiersin.org 1 January 2022 | Volume 12 | Article 724800

Edited by:

Jing Chen,

Peking University, China

Reviewed by:

Christine Rogers,

University of Cape Town, South Africa

Lynne E. Bernstein,

George Washington University,

United States

*Correspondence:

J. Tilak Ratnanather

tilak@cis.jhu.edu

Specialty section:

This article was submitted to

Neuro-Otology,

a section of the journal

Frontiers in Neurology

Received: 14 June 2021

Accepted: 13 December 2021

Published: 11 January 2022

Citation:

Ratnanather JT, Wang LC, Bae S-H,

O’Neill ER, Sagi E and Tward DJ

(2022) Visualization of Speech

Perception Analysis via Phoneme

Alignment: A Pilot Study.

Front. Neurol. 12:724800.

doi: 10.3389/fneur.2021.724800

Visualization of Speech Perception
Analysis via Phoneme Alignment: A
Pilot Study
J. Tilak Ratnanather 1*, Lydia C. Wang 1, Seung-Ho Bae 1, Erin R. O’Neill 2, Elad Sagi 3 and

Daniel J. Tward 1,4

1Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns

Hopkins University, Baltimore, MD, United States, 2Center for Applied and Translational Sensory Sciences, University of

Minnesota, Minneapolis, MN, United States, 3Department of Otolaryngology, New York University School of Medicine, New

York, NY, United States, 4Departments of Computational Medicine and Neurology, University of California, Los Angeles, Los

Angeles, CA, United States

Objective: Speech tests assess the ability of people with hearing loss to comprehend

speech with a hearing aid or cochlear implant. The tests are usually at the word or

sentence level. However, few tests analyze errors at the phoneme level. So, there is

a need for an automated program to visualize in real time the accuracy of phonemes in

these tests.

Method: The program reads in stimulus-response pairs and obtains their phonemic

representations from an open-source digital pronouncing dictionary. The stimulus

phonemes are aligned with the response phonemes via a modification of the Levenshtein

Minimum Edit Distance algorithm. Alignment is achieved via dynamic programming with

modified costs based on phonological features for insertion, deletions and substitutions.

The accuracy for each phoneme is based on the F1-score. Accuracy is visualized with

respect to place and manner (consonants) or height (vowels). Confusion matrices for

the phonemes are used in an information transfer analysis of ten phonological features.

A histogram of the information transfer for the features over a frequency-like range is

presented as a phonemegram.

Results: The program was applied to two datasets. One consisted of test data at

the sentence and word levels. Stimulus-response sentence pairs from six volunteers

with different degrees of hearing loss and modes of amplification were analyzed. Four

volunteers listened to sentences from a mobile auditory training app while two listened

to sentences from a clinical speech test. Stimulus-response word pairs from three

lists were also analyzed. The other dataset consisted of published stimulus-response

pairs from experiments of 31 participants with cochlear implants listening to 400 Basic

English Lexicon sentences via different talkers at four different SNR levels. In all cases,

visualization was obtained in real time. Analysis of 12,400 actual and random pairs

showed that the program was robust to the nature of the pairs.

Conclusion: It is possible to automate the alignment of phonemes extracted from

stimulus-response pairs from speech tests in real time. The alignment then makes it

possible to visualize the accuracy of responses via phonological features in two ways.

Such visualization of phoneme alignment and accuracy could aid clinicians and scientists.
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INTRODUCTION

Audiologists and speech pathologists use speech perception tests
to analyze speech comprehension in people who are learning to
hear with hearing aids and cochlear implants. Specifically, the
tests provide an objective measure of how the listener processes
spoken words and sentences from the acoustic signal. The
words and sentences are composed of sequences of phonemes
that are characterized as either consonants or vowels. Further,
phonemes are differentiated by how they are produced in the
vocal tract, i.e. phonological features (1). For consonants, these
features are place, manner, voicing and associated subtypes,
and for vowels, these are height, place and associated subtypes.
Typically, speech tests are based on lists of words or sentences
and are presented in a sound booth in the clinic, sometimes
with noise, e.g. PBK-50 (2), AB (3), NU-6 (4), BKB (5), CUNY
(6), HINT (7) and AzBio (8). Usually, the clinician records the
numbers of correct words and/or sentences, and sometimes the
number of correct phonemes, as illustrated by two examples
in Figure 1. One example is a typical list of 50 words, each

FIGURE 1 | Two examples of typical speech perception tests performed in the clinic. Both lists were obtained from the new Minimum Speech Test Battery (MSTB) for

Adult Cochlear Implant Users [Auditory Potential LLC, (9)]. The one on the left (from page 12 of MSTB manual, https://www.auditorypotential.com/MSTB_Nav.html)

shows the actual results from 50 monosyllabic consonant-nucleus-consonant (CNC) words. The clinician records the incorrect response and the number of correct

phonemes for each stimulus. A tally of the number of correct words and phonemes is presented. The one on the right (from page 6 of the MSTB score sheets, https://

www.auditorypotential.com/MSTB_Nav.htm) shows the results from a volunteer (see Methods - Datasets) listening to 19 sentences from the AzBio list #6. The

clinician records the number and the total percentage of correct sentences. See Figure 6 for the corresponding visual representation of these scores.

with an initial consonant followed by a nucleus (vowel) and
then a final consonant. Here, the correct response and number
of correct phonemes are recorded. The result is a tally of the
number of correct words and phonemes together with incorrect
words transcribed. The other example is a typical list of 20
phonetically balanced sentences. Here, the number of correct
words is recorded and then summed. It is clear in both cases
that the person does not always hear the whole stimulus. There
is potentially more useful data to be extracted from these
tests, namely the analysis of phonemes with respect to their
phonological features. To do so in the clinic would be time
consuming. The challenge then is to present information about
phonemic comprehension in a manner that can be understood in
real time.

At the same time, many people learning to hear with a new
hearing aid or a cochlear implant use auditory training apps such
as the Speech Banana app which is freely available (10). Progress
tracking provides the user a record of correct sentences, correct
words, and number of repetitions in the quizzes. Additional
information such as accuracy for the phonemes could help
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the user work remotely or in person with the clinician to
identify areas of weaknesses. To that end, visualization of
phonemic accuracy could be useful as motivation and diagnostic
tool for patient and clinician respectively especially in the
telemedicine era.

Hence, there is a need for an automated program to
compute and visualize the accuracy of phonemes from
responses to speech stimuli in real time. Specifically, given
a stimulus-response pair of words or sentences, the problem
is to develop and implement the automated program in
four steps. First, use an online pronunciation dictionary to
express the stimulus and response as two ASCII sequences of
phonemes. Second, use an alignment technique to align the
sequences. Third, calculate and visualize phoneme accuracy
with respect to phonological features and associated subtypes.
Fourth, make the program available to the computational
audiology community.

The first two steps can be accomplished by leveraging
two tools commonly used in speech recognition research. For
the first, there are several online pronunciation dictionaries:
Pronlex, CMUDict, CELEX and UNISYN to name but a few
(11). Of these, CMUDict is publicly available and has been
widely used in open source automatic speech recognition
software such as Kaldi (12). For the second, several sequence
alignment algorithms are available from scLite, which is part
of an open source library (13, 14). The third step makes use
of two commonly used metrics: a F1-score (Sørenson-Dice
coefficient) for the phonemes and relative information transfer
for the phonological features. The fourth step deploys the
program in MATLAB so that it can be converted for open-
source usage.

Using a pronunciation dictionary followed by automated
sequence alignment for analyzing speech comprehension by
people with hearing loss is not new. Previous uses include
analyses of lipreading by people with normal hearing and
hearing loss (15–18), estimating intelligibility from atypical
speech (19–21) and more recently, listening to speech in
noise by people with normal hearing (22). Using relative
information transfer to analyze speech comprehension based on
phonological features of transcribed phonemes is also not new.
In addition to Bernstein (15), previous uses include analyses
of listening by people with hearing loss (23–31). There was
also a study of bimodal hearing with hearing aid and cochlear
implant that manually transcribed phonemes with the aid
of a digital dictionary (32). The approach here differs from
earlier work in that the program is made publicly available
by adopting and modifying two open-source algorithms and
two commonly used metrics, with the goal of providing a
visual representation of results similar to those shown in
Figure 1.

This paper describes a pilot study of the design and
implementation of the automated program. It reports
the program’s validation and the results of using it in
several cases. Finally, it discusses the advantages and
disadvantages of the program and provides suggestions for
clinical usage.

METHODS

This section describes: (i) the design of the program; (ii) how
stimulus-response pairs of words or sentences are formatted as
two sequences of phonemes; (iii) how two sequences are aligned;
(iv) how the F1-score is used to compute the accuracy of the
stimulus phonemes; (v) how relative information transfer is used
to assess the accuracy based on phonological features; (vi) how
the preceding two metrics can be visualized for a set of stimulus-
response pairs; (vii) the different datasets used for testing; and
(viii) program validation.

Design
Figure 2 illustrates the overall design for analyzing the response
of a person with hearing loss listening to sentences or words
in speech tests in real time. The program first takes as input
stimulus-response pairs in the form of sentences or words.
Both are converted to phonemes using a digital pronunciation
dictionary for each word, and the phonemes are entered into
the alignment algorithm. Then the accuracy for the stimulus
phonemes is computed in two ways via a F1-score for each
phoneme and relative information transfer for ten different
phonological features.

Input
The program uses the Carnegie Mellon University Pronouncing
Dictionary (CMUDict) which is an open-source machine-
readable pronunciation dictionary for North American English
that contains over 134,000 words and their pronunciations (33).
CMUDict has been widely used (11) for speech recognition and
synthesis, as its entries map words to their pronunciations as
ASCII symbols in the ARPAbet format (34). The ARPAbet format
contains 39 phonemes with vowels each carrying a lexical stress
marker. Transcriptions are expressed as strings of phonemes.
The raw text file for the most stable version of CMUDict
(0.7b) was downloaded from http://www.speech.cs.cmu.edu/cgi-
bin/cmudict, and saved as a MATLAB map data structure.
Also, lexical stress markers were removed as they did not affect
the subsequent analysis. Misspelled or incorrectly pronounced
words, however, need to be modified by the user. For example,
in a YouTube demonstration of a subset of PBK-50, the word
“pinch” was misheard as “kints,” which is a nonsense word. Since
CMUDict is not able to translate “kints” into phonemes, the
user is directed to the online dictionary and enters real words
such as “mints” and “key” yielding “M IH N T S” and “K IY”
respectively so that “K IH N T S,” is manually entered as the
phonemic representation of “kints”. Since the program splits its
input sentences into words, it only requires manual input for
nonsense words, not the entire sentence containing them.

Alignment
Given a paired strings of phonemes for the stimulus and
response, the next step is to align the phonemes. Algorithms
for aligning strings arise in other areas including bioinformatics
(11, 35). The goal is to minimize the distance between two
strings. The minimum edit distance (MED), based on the classic
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FIGURE 2 | Program Overview. Here, green represents input, blue represents

the core algorithm, and red represents output. The program takes a set of

stimuli and the set of corresponding responses as parameters. The stimuli and

responses are translated from words into phonemes using a digital

pronouncing dictionary. The phonemes for each stimulus-response pair are

passed into the alignment algorithm, which displays an alignment and

phoneme accuracy. Once all stimulus-response pairs have been evaluated,

graphics of phonemegram and phoneme accuracy for vowels, voiced and

unvoiced consonants are generated.

Levenshtein distance algorithm (36), computes the number of
editing operations (insertion, deletion, and substitution) needed
to transform one string to the other. Each operation is associated
with a numerical cost or weight. Here the costs are modified for
the particular case of aligning strings of phonemes. The MED is
computed by applying dynamic programming (35) to generate
an edit distance matrix which is a table of transitions from one
string to the other. A global solution is built by solving and
remembering the solutions to simpler subproblems, resulting in
an alignment with the minimum associated cost.

The first version of alignment was implemented in MATLAB
and used the Levenshtein algorithm from scLite (14) that used
simple costs−1 for insertion or deletion, 2 for substitution, and
0 for a match. These favored quick matches, sometimes aligning
a response phoneme far from any others—for example, if “bite”
was the response to the stimulus of “birds bite,” the initial “B”
consonant in “bite” was aligned with that in “birds”. As this
caused issues with longer sentences, the costs were modified
to discourage switching from a deletion (a space within the
aligned response) to an insertion or substitution (of a response
phoneme), and vice versa. As a first step toward avoiding
multiple alignments, modification was accomplished by adding
a 0.5 cost for deletion if the previous operation was insertion
or substitution, and a 0.5 cost for insertion/substitution if the
previous operation was deletion. The two exceptions are within
the substitution cost. To favor matches, the cost for a match
after a deletion or an insertion is an extra 0.2 or 0.1, respectively,
instead of 0.5. These costs are summarized in the left half of the
first row and the second and third columns of Table 2.

Initially, the algorithm was coded to generate one alignment
once the edit distance matrix was filled. However, this did
not guarantee the best alignment. Multiple alignments led to
the same MED if, for example, fewer phonemes than expected
were entered, and the algorithm aligned incorrect phonemes
in different places. Previously, the algorithm would assign each
cell in the edit distance matrix a single operation, even if
two or more operations led to the same MED. Consequently,
the algorithm would generate a single alignment, arbitrarily
based on the order of costs evaluated. By logging all of
the operations that led to the same MED in a cell of the
edit distance matrix, this single alignment was found to be
a result of these simple costs. Many alignments—even over
1000—led to the same MED. The costs were then modified
to favor substitutions for phoneme alignments that have
similar phonological features (1). Table 1 maps the following
10 phonological features to the 39 phonemes: nasality, vowel
height, manner, voicing, contour, vowel place, vowel length,
affrication, sibilance and consonant place. These features and
their subtypes (described in the caption for Table 1) are used
to deem consonant-consonant and vowel-vowel alignments
sharing all or most of their attributes as similar, and given a
substitution cost deduction to favor substitution of “similar”
phonemes. For example, a voiced “F” results in a “V”, so the
program will prefer the substitution of these two phonemes
over any other incorrect substitutions. Even after implementing
the similarity cost deductions, the algorithm often generated
several alignments, some of which were preferable to others.
To further favor alignments that represent probable errors, a
slight consonant manner cost deduction was implemented, in
order to prefer substitution between two manner subtypes such
as stops, fricatives, or glides. For example, if the algorithm
must choose between aligning the stop phoneme “K” with
the fricative “S” or the stop “P”, the algorithm will choose
to align the stops together. Details of possible consonant-
consonant, vowel-vowel and consonant manner pairs are
given in the Supplementary Data. Last but not least, vowel-
consonant substitution is heavily penalized to prevent alignment
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TABLE 1 | Phonological features of consonants and vowels based on Ladefoged and Johnstone (1).

Phonological Features (Vowels)

Phoneme Vowel height Contour Vowel place Vowel length

AA 0 1 2 0

AE 0 1 1 0

AH 1 1 1 0

AO 1 1 2 0

AW 0 2 1 1

AY 0 0 1 1

EH 1 1 0 0

ER 1 1 0 0

EY 1 1 1 0

IH 1 0 0 1

IY 2 1 0 0

OW 1 0 2 1

OY 1 2 2 1

UH 2 1 2 0

UW 2 1 2 1

Phonological Features (Consonants)

Phoneme Nasality Manner Voicing Affrication Sibilance Place

B 0 0 1 0 0 0

CH 0 4 0 1 1 1

D 0 0 1 0 0 1

DH 0 2 0 1 0 0

F 0 2 0 1 0 0

G 0 0 1 0 0 2

HH 0 2 0 1 0 2

JH 0 4 1 1 1 1

K 0 0 0 0 0 2

L 0 3 1 0 0 1

M 1 1 1 0 0 0

N 1 1 1 0 0 1

NG 1 1 1 0 0 2

P 0 0 0 0 0 0

R 0 3 1 0 0 1

S 0 2 0 1 1 1

SH 0 2 0 1 1 1

T 0 0 0 0 0 1

TH 0 2 1 1 0 0

V 0 2 1 1 0 0

W 0 3 1 0 0 0

Y 0 3 1 0 0 1

Z 0 2 1 1 1 1

ZH 0 2 1 1 1 1

Values of subtypes for vowel height are: 0 = low, 1 = mid, 2 = high; vowel place are 0 = front, 1 = central, 2 = back; contour are 0 = rising, 1 = flat, 2 = falling; vowel length are

0 = short, 1 = long; consonant manner are: 0 = stop, 1 = nasal; 2 = fricative; 3 = glide; 4 = affricate and consonant place are: 0 = front, 1 = center, 2 = back.

of consonants with vowels. With these modified costs, the
alignment should then accurately reflect the response. These costs
are summarized in Table 2.

Figure 3 shows an example of the operations used in MED
with the costs from Table 2 for aligning the response “thin” with
the stimulus “fun”. Figure 4 shows the differences between the
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TABLE 2 | Costs for each operation (left–insertion and deletion; right–substitution), depending on the previous operation.

Current operation Insertion Deletion Current operation Substitution

Previous operation Ins Sub/Del Del Ins/Sub Previous operation Sub Ins Del

Cost 1 1.5 1.5 1 Vowel-cons or vice versa 5 5.1 5.5

Consonant-consonant 1.75 1.85 2.25

Same manner consonants 1.3 1.4 1.8

Similar consonants 1.2 1.3 1.7

Vowel-vowel 0.9 0.8 1.4

Similar vowels 0.65 0.75 1.15

Match 0 0.1 0.2

The previous operation is considered in order to prefer alignments with the fewest phoneme-to-space and space-to-phoneme transitions. The left half of the first row shows the addition

of a 0.5 cost for deletion if the previous operation was insertion or substitution, and a 0.5 cost for insertion/substitution if the previous operation was deletion. The first column on the

right shows the costs for the substitutions. The second and third columns show the two exceptions for the substitution cost—to favor matches, the cost for a match after a deletion or

an insertion is an extra 0.2 or 0.1. See Supplementary Data for examples of similar consonants, same manner consonants, and similar vowels.

outputs for aligning the response “We live on the earth” with the
stimulus “These are your books” (from participant V1-HA in the
test data, see below and Table 3) from three different alignments:
the diff function first used in UNIX (37) and available in scLite,
the original Levenshtein algorithm with simple costs, and the
finalized modified algorithm. diff gave no weight to consonants
or vowels. The unmodified algorithm yielded two alignments
generated with no similarity substitution costs whereas the
modified algorithm with similarity substitution yielded just one
alignment, because “S” and “TH” are two consonants with similar
manner that are assigned a substitution cost deduction.

F1-Score
For each phoneme in each stimulus, the true positive (TP),
false positive (FP) and false negative (FN) values were used to
compute the F1-Score, or the Sørensen-Dice coefficient, which
is defined as the harmonic mean of precision (TP/(TP + FP))
and sensitivity (TP/(TP + FN)), i.e., 2TP/(2TP + FP + FN).
Consider the phoneme “K” as an example. A TP occurs when
a “K” response is matched with a “K” stimulus; a FN occurs
when not recording a “K” stimulus; a FP occurs when recording
a non-existent “K”. Figure 5 shows examples of alignments and
phoneme F1-scores for four challenging stimulus-response pairs.
The first two are examples of the consequences of insertion and
deletion [see Table 4 from (38)]. The third example is one of
phonemic ambiguity but with different alignments caused by
one substitution. The fourth illustrates the use of all three MED
operations in the alignment.

Phonemegram
Following ideas by Danhauer and Singh (29–31), Blamey
et al. (25) and others (15, 32, 39–41), an alternative way of
visualizing speech comprehension performance is to construct a
phonemegram. Specifically, a histogram of relative information
transfer for the phonological features from Table 1 over a
range from low to high frequency was created as follows.
First, confusion matrices for the consonants and vowels were
generated. Each matrix consisted of N rows of phonemes in the
stimulus set and N + 1 columns of phonemes in the response
set with the extra column reserved for unclassified phonemes

due to empty responses (40, 42). The matrices were regenerated
as several smaller ones based on the prescribed phonological
features. For example, within the vowel height feature, vowels can
be further divided into three separate categories: high, mid, and
low. In this way, the relative information transfer can be obtained
for different features. Following Miller and Nicely (43) and
others, the information transfer for each feature was computed
via IT = log (n) + Hx + Hy − Hxy where Hx, Hy, and Hxy refer
to the row (stimulus), column (response), and element entropy
respectively, while n refers to the total number of entries within
the feature matrix. The entropies are characterized by:

H =
1

n

∑

s log(s)

where s refers to either the individual elements, row sums, or
column sums of the feature matrix for computing Hxy, Hx,
and Hy respectively. Then the relative information transfer is
given by:

Hstim = −

n
∑

i=1

(

pi

ptotal

)

log

(

pi

ptotal

)

where n refers to the number of different sub-categories within
the feature, pi refers to the number of phonemes presented that
are within the given sub-category, and ptotal refers to the total
number of phonemes (regardless of subcategory). For example,
if out of 16 consonants presented, seven are voiced and nine are
unvoiced, then Hstim = − (7/16) log (7/16)− (9/16) log (9/16).

Output
For each stimulus-response pair, the program displays the best
alignment, as well as the unique phonemes in the stimulus and
their F1-scores. After all responses are analyzed, the program
generates three plots showing the averaged F1-scores (expressed
as percentages) for individual phonemes with respect to the
classic two dimensional representation of phonological features
(1). In these plots, the averaged F1-score is color-coded and
assigned at the (x, y) coordinates corresponding to the place (x)
and manner or vowel height (y) for each phoneme. A color bar
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FIGURE 3 | The response phonemes are placed on the top row of the edit distance matrix, while the stimulus phonemes are on the left column. Each square

represents the minimum edit distance (MED) for the substrings on each axis, and shows what operation was executed to get to that MED (←− is insertion, ↑ is

deletion,տ is substitution). Left: These squares (comparing all substrings of response or stimulus sentence to an empty string) are filled in first, to provide base cases

for the rest of the matrix. The MED between an empty string and any string of length n is equal to n. Middle: The highlighted square finds the MED between the

response of “TH IH” and the stimulus of “F AH.” It does this by building on the squares of the matrix that have already been filled. Insertion entails aligning the IH with a

space (cost 1.5) and adding onto the optimal alignment of “TH” and “F AH” (cost 2.8), for a total cost of 4.3; deletion aligns a space with the AH (1.5) and adds onto

the alignment of “TH IH” and “F” (2.8), for a total cost of 4.3; substitution aligns the IH with the AH (0.9) and adds to the alignment of “TH” and “F” (1.3), for a total cost

of 2.2. The substitution cost is the lowest, so the matrix records the cost of 2.2 and the substitution operation. Right: Once the entire matrix has been filled, the

algorithm finds how it generated the MED by tracing back the recorded operations. In this case, the MED of “TH IH N” and “F AE N” is 2.2, and the alignment consists

of three substitutions.

shows the range from 0 to 100 for the F1-score. A fourth plot
shows the phonemegram with the relative information transfer
for each feature computed as a percentage. Histogram bars are
color-coded corresponding to the frequency ranges associated
for the features: black was assigned to low frequency for
nasality, vowel height, manner and voicing; dark blue assigned
to medium frequency for the vowels–contour, vowel place, vowel
length; light blue to medium frequency for the consonants–
affrication; and white to high frequency for the consonants–
sibilance and place.

Datasets
Two datasets were used. One dataset consisted of test data at
sentence and word levels. For the sentences, six volunteers with
hearing loss recorded their responses to stimuli. In 2017, four
people with various degrees of hearing loss tested the alpha
version of the Speech Banana iPad app for auditory training (10);
testing was approved by JHU Homewood Institutional Research
Board Protocol HIRB00001670. Specifically, the volunteers
provided their responses to different sets of 30 sentences recorded
in Clear Speech (44) by male and female American English
speakers, extracted as WAV audio files from the app which is
based on an auditory training book (45). At the same time,
two clinical audiologists who also use cochlear implants donated
their responses to 19 sentences from AzBio lists #1 and #6
(8) with stimuli presented at 60 dB SPL with 12-talker babble
at 50 dB SPL. For the words, stimulus-response pairs were

obtained from three sources: a) MSTB [page 12 in (9)], b)
List 1 of PBK-50 (2, 46) with the “kints” response to “pinch”
observed in a YouTube video clip (https://www.youtube.com/
watch?v=GPRwA9BG-m4), and c) erroneous responses to AB
word lists (3) by several adults with hearing loss [Table 1-1
in (47)] including the “she’s” response to “cheese”. The other
dataset consisted of stimulus-response pairs of 31 participants
(age range: 22–79 years), each listening to 16 lists of 25 Basic
English Lexicon (BEL) sentences (48) at four different SNRs (0, 5,
10, quiet) obtained from speech perception experiments (49, 50);
these lists are akin to and more extensive than the BKB-SIN lists
(51). For this dataset, protocols (8804M00507) were approved by
the Institutional Review Board of the University of Minnesota,
and all participants provided written informed consent prior
to participating.

Validation
The large dataset of 12,400 actual stimulus-response pairs from
31 participants listening to 400 sentences is used to validate the
program. A set of 12,400 random pairs is created by randomizing
the responses such that none of the actual pairs are replicated.
Following similar approach (15, 17), three computations are
performed. First is a frequency histogram of sentences with the
number of correct phonemes in the response (indicated by the
number of TPs in the calculation of the F1-scores). Second is the
entropy or uncertainty for each of the 39 phonemes obtained
from the two confusion matrices for the consonants and the
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FIGURE 4 | Comparison of three different alignment algorithms for a stimulus-response pair taken from test data V1-HA (see Table 3). (A) The alignment generated

by the UNIX diff function. The function gives no weight to consonants or vowels, and has no issues with aligning consonants with vowels and vice versa, as shown by

the bolded area. (B) Multiple alignments generated by primitive algorithm, with no similarity substitution costs. Although the most of the response matches the

stimulus, the algorithm generated two alignments with the same MED. (C) With the similarity substitution cost implemented, the algorithm generates only one

alignment, because S and TH are produced in a similar manner, and therefore have a substitution cost deduction.

vowels used for the phonemegram. Similar to above, the entropy
is calculated as −

∑40
k=1 pk log2 pk where k sums over all the

response phonemes as well as unclassified ones due to empty
responses (40, 42). Third is the information transfer for the same
ten phonological features used in the phonemegram.

RESULTS

The results from the two datasets are shown in Table 3,

Figures 6–11, and Supplementary Figures 1–4. Figure 6

provides the desired visual representation of results in Figure 1

from the two examples from the CNC word list (from the
MSTB manual) and AzBio List #6 (by one of the two clinical
audiologists with a cochlear implant). Figure 7 shows results
for one person with profound congenital bilateral hearing loss
(V1), aided bimodally with a cochlear implant and a hearing aid
(top), unilaterally with just the cochlear implant (middle), and
unilaterally with just the hearing aid (bottom). Figure 8 shows
results for one person with severe hearing loss (V2) without
using an in the canal hearing aid (top) and one person with

partial but progressive hearing loss (V3), aided with bilateral
hearing aids since childhood (bottom). Figure 8 should be
compared with Supplementary Figure 1 showing near perfect
results from V2 aided with the in the canal hearing aid (top),
one person with severe progressive hearing loss (V4, middle)
who has been using bilateral hearing aids for a few years and
the other clinical audiologist (V5, bottom). Figure 9 shows
the results from the two other word lists. Table 3 reports the
number of total and correct sentences, words and phonemes for
the test and validation datasets, with the last column indicating
that the program is able to give comprehensive results in real
time; note that the one case of manual intervention, such
as entering the phonemes for nonsense responses, resulted
in a slightly longer run time. Limiting the analysis to only
incorrect stimulus-response pairs did not drastically alter the
visualization of phoneme accuracy. Of the 361 stimulus-response
pairs used for Figures 6–9, there were just two instances of
double alignments. Figure 10 visualizes the pooled results of the
responses from 31 participants with cochlear implants listening
to lists of BEL sentences as spoken by different talkers at different
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TABLE 3 | Number of sentence or word stimuli and their responses with the program run time for the examples shown in Figures 6–11 and

Supplementary Figures 1–4.

Participant Figure Stimuli

dataset

# Stimulus

sentences

# Correct

response

sentences

# Stimulus

words

# Correct

response

words

# Stimulus

phonemes

# Response

phonemes

Time (secs)

V1 - CI+HA 7 SB 30 13 165 122 490 483 6.5

V1 - CI 7 SB 30 12 162 101 484 446 4.3

V1 - HA 7 SB 30 0 160 36 488 317 4.0

V2 - CIC HA S1 SB 30 28 164 159 470 473 3.5

V2 - No HA 8 SB 30 11 153 66 458 211 3.3

V3 – HA 8 SB 30 9 160 108 488 378 3.5

V4 – HA S1 SB 30 27 164 158 470 473 3.3

V5 – CI S1 AzBio#1 19 11 146 128 527 515 3.3

V6 – CI 6 AzBio#6 19 3 138 64 492 396 3.2

Anonymous 6 CNC 50 23 150 148 3.0

Anonymous 9 PBK 25 7 69 82 7.0

Several 9 AB 38 0 114 118 2.8

Actual (N = 31) 10,11, S2-S4 BEL 12,400 4,310 74,245 43,514 281,480 212,584 364.5

Random (N = 31) 11 BEL 12,400 3 74,245 7,424 281,480 212,584 358.8

CI, cochlear implant; HA, Hearing Aid; CIC, Completely in Canal; SB, Speech Banana; AB, Boothroyd.

SNR levels; the runtimes for the individual participants shown
in Supplementary Figures S2–S4 ranged from 9.3 to 22.7 secs.
Figure 11 shows the validation results by comparing 12,400
actual and random stimulus-response pairs in three different
ways. There were just 45 instances of double alignments from the
actual pairs. MATLAB scripts including the stimulus-response
pairs used to generate these figures (except the validation
data) are available from https://github.com/SpeechBanana/
SpeechPerceptionTest-PhonemeAnalysis.

DISCUSSION

In this pilot study, an automated program for visualizing
phoneme accuracy in speech perception tests has been
developed and implemented. Two key features are the use
of a digital speech pronouncing dictionary for automated
derivation of the phonemes from stimuli and responses, and
the modification of the Levenshtein minimum edit distance via
dynamic programming for automated alignment of phonemes.
Traditionally, speech pronouncing dictionaries have been used
in speech recognition research for purposes such as aligning
phonemes in speech-to-text translation (38). Here, the open
source CMUDict is used for aligning phonemes in text-to-text
comparison. The program is able to parse results (Figure 1) from
standard speech tests at the phoneme level (Figure 6) in a robust,
efficient, flexible and fast manner.

Several observations can be made. First, there is a benefit
from amplification which, however was not an aim of this work.
Second, while the averaged F1-scores are informative overall,
the phonemegram analysis of the sentences appear to provide
less information than that for the word tests which, could
be attributed to significant top-down or contextual processing
when presented with sentences. Third, there is potentially more

information provided by the analysis of phonemes than just the
number of correct sentences, words or even phonemes. Here
accuracy is viewed in two different ways. The first shows the
consequences of inserting, deleting and substituting phonemes
and the second shows the perception of the phonological features.
Such information about phonemes could help guide auditory
training either in the clinic or at home.

A few things can be observed from the validation experiments.
First, the likelihood of having five or more exactly matched
phonemes for a randomized pair is low (∼44%) compared with
that for an actual pair (∼83%). Second, actual responses can be
distinguished from the randomly assigned ones. Third, there is
higher uncertainty in response phonemes from random pairs
(with a difference of about 1–1.5 bits across all phonemes).
Fourth, very little information for the features can be discerned
from the randomized pairs. Fifth, the tail of the distributions
for actual pairs is higher due to better speech comprehension
with cochlear implants even across different SNR levels while
the tail for random pairs is influenced by a combination of
duplicated pairs and mismatches of just a few words. These
observations suggest that the program is robust to the nature of
the stimulus-response pairs.

Although automated alignment of phonemes have been used
for evaluation of speech recognition systems (52, 53), this study
is not the first reported use of automated alignment of phonemes
to study speech comprehension by people with hearing loss. The
earlier work of Bernstein and colleagues (15–18) mainly focused
on lipreading i.e., comprehension via audiovisual stimuli for
people with normal hearing and hearing loss and only recently
has this focus moved to listening to speech in noise by people
with normal hearing (22). Alignment of phonemes via dynamic
programming was also used by Ghio and colleagues (19–21)
to develop intelligibility metrics for atypical speech. Therefore,
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FIGURE 5 | Four examples of alignments and phoneme percent accuracy. The first example shows insertion of the phonemes N and D. The second example shows

deletion of the phoneme F. The third example shows substitution of the AE phoneme (æ) for the AH phoneme (

e

). The fourth example has all three minimum edit

distance operations within its alignment.
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FIGURE 6 | Visual representation of the two typical examples of scoring in the clinic shown in Figure 1. The results from the CNC word list and AzBio List #6 are

shown on the left and right respectively. See Table 3 for details.

it is helpful to discuss similarities and differences between
these approaches in four areas: pronunciation dictionary, costs,
alignment and metrics.

CMUDict is open-source and has more than 134,000 words,
which is an order of magnitude larger than 35,000 words in
PhLex used by Seitz, Bernstein, Auer Jr, and MacEachern (54).
Words not in CMUDict were manually parsed and entered
in the CMUDict website to yield the phonemic string while
a rule-based transcription system was used by Bernstein et al.
(22). Ghio et al. (20) used a French based pronunciation
dictionary (55).

The costs in Table 2 are essentially ad hoc, having evolved
from the open-source scLite software used for the Levenshtein
algorithm. It is worth noting that Bernstein (15) and Bernstein
et al. (17) initially used ad hoc costs which were fixed with
perceptually based costs. Costs for vowel-vowel, consonant-
consonant and same consonant manner alignments were
modified based on having similar phonological features. In fact, a
similar approach has been adopted by Ghio and colleagues (19–
21) and Kondrak (56, 57) who used Hamming distance matrices
for vowels and consonants based on deviations from features
for the costs used by dynamic programming for analyzing
atypical speech and different languages, respectively; Ruiz and
Federico (38) used a similar approach with constraints for
vowels and consonants in analyzing speech translation. The
Supplementary Data shows that the phoneme pairs deemed to
be similar can actually be derived by thresholding the distance
matrix for the vowels and the stratified distance matrices for
the consonants. It should then be possible to make formal use
of these distance matrices. While voicing was not explicitly
used in setting costs, it was actually used to determine the
costs for consonant-consonant substitution pairs. As described in
the Supplementary Data, the sibilant consonants were grouped
and then non-sibilant consonants were stratified based on first

manner, then place and voicing. In contrast, Bernstein et al. (22)
perceptually computes costs based on the Euclidean distance
between two phonemes derived from multidimensional scaling
of confusion matrices for consonants and vowels from people
with normal hearing. Since further work should compare the
feature- and perceptual- based approaches, this work should be
considered as a pilot study.

The use of modified costs in MED operations to align the
phonemes in Figure 2 should be contrasted with that in Figure 1

in Bernstein (15). Usually, MED operations yield multiple
alignments (Figure 4); see also Bernstein et al. (17) and Figure 2

in Bernstein (15). In this work as well as the recent work by
Bernstein et al. (22) and Ghio et al. (20), single alignments
are achieved in virtually all cases which may be attributed to
the use of costs derived from the distance matrices. About
0.6% of the stimulus-response pairs in both test (n = 2) and
validation (n = 45) datasets yielded multiple—actually double—
alignments. In the rare case of double alignments, the user is
given the manual option of choosing the best one; by default, the
program selects the first of the two alignments. It is remarkable
that only double alignments occurred; in fact, more than two
alignments occurred when a lower cost of two instead of five
for consonant-vowel substitution was used. Inspection of the 45
stimulus-response pairs from the validation dataset that yielded
double alignments suggests that these arise depending on the type
of the response. The response may be nearly complete such that
the alignment cannot decide between two similar phonemes, or
a purely random guess, or a combination of correct and random
words. This is actually borne by instances of double alignments
from 2.5% (n = 305) of the randomized stimulus-response pairs
from the validation dataset. Avoidance or significant reduction of
multiple alignments using feature-based costs were also observed
in a comparative study of Dutch dialects (58). As this work is
a pilot study, further work should explore differences accrued
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FIGURE 7 | Results for V1 with both cochlear implant (CI) and hearing aid (HA)

(top), CI only (middle) and HA only (bottom) in response to a set of 30

sentences extracted from Speech Banana auditory training app. See Table 3

for details.

from feature-based ad hoc and perceptual-based costs. These
differences might be reflected by comparing the alignments for
12 stimulus-response pairs listed inTable 1 of Bernstein et al. (22)
with those produced by the program in the Supplementary Data.
Theremay be problemswith sparse responses such asmisaligning
one response phoneme in a correct word with the stimulus
phoneme in a different (as in a preceding) word, ironically
without loss of accuracy so future work should incorporate
costs for boundary detection (38). These problems are likely not
to occur with word lists or nearly complete sentences which
may be more helpful in pinpointing areas of weaknesses for
auditory training. Others have used MED for aligning phonetic
transcriptions of words based on phonological features (59) and
fuzzy stringmatching with a novel metric for sentences (60), both
of which are available as open source. Future work should also
explore using costs from confusion matrices from people with
normal hearing listening to sentences as opposed to words.

In this work, two sets of commonly usedmetrics are used. One
is the F1-score which is a function of true positives, true negatives
and false positives for each phoneme and visualized with respect
to manner, place and voicing for consonants and height and
place for vowels. The other is the relative informationtransfer
or entropy for each of the 10 phonological features used to
construct the phonemegram. In contrast, the recent work of
Bernstein et al. (22) proposed mining three metrics to analyze
listening by people with normal hearing to speech in noise. These
were (i) phoneme substitution dissimilarity, which measures the
perceptual distance between separate stimulus phonemes and
all incorrect phonemes in the response, (ii) number of words
correct, and (iii) number of insertions. The former is obtained
from dividing the sum of the phoneme-to-phoneme costs for
incorrect substitutions by the number of substitutions. The latter
is obtained by the count of the number of phonemes that could
not be aligned as substitutions. In contrast, the program did not
save these types of data except for the number of true positives
needed for the validation study (Figure 11, top left). It is argued
that due to different manipulations of intrinsic data the two
different set of metrics are probably related in some way or
other. Furthermore, in analyzing people with speech disorders,
Ghio et al. (20) used the distance between the expected and
actual sequence. As this is a pilot study, future work would be
necessary to uncover and explore these relationships particularly
in a comparison i.e., statistical study.

Care must be taken to interpret the accuracy for phonological
features. Take, for example, analysis of several people with
hearing loss in the bottom panel of Figure 9. The near-perfect
scores for vowel height, contour, and vowel place may seem
inaccurate but the phonological analysis of the vowels show
an inability to identify IY and IH. Since these vowels are
grouped for the vowel height, contour, and vowel place features,
accuracy for identifying phonemes with these features remains
at 100%. In other words, even though there may have been
confusion between IY with IH, since both are identical with
respect to their categorization within the vowel height, contour,
and vowel place feature groups, the responses showed the ability
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FIGURE 8 | Results for V2 without in the canal HA (top) and V3 (bottom) with HA responding to different sets of 30 sentences extracted from Speech Banana

auditory training app. See Table 3 for details.

to detect those features at a high rate. Similarly, for the PBK-
50 test (Figure 9, top), since the non-nasal consonants are still
categorized as the same the nasality feature is recorded perfectly.

The availability of datasets from recently published
experiments provided an opportunity to assess the potential

use of phoneme alignment in these experiments. For
example, O’Neill et al. (49) recorded the BEL sentences
using four different talkers, as well as developed and
recorded 20 lists of nonsense sentences derived from the
BEL corpus. These stimuli were used in speech perception
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FIGURE 9 | Results for output from two different word tests: PBK-50 (top) and AB (bottom). See Table 3 for details.

experiments involving people with normal hearing and
hearing loss (49, 50). The visualization of phoneme
accuracy from Supplementary Figures S2–S4 for one
experiment (50) provides potentially more information

than the reported percentage of correctly identified keywords
in sentences.

By construction, the phonemegram offers a different
perspective of speech comprehension based on phonological
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FIGURE 10 | Analysis of the stimulus-response pairs pooled from the O’Neill et al. (50) study of 31 participants with cochlear implants listening to 16 lists of 25

sentences as spoken by four speakers at four different SNR levels. Analysis from the individual participants is shown in Supplementary Figures 2–4. See Table 3 for

details.

features of the phonemes, specifically information transfer
of features with respect to a frequency range, as used in the
Infogram for hearing aid fitting in tele-audiology (23–25).
Information transfer analysis has also been adopted (32, 39) who
compared low frequency phonemes (diphthongs, semivowels,
and nasals) to high frequency phonemes (sibilants, fricatives,
bursts, and plosives). The frequency aspect of the phonemegram
may be complemented by the averaged F1-scores for the
vowels based on the inverse relationship between place from
back to front (manner from high to low) and the 1st (2nd)
formant (1). Further, the phonemegram can compensate for the
absence of variance for the F1-scores since it records just the
information transfer for a feature. It is important to provide
enough repetitions for each phoneme, otherwise the transmitted
information estimate becomes highly erratic and overestimates
the stimulus information on average (43, 61). Accumulating
responses over time is one way to overcome bias and error which
might be useful in mobile apps for auditory training (10). In
this case, it may be necessary to use bootstrapping to generate
confidence intervals (62). Furthermore, since non-symmetric
confusion matrices have been considered in analysis of speech
perception by people with hearing loss (40, 42), it is reasonable
to consider non-classified phonemes accruing from empty
responses. Further work could consider a more appropriate
alternative visualization by generating 3D plots of F1-scores for
each phoneme with respect to the first three formants.

A challenge for testing the program was obtaining examples
of stimulus-response pairs from people with hearing loss.
Fortunately, the program was developed at the same time as
the development of the Speech Banana mobile app for auditory
training which allowed for testers to provide valuable data. In
this era of digital hearing health, there is a great need for raw
data such as stimulus-response pairs from scientific studies to be
made available publicly in the same way as human neuroimaging
data are now being made available for the scientific community
(63, 64). The use of the data from recently published speech
perception experiments is a step in that direction.

The program has several other advantages. First, though
currently implemented in Matlab, the program can be
implemented in Python, Javascript or even R. Second, it
could be self-administered or used in telepractice by people with
hearing loss, who are learning to hear with a new hearing aid
or cochlear implant. Results are saved over time for feedback
with the speech language pathologist or audiologist. Third,
the program could be integrated with inputs from NU-6,
CUNY, Az-Bio, HINT or BKB for real-time quantification
in the clinic; further, the program could be integrated with
more challenging tests such as Az-TIMIT (65), STARR (66)
and PRESTO (67). Fourth, as implied by the Infogram, the
phonemegram may offer audiologists a frame of reference for
the ability of the person with hearing loss to perceive speech
at different frequencies. Fifth, the visualization of phonemic
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FIGURE 11 | Results of program validation by comparing actual and random 12,400 stimulus-response pairs from the O’Neill et al. (50) study of 31 participants with

cochlear implants listening to 16 lists of 25 sentences as spoken by four speakers at four different SNR levels. Top left compares the frequency histograms of stimuli

with the number of correct phonemes in the response. Top right compares the entropy or uncertainty for the phonemes. Bottom compares the relative information

transfer for the ten phonological features used in the phonemegram.

accuracy may offer speech language pathologists a perspective of
how the person with hearing loss processes different phonemes,
in order to develop a targeted auditory training program.
Sixth, the program can be used for educational purposes.
For instance, it was used in the past few years for assessing
responses by biomedical engineering undergraduates at Johns
Hopkins University doing the Speech Perception module of
the Neuroengineering Lab in which they listened to sentences
in simulations of different types of hearing loss, number of
channels in a cochlear implant, and frequency offsets in a
cochlear implant.

There are also several disadvantages. Many people with
hearing loss use top-down processing such as using contextual
information to fill in words misheard in sentences (50, 68–71), so
accuracy of responses to sentences may be overestimated. In fact,
this may explain the small differences between the information
transfer values for the features with the sentences in the test

cases. As alluded above, word lists may be more practical in
the clinic (Figures 6, 9). Differences in stresses and emotion
may influence perception (72) and therefore, might require using
lexical stress information, if available, from the pronouncing
dictionary. Finally, the program may not be suitable for people
with very poor speech comprehension as they are more than
likely to make random or very sparse guesses that may then
confound phoneme alignment. For example, the last stimulus-
response pair in Figure 5 yielded alignment that was erratic with
respect to the first part of the stimulus due to the volunteer having
greater difficulty hearing with just the hearing aid instead of
bimodal hearing. Incidentally, this is a good example of a person
with hearing loss finding it difficult to process the early part of a
stimulus compared with the rest of the stimulus (71).

Future work includes feasibility for clinical usage, user-
friendly implementation for mobile auditory training apps such
as Speech Banana (10), and exploring alternative approaches
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such as multidimensional scaling for features (29, 30) as
opposed to prescribed ones, other features (69) and other
metrics (6, 16, 73).
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