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1 Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Amazonas, Brazil, 2 Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil, 3 Faculdade de Medicina de

Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil, 4 Fundação de Medicina Tropical do Estado do Amazonas, Manaus, Amazonas, Brazil

Abstract

Background: Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is,
with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not
suited for observational data – particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus
(MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses
for arboviral infection risk factor assessment.

Methodology/Principal Findings: A cross-sectional survey of anti-MAYV antibodies revealed 44% prevalence (n = 270
subjects) in a central Amazon rural settlement. NHT suggested that residents of village-like household clusters and those
using closed toilet/latrines were at higher risk, while living in non-village-like areas, using bednets, and owning fowl, pigs or
dogs were protective. The ‘‘minimum adequate’’ SWR model retained only residence area and bednet use. Using MMI, we
identified relevant covariates, quantified their relative importance, and estimated effect-sizes (b6SE) on which to base
inference. Residence area (bVillage = 2.9360.41; bUpland = 20.5660.33, bRiverbanks = 22.3760.55) and bednet use
(b = 20.9560.28) were the most important factors, followed by crop-plot ownership (b = 0.3960.22) and regular use of a
closed toilet/latrine (b = 0.1960.13); domestic animals had insignificant protective effects and were relatively unimportant.
The SWR model ranked fifth among the 128 models in the final MMI set.

Conclusions/Significance: Our analyses illustrate how MMI can enhance inference on infection risk factors when compared
with NHT or SWR. MMI indicates that forest crop-plot workers are likely exposed to typical MAYV cycles maintained by
diurnal, forest dwelling vectors; however, MAYV might also be circulating in nocturnal, domestic-peridomestic cycles in
village-like areas. This suggests either a vector shift (synanthropic mosquitoes vectoring MAYV) or a habitat/habits shift
(classical MAYV vectors adapting to densely populated landscapes and nocturnal biting); any such ecological/adaptive
novelty could increase the likelihood of MAYV emergence in Amazonia.
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Introduction

Arboviral infections are a major global public health concern;

dengue is the most widespread, but other viruses in the families

Flaviviridae, Togaviridae or Bunyaviridae are also emerging worldwide

[1–3]. A solid understanding of the epidemiology of emerging

arboviral diseases is crucial for the development and operation of

functional control/surveillance systems [2,4]. However, except for

dengue virus (e.g., [5–7]) and a few other arboviruses (e.g., [8–10]),

risk factors for infection remain poorly understood.

Apart from overall neglect resulting in fewer epidemiological

studies than would be needed [11], poor data analysis and

presentation in published reports also hinder our understanding of

arboviral infection risk factors. On the one hand, most reports are

merely descriptive, thus precluding formal inference; on the other,

infection survey data are often analyzed with inadequate statistical

techniques. In particular, null hypothesis-testing (NHT) statistics

and step-wise regression (SWR) analysis have been repeatedly

criticized for their many drawbacks in the analysis of observational

data (e.g., [12–17]).

Among the major practical shortcomings of NHT is the fact that

p-values provide no information on the size, direction, or precision

of effect estimates; such estimates, in the form of, for instance,

regression slope parameters or odds ratios (with their associated

standard errors and/or confidence intervals), are central to

inference [12–17]. In addition, NHT p-values represent the

probability of the observed (or more extreme) data, given the

(presumably false) null hypothesis [13,17]. As Jacob Cohen put it,

this is not ‘‘what we want to know’’; rather, we want to know, at

least, how likely the null hypothesis is, given the data (ref. [13],
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p. 997). Taking this argument a little further, we aim to examine

the likelihood of (or strength of evidence for) several alternative,

plausible hypotheses by confronting them with empirical data [17–

20]. In epidemiology, this is often accomplished with the aid of

statistical models. Since several candidate covariates (putative risk

factors and confounders) are usually examined in different

combinations, model selection procedures are used to ‘retain’

only those that appear as important in a final, ‘minimum adequate

model’ on which inference is then based. The most widely used of

these procedures apply step-wise algorithms in which NHT-

derived p-values are used to decide whether a particular covariate

should be retained or dropped from the model [16]. Apart from

relying on a mechanical application of p-values from multiple null

hypothesis tests, step-wise procedures can lead to biased parameter

estimates and disregard the variance component due to model

selection uncertainty [15,16,18–20]. A framework for inference

based on likelihood and information theories has been developed

that avoids many of the pitfalls of NHT and SWR; it relies on

comparing multiple models, representing alternative a priori

hypotheses, based on both their fit to the data and their complexity

[15–20]. Multimodel inference (MMI) then proceeds by examin-

ing model-averaged effect-size estimates for all the covariates of

interest [15,19,20]. These approaches are being increasingly

applied in infectious disease epidemiology (e.g., [21–23]), but

have seldom been used for assessing emerging arboviral disease

risk [8–10,24–26].

Here, we analyze data from a cross-sectional serological survey

on Mayaro virus (MAYV) infection as a case-study to illustrate

how MMI can enhance arbovirus infection risk factor analyses.

MAYV is an alphavirus transmitted primarily by diurnal, canopy-

dwelling mosquitoes of the genus Haemagogus [3,27]. It causes an

acute, dengue-like febrile illness accompanied by rash and severe

arthralgia that is often highly incapacitating [3,27–29]. MAYV

infection is a candidate for emergence as a major public health

problem, much in the way it recently happened with the closely-

related chikungunya virus when it adapted to urban Aedes

mosquitoes [3,30,31]. However, available epidemiological evi-

dence suggests that MAYV transmission is largely restricted to

sylvatic cycles involving non-human vertebrates, with limited

spillover to human hosts who make frequent use of forest habitats

in tropical South America [3,4,27–29,32–37]. Such a scenario

implies that MAYV infection risk must be higher among human

groups living or working regularly in well-preserved, forested

landscapes than among those living in degraded landscapes or

rarely entering forest habitats (e.g., children). Here we use MAYV

serology (IgG) data to test this prediction. Furthermore, we

compare the performance of NHT, SWR, and MMI at identifying

and quantifying risk factors for MAYV infection in a typical

central Amazon rural setting.

Methods

Ethics statement
This study was approved by the Fiocruz Institutional Review

Board, Brazil (Protocol 384/07); all participants gave written

informed consent. Laboratory procedures involving mice followed

the guidelines of the Brazilian National Council for the Control of

Animal Experimentation (CONCEA) and were approved by the

Institutional Review Board for Animal Research of the School of

Medicine, University of São Paulo at Ribeirão Preto, Brazil

(Protocol 115/2008).

Study setting
In the context of a study on infectious disease ecology in the

central Brazilian Amazon, we conducted a cross-sectional

serological survey (see Text S1) in a rural settlement of the

agricultural frontier. The settlement (N = 583 inhabitants in 158

households within a terra firme rain forest matrix) is located

,150 km north of Manaus (,1u489S; 60u199W) and consists of

two village-like household clusters (30650 m plots for a house with

courtyard) plus extensive upland and riverbank areas with

scattered households (in ,25062000 m farm plots) and hence

lower population density; old-growth forests comprise most of the

,280 km2 of the settlement. Typical upland houses are located in

large forest clearings used for farming, whereas most riverbank

houses, which have only boat access, are located in smaller

clearings within better-preserved forest. To the north and west, the

settlement shares boundaries with a large indigenous reserve

composed of pristine forests. Agriculture is the most important

economic activity in the settlement; the main crops are banana,

manioc, papaya, black beans, rice, maize, and the native cupuaçu

(Theobroma grandiflorum) and pupunha (Bactris gasipaes). Most of the

harvest is consumed within the community. Only a few settlers

raise cattle for commercial purposes, but many families breed

other domestic animals (mainly fowl and pigs) for their own use;

dogs and cats are common. Forest extractivist products include

timber, Brazil nuts (Bertholletia excelsa), and a variety of medicinal

herbs. Non-commercial hunting and fishing are also relatively

common.

The allochthonous dengue vectors, Aedes aegypti and Ae. albopictus,

have never been collected in longitudinal mosquito studies

conducted in this remote settlement. At the time of our survey,

Culex (Culex) and Cx. (Melanoconion) were the dominant mosquito

subgenera in the village-like clusters, although Psorophora, Anopheles,

and Coquillettidia were also present. Haemagogus, Sabethes, Ochlerotatus,

Wyeomyia, and Trichoprosopon were only recorded in forest sites,

whereas Aedeomyia, Mansonia, and Uranotaenia occurred only in

Author Summary

Several emerging diseases are caused by little-known
vector-borne viruses; only limited information is available
about what factors modulate the risk of infection. One
major drawback is that infection survey data are often
analyzed with inadequate statistical techniques. As a
result, inconsistent or flawed conclusions/recommenda-
tions may be put forward. Here, we investigate Mayaro
virus (MAYV) infection risk factors in a rural Amazon
settlement, and compare conclusions drawn from conven-
tional data analyses with conclusions drawn from a
superior analytical approach based on multimodel infer-
ence. Conventional analyses suggest that MAYV risk is
higher in densely populated areas and among people not
using mosquito bednets; since MAYV vectors are diurnal,
forest-dwelling mosquitoes, these results are surprising.
Multimodel inference reveals that owning a forest crop-
plot is also an important risk factor, together with no
regular bednet use and several landscape and household
traits. Overall, these results suggest that two different
MAYV cycles, one typical (diurnal, linked to forest
landscapes) and one atypical (nocturnal in densely
populated landscapes), might co-occur in the settlement.
By revealing subtle associations that conventional risk
factor analyses miss, multimodel inference can help foster
our understanding of emerging infectious disease epide-
miology, which will in turn enhance disease control/
surveillance systems.

Mayaro Virus Risk Factors in Amazonia
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crop-plots; Anopheles, Culex, Psorophora, and Coquillettidia were

present in all three environments (SLBL, unpublished data).

Serology
Finger-prick bloodspots from 270 randomly selected subjects (83

households: 42 in upland, 26 in village-like, and 15 in riverbank

areas) were collected onto filter paper in 2007; the sample was

representative of the community and ensured 0.05 precision for an

expected prevalence of 50% (required sample size, finite popula-

tion correction: n = 232). Sera were tested for anti-MAYV IgG

antibodies using an enzyme-linked immunoassay with infected

cultured cells as antigenic matrix (EIA-ICC), following procedures

described elsewhere [38,39]. Briefly, Aedes albopictus C6/36 cells

were cultured in Leibovitz L-15 medium with bovine fetal serum

(Invitrogen), penicillin, and streptomycin. Cells were infected with

lyophilized baby mouse infected brain tissue resuspended in PBS;

cells and virus suspension were incubated for 3–4 days at 28uC.

Infected and uninfected (negative control) cells were transferred to

TPP tissue culture plates (Sigma-Aldrich), which were incubated at

28uC for 24 h. A formalin solution was then added (18 h at 4uC)

and wells washed with PBS. Non-specific binding sites were

blocked for 1 h at 37uC with skim milk (5% plus 0.05% Tween-20

in PBS). Eluted serum samples (100 mL) were then added to each

well pair (one with and one without viral antigen); mouse immune

ascitic fluid was used as a positive control. Plates were then

incubated (1 h, 37uC) and washed; 100 mL of 1:200 peroxidase-

labeled anti-human (test wells) or anti-murine (positive control

wells) IgG antibody (KPL Inc.) were added to each well. Plates

were again incubated at 37uC for 1 h, washed, and 50 mL of

ABTS peroxidase substrate (KPL Inc.) were added to each well;

after 15 min at room temperature, enzyme activity was blocked

with 50 mL H2SO4, and plates read in a spectrophotometer at

450 nm. In each plate, absorbance values (test well minus paired

negative control well) were averaged (â) and the standard deviation

(SD) calculated; the plate cut-off value for positivity was â+3SD.

Covariates
Participants were interviewed for information on three groups of

putative risk factors and/or confounders:

(i) individual-level traits: age (years), gender (male/female), and

regular bednet use (yes/no);

(ii) household-level traits: residence area within the settlement

(village-like clusters, riverbanks, upland); basic sanitation

(since there was no sewage system in the settlement, this

covariate described whether or not there was a closed toilet/

latrine in the household; yes/no); adequate solid waste

disposal (yes/no; here, ‘adequate’ means that waste was

eliminated from the household’s surroundings, mainly by

burying/burning it at a sufficiently large distance); and

ownership of a crop-plot – locally known as roça and usually

located in forest clearings (yes/no); and

(iii) whether or not domestic fowl, dogs, cats, or pigs, which may

represent bloodmeal sources for female mosquito vectors,

were reared or kept near the household (yes/no for each

one).

Data analyses
We first screened the dataset for associations between anti-

MAYV seropositivity and putative risk factors with NHT statistics,

using either Fisher’s exact tests or likelihood-ratio (LR) x2 tests

from bivariate logistic regression. At this stage, we also checked for

correlation between potential predictor variables. If any pair of

covariates proved to be highly correlated, we planned to retain

only that for which a clear hypothetical relationship with MAYV

transmission could be specified; however, all correlation coeffi-

cients were ,0.30 (details not shown).

We then adopted the SWR approach [16] that has become the

conventional standard in risk factor analysis (e.g., for arboviruses,

[5,7,40–43]). Starting with a saturated, additive logistic model

including all covariates for which NHT suggested a correlation

(defined a priori as those with bivariate p#0.10), we removed, at

each step, the covariate with the largest p-value (from LR tests)

until all covariates in the final, ‘minimum adequate’ model [16]

had p-values,0.05.

Finally, we implemented a MMI strategy (see refs. [18–20] for

details) including the following steps:

(i) fitting three subsets of models with only individual-level,

only household-level, and only domestic animal covariates;

(ii) selecting unequivocally important covariates, as quantita-

tively assessed by their relative importance (see below) for

predicting seropositivity status in each subset;

(iii) specifying and fitting the complete set of additive logistic

regression models for the selected covariates (i.e., an all-

subsets approach);

(iv) back-checking that none of the covariates excluded after

step (ii) improved the performance of the models with

substantial support from the data identified in step (iii); and

(v) estimating weighted mean effect-sizes (see below) and the

relative importance of each covariate based on the final

model set.

Logistic regression models were of the simple general form

logit p seropositiveð Þ~azbicovi,

where a is the intercept and bi represents the effect of covariate i

(covi) on the (logit-scale) probability that a subject is MAYV-

seropositive. Models were fit in JMP 9.0.0 (SAS Institute), with

parameters estimated via maximum likelihood, and compared

using Akaike’s Information Criterion corrected for small sample

size (AICc); AICc combines likelihood and information theories to

identify, within a given set of models, those with a better

compromise between fit and complexity, providing an estimate

of Kullback-Leibler information loss. AICc is given by

AICc~{2 ln Lmð Þz2Kz 2K Kz1ð Þð Þ= n{K{1ð Þ½ �,

where Lm is the likelihood of the data given each fitted model, K is

the number of estimable parameters in each model, and n is

sample size.

For each model i, we calculated the variation in AICc relative to

the best-ranking (lowest AICc) model (DAICc = AICci2AICcmin);

models with DAICc,2 are generally taken to be substantially

supported by the data. The likelihood of each model given the

data was estimated as L (model | data) = exp(2DAICc/2); these

values were then used to compute Akaike weights (denoted wi),

which are normalized model likelihoods, as:

wi~exp {DAICci=2ð Þ=S exp {DAICc=2ð Þ:

The relative importance of each covariate (denoted w) was

estimated, within each model set, as the sum of Akaike weights

over all models in which the covariate was present; covariates with

w#0.35 were considered unimportant. Weighted mean effect-sizes

Mayaro Virus Risk Factors in Amazonia
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(bs) were estimated, for each covariate within the final model set,

as the sum of model-specific effect sizes times model-specific

Akaike weights. Finally, model fit was assessed using goodness-of-

fit x2 tests and scaled generalized R2 values [44], with

R2~1{ L0=Lmð Þ2=n
.

1{L0ð Þ2=n
,

where L0 is the likelihood of the data given the intercept-only

model, Lm is the likelihood of the data given the fitted model, and

n is sample size.

Results

Descriptive results and null hypothesis-testing
Anti-MAYV antibodies were detected in 119 serum samples

(44.1%). NHT suggested no departure from a random distribution

of seropositivity in relation to sex or age; 36.8% of 19 toddlers

fewer than three years old were seropositive, and there was very

little variation across age classes (Table 1). Surprisingly for a virus

transmitted by forest-dwelling vectors, seropositivity was strongly,

positively associated with living in household-like village clusters

and negatively associated with living in the better-preserved

riverbank areas. Using a closed toilet/latrine also increased risk,

whereas regularly sleeping under a bednet and owning/rearing

fowl, pigs, or dogs were apparently protective. No association was

detected between seropositivity and owning cats, owning crop-

plots, or whether solid waste disposal at the household level was or

was not adequate (Table 1).

Step-wise regression
A saturated, additive logistic model including all covariates for

which bivariate NHT suggested association with seropositivity

(bold typeface in Table 1) was then built as the starting point of

Table 1. Mayaro virus seroprevalence in a rural Amazonian settlement: descriptive and bivariate null hypothesis-testing statistics.

Variable Levels Seropositive Total % › OR (95%CI) Test (d.f.) p-value

Yes No

Overall - 119 151 270 44.1 - - -

Sex Female 63 83 146 43.2 1 (reference)

Male 56 68 124 45.2 1.08 (0.67–1.76) FET 0.810

Age 1-yr increment - - - - 1.004 (0.99–1.02) LR x2 = 0.37 (1) 0.540

Age class 0–3 7 12 19 36.8 1 (reference)

4–7 17 20 37 45.9 1.46 (0.48–4.70)

8–12 21 27 48 43.8 1.33 (0.45–4.14)

13–17 9 14 23 39.1 1.10 (0.31–3.95)

18–29 15 23 38 39.5 1.12 (0.36–3.60)

30–64 43 49 92 46.7 1.50 (0.55–4.36)

65+ 7 6 13 53.9 2.00 (0.48–8.75) LR x2 = 1.79 (6) 0.938

Bednet No 106 115 221 48.0 1 (reference)

Yes 13 36 49 26.5 0.39 (0.20–0.78) FET 0.007

Area Village 78 11 89 87.6 1 (reference)

Upland 39 102 141 27.7 0.05 (0.02–0.11)

Riverbanks 2 38 40 5.0 0.01 (0.001–0.03) LR x2 = 121.7 (2) ,0.0001

Fowl No 62 51 113 54.9 1 (reference)

Yes 57 100 157 36.3 0.47 (0.29–0.77) FET 0.003

Dogs No 52 34 86 60.5 1 (reference)

Yes 67 117 184 36.4 0.37 (0.22–0.63) FET 0.0002

Cats No 95 111 206 46.1 1 (reference)

Yes 24 40 64 37.5 0.70 (0.39–1.25) FET 0.251

Pigs No 105 93 198 53.0 1 (reference)

Yes 14 58 72 19.4 0.21 (0.11–0.41) FET ,0.0001

Toilet/latrine Open 98 138 236 41.5 1 (reference)

Closed 21 13 34 61.8 2.27 (1.09–4.76) FET 0.041

Waste disposal Adequate 106 129 235 45.1 1 (reference)

Inadequate 13 22 35 37.1 0.72 (0.35–1.50) FET 0.466

Crop-plot No 14 14 28 50.0 1 (reference)

Yes 105 137 242 43.4 0.77 (0.33–1.68) FET 0.550

›: seropositive; OR: unadjusted odds ratio; 95%CI: 95% confidence interval; d.f.: degrees of freedom; FET: Fisher’s exact test; LR: likelihood-ratio test.
Variable names and p-values in bold typeface indicate covariates that entered the saturated model used as the starting point in backward step-wise regression; see
text for details.
doi:10.1371/journal.pntd.0001846.t001
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backward SWR. The pre-established selection criterion/proce-

dure resulted in the sequential exclusion of the following

covariates: dog (LR x2 = 0.006, p = 0.939), fowl (LR x2 = 0.36,

p = 0.851), closed toilet/latrine (LR x2 = 2.04, p = 0.153), and pig

(LR x2 = 1.83, p = 0.177). The SWR ‘minimum adequate’ model

therefore retained just two covariates: residence area within the

settlement (LR x2 = 131.31, p,0.0001), and regular bednet use

(LR x2 = 17.36, p,0.0001); this same model was selected by

standard forward SWR (details not shown). This model (Table 2)

suggests that village-like cluster residents were at much higher risk

of MAYV infection, independent of bednet use, and that,

conversely, regularly sleeping under a bednet protected from

infection irrespective of residence area. The remaining covariates

were considered irrelevant when adjusted for one another.

Multimodel inference
All model sets included a null model (estimating only the

intercept), which represents the hypothesis of no predictable

variation in seropositivity; as expected, this model always proved

to be relatively very poor at explaining the data (Tables 3,4, and 5

and Table S1). Note that this null model is the same used in LR

tests and in generalized R2 calculations.

The individual-covariate model set included seven models

(Table 3); both the best-performing model and model-averaged

effect-size estimates (details not shown) suggested a strong

protective effect of regular bednet use; it was relatively much

more important (w = 0.945) than age (w = 0.280) or gender

(w = 0.270), whose effects were indistinguishable from zero.

Therefore, only bednet use was retained for further analysis.

Next, we fitted all possible additive household-level models; this

model set can be envisaged as representing hypotheses stating that

in our study setting MAYV seropositivity simply varies among

households with different traits, and comprises 15 models with all

combinations of four candidate covariates (Table 4). All these

covariates were retained for further assessment because they had

relatively high w values: residence area (w = 1.000), crop-plot

ownership (w = 0.965), closed toilet/latrine (w = 0.498), and, to a

lesser extent, solid waste disposal (w = 0.385).

Third, we assessed all 15 possible model specifications including

the four domestic animal covariates in our dataset (Table 5). On

account of their relative importance, pigs (w = 0.999) and dogs

(w = 0.735) were retained for testing, whereas cats (w = 0.267) and

fowl (w = 0.337) were not considered any further.

Based on these results, we finally specified and compared the 128

models with all possible combinations of important individual-level

(bednet use), household-level (residence area, crop-plot, toilet/

latrine, waste disposal), and domestic animal covariates (pigs, dogs);

the complete model set is provided in Table S1, and the subset of

models with highest support from the data (DAICc,2) is presented

in Table 6. Figure 1 illustrates variation in DAICc values across the

128 models in this set.

The best-performing model within this set had a generalized

R2 = 0.55 and a goodness-of-fit test x2 = 10.21 (6 d.f., p = 0.116);

the overall misclassification rate (model-predicted seropositivity

status different from observed status) was just 0.19. These

satisfactory fit metrics were similar for the rest of models in

Table 6 (details not shown), and suggest that the models succeed in

capturing important processes governing the relationships between

covariates and the dependent variable. Adding interaction terms

Table 3. Individual-covariate model set.

Model AICc DAICc Likelihood wi K

Bednet 366.75 0 1 0.497 2

Age+Bednet 368.68 1.93 0.381 0.189 3

Sex+Bednet 368.70 1.95 0.377 0.188 3

Age+Sex+Bednet 370.66 3.91 0.142 0.070 4

Null 372.51 5.77 0.056 0.028 1

Age 374.17 7.42 0.024 0.012 2

Sex 374.43 7.69 0.021 0.011 2

Age+Sex 376.13 9.38 0.009 0.005 3

AICc: Akaike’s Information Criterion corrected for small sample size; DAICc:
variation in AICc relative to the best-performing model; Likelihood: likelihood of
the model, given the data; wi: Akaike weights; K: number of estimable
parameters.
doi:10.1371/journal.pntd.0001846.t003

Table 2. Effect size estimates from the step-wise multivariate
logistic regression ‘minimum adequate’ model.

Term b (SE) Adjusted OR* (95%CI)

Intercept 21.30 (0.32) -

Residence area

Village 2.93 (0.38)** 1 (reference)

Upland 20.49 (0.31)** 0.03 (0.01–0.08)

Riverbanks 22.44 (0.51)** 0.005 (0.001–0.02)

Regular bednet use 21.02 (0.28) 0.36 (0.21–0.62)

b: slope coefficient; SE: standard error; OR: odds ratio; 95%CI : 95% confidence
interval.
*Odds ratios estimated as OR = exp(bi2bReference);
**With respect to the other two area categories considered together.
doi:10.1371/journal.pntd.0001846.t002

Table 4. Household-covariate model set.

Model AICc DAICc Likelihood wi K

Area+Crop 249.16 0 1 0.293 5

Area+Crop+Toilet/latrine 249.17 0.01 0.998 0.292 6

Area+Crop+Waste 250.01 0.85 0.655 0.192 6

Area+Crop+Toilet/latrine+Waste 250.06 0.90 0.640 0.187 7

Area 254.85 5.68 0.058 0.017 4

Area+Toilet/latrine 255.47 6.31 0.043 0.013 5

Area+Toilet/latrine+Waste 257.06 7.90 0.019 0.006 6

Toilet/latrine 369.63 120.47 0.000 0.000 2

Toilet/latrine+Waste 371.05 121.89 0.000 0.000 3

Crop+Toilet/latrine 371.52 122.36 0.000 0.000 3

Null 372.51 123.35 0.000 0.000 1

Crop+Toilet/latrine+Waste 373.02 123.86 0.000 0.000 4

Area+Waste 373.75 124.59 0.000 0.000 5

Waste 373.75 124.59 0.000 0.000 2

Crop 374.10 124.94 0.000 0.000 2

Crop+Waste 375.49 126.33 0.000 0.000 3

AICc: Akaike’s Information Criterion corrected for small sample size; DAICc:
variation in AICc relative to the best-performing model; Likelihood: likelihood of
the model, given the data; wi: Akaike weights; K: number of estimable
parameters.
doi:10.1371/journal.pntd.0001846.t004
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did not improve model performance or resulted in failure to reach

convergence. Moreover, a posteriori addition of individual-level and

domestic animal covariates removed in previous steps did neither

improve the performance of any of the models with DAIC,2 nor

change their relative positions (details not shown); therefore, we

based inference on this 128-model set.

When ranked according to their relative importance, the

covariates considered in the final model set performed as follows:

residence area, w = 1.000; regular bednet use, w = 0.997; crop-plot

ownership, w = 0.627; closed toilet/latrine, w = 0.501; solid waste

disposal, w = 0.364; pig, w = 0.351; and dog, w = 0.308. Table 7

presents the weighted average effect size over all models in the set

(bs) for each of these covariates; exp(b) values, which estimate

adjusted odds ratios, are presented in Figure 2. While MMI agreed

with SWR in identifying residence area and no regular bednet use

as strong independent predictors of MAYV seropositivity, it also

showed that further covariates, and particularly crop-plot owner-

ship, were important factors with non-negligible effects on

infection risk. In sharp contrast with NHT results, domestic

animals had little or no influence on MAYV seropositivity when

adjusted for other covariates in our study setting.

Discussion

Arboviral infections are increasingly recognized as major public

health threats. Geographic range expansions by dengue virus,

West Nile virus, Japanese encephalitis virus, or, more recently,

chikungunya virus have focused attention on their importance

[2,3]. Other arboviruses, however, have so far remained endemic

to their putative areas of origin within developing countries, and

this has perhaps contributed to their neglect [11]. Among the

many viruses one could mention as examples, Rift Valley fever

virus and O’nyong-nyong fever virus are of particular concern in

Africa, and Venezuelan equine encephalitis virus and Mayaro

virus in Latin America [3]. With effective vaccines unavailable

Figure 1. The models in the 128-model set used for inference
on risk factors for Mayaro virus infection. Models were ranked
according to variation in the Akaike’s information criterion value of each
model with respect to the best-performing model in the set (i.e., ranked
by DAICc). Arrows highlight DAICc ‘leaps’ associated with the removal
of the two most important covariates, residence area and bednet use.
The position and DAICc value of the saturated model (Full) and the
intercept-only model (Null) are also indicated. Note that the y-axis is in
log10 scale.
doi:10.1371/journal.pntd.0001846.g001

Table 6. Combined analysis: models with DAICc,2 in the
128-model set used for inference (see Table S1 for the
complete model set).

Model AICc DAICc Likelihood wi K

Area+Crop+Bednet 238.92 0 1 0.070 6

Area+Crop+Bednet+Toilet/latrine 239.03 0.10 0.949 0.067 7

Area+Crop+Bednet+Pig+
Toilet/latrine

239.16 0.24 0.889 0.062 8

Area+Crop+Bednet+Pig 239.32 0.40 0.819 0.056 7

Area+Bednet* 239.55 0.62 0.732 0.051 5

Area+Crop+Bednet+Pig+Toilet/
latrine+Waste

239.71 0.78 0.675 0.047 9

Area+Pig+Bednet 239.80 0.87 0.646 0.045 6

Area+Pig+Bednet+Toilet/latrine 239.85 0.92 0.630 0.044 7

Area+Bednet+Toilet/latrine 239.88 0.96 0.619 0.043 6

Area+Crop+Bednet+Pig+Waste 240.05 1.13 0.569 0.040 8

Area+Crop+Bednet+
Dog+Toilet/latrine

240.21 1.29 0.526 0.037 8

Area+Crop+Bednet+Dog 240.24 1.32 0.517 0.036 7

Area+Crop+Bednet+Waste 240.26 1.33 0.513 0.036 7

Area+Crop+Bednet+Toilet/
latrine+Waste

240.30 1.37 0.503 0.035 8

Area+Crop+Bednet+Dog+
Pig+Toilet/latrine

240.75 1.83 0.401 0.028 9

AICc: Akaike’s Information Criterion corrected for small sample size; DAICc:
variation in AICc relative to the best-performing model; Likelihood: likelihood of
the model, given the data; wi: Akaike weights; K: number of estimable
parameters.
*The ‘minimum adequate’ model selected by step-wise regression analysis.
doi:10.1371/journal.pntd.0001846.t006

Table 5. Domestic animal-covariate model set.

Model AICc DAICc Likelihood wi K

Pig+Dog 346.38 0 1 0.371 3

Pig+Dog+Fowl 347.94 1.56 0.458 0.170 4

Pig+Dog+Cat 348.44 2.06 0.358 0.133 4

Pig 348.74 2.36 0.307 0.114 2

Pig+Fowl 349.51 3.13 0.209 0.077 3

Pig+Dog+Cat+Fowl 350.01 3.63 0.163 0.060 5

Pig+Cat 350.55 4.18 0.124 0.046 3

Pig+Cat+Fowl 351.54 5.16 0.076 0.028 4

Dog+Fowl 358.92 12.54 0.002 0.001 3

Dog 360.79 14.41 0.001 0.000 2

Dog+Cat+Fowl 360.98 14.60 0.001 0.000 4

Dog+Cat 362.69 16.32 0.000 0.000 3

Fowl 365.34 18.96 0.000 0.000 2

Cat+Fowl 367.23 20.86 0.000 0.000 3

Null 372.51 26.13 0.000 0.000 1

Cat 373.06 26.68 0.000 0.000 2

AICc: Akaike’s Information Criterion corrected for small sample size; DAICc:
variation in AICc relative to the best-performing model; Likelihood: likelihood of
the model, given the data; wi: Akaike weights; K: number of estimable
parameters.
doi:10.1371/journal.pntd.0001846.t005
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(except for yellow fever), preventing infection heavily relies on

vector control and personal protection measures, but both perform

poorly. One key weakness of efforts in this direction is that robust

risk factor analyses are lacking for most of these viruses; this limits

our understanding of determinants of infection and, therefore, our

ability to (i) identify risk situations/areas and (ii) design improved

prevention strategies.

Here, we address this gap by presenting a case-study on MAYV;

in addition to providing the first MMI-based assessment of risk

factors for infection with this virus, we aimed at illustrating the

caveats of conventional approaches often used to analyze

observational data from cross-sectional surveys – and how MMI

provides a powerful alternative. We discuss our results within the

hypothetical framework outlined in the Introduction: if MAYV

transmission is largely sylvatic, then spillover should increase

infection risk mainly among people making frequent use of

forested landscapes; those living in more degraded landscapes and

those rarely entering forests, such as young children, should be

relatively protected.

Prior to more detailed discussion, we consider several limitations

of this study that must be kept in mind when interpreting our

conclusions. First, even if EIA-ICC has been shown to be specific

at detecting different anti-Alphavirus antibodies [45], some of our

positive EIA-ICC results might be due to cross-reactions. We

nonetheless tested all sera for anti-Venezuelan equine encephalitis

virus antibodies and found just three putatively reactive samples,

one of which was MAYV-negative. Thus, we feel confident that

our serological results do reflect past MAYV infections, although

we cannot completely exclude the possibility of a few cross-

reactions with antibodies to closely-related but rarer viruses,

particularly Una virus. In addition, we are unaware of any reliable

data on the typical duration of anti-MAYV IgG; if high titers last

long, this might weaken the relationships between seropositivity

and (current) covariate values. Finally, we treated all subjects as

independent, random samples of the settlement population;

however, since several members of single families typically

participated in the survey, the data are expected to present some

degree of non-independence. This possibility, which has not been

considered in previous MAYV risk factor analyses, could result in

parameter variance underestimation [46], especially for house-

hold-level covariates. To check for possible effects of seropositivity

clustering within households, we re-ran our ‘best’ model adding a

term that indexed, for each subject, whether there were other

seropositive individuals living in the same house; we found

evidence of moderately increased risk (bOther seropositive =

0.5260.18; odds ratio 1.68, 95% confidence interval 1.18–2.39),

but adjusted covariate effect estimates were very similar to those

derived from MMI (cf. Table 7): bVillage = 2.7660.42; bUpland =

20.5760.32; bRiverbank = 22.1860.53; bBednet = 20.8560.29;

and bCrop-plot = 0.5360.34. In addition, the overall biological

plausibility of MMI results and the satisfactory model fit metrics

both give us confidence that our results are a fair approximation to

the data-generating processes [47].

We report an antibody prevalence in the middle-upper range of

previous cross-sectional surveys [29,33,35,48–53]. While, as

throughout rural Amazonia, malaria is considered the main

vector-borne disease in our study settlement, 75% of ,1400

blood-smears from febrile patients seeking malaria diagnosis in

2004–2007 were Plasmodium-negative (SLBL and FAF, unpub-

lished data). Even if some of these results are false-negatives, this

suggests that pathogens other than Plasmodium are a major cause of

acute febrile illness in the settlement. Our data, including the

frequent mention by local residents of ‘joint pain’ as a typical

feature of non-malarial febrile illness (unpublished observations

from informal interviews), suggest that MAYV is likely involved in

generating this epidemiological scenario.

Figure 2. Effects of covariates on Mayaro virus seropositivity,
averaged over the 128 models in the final set. Covariates
describe: residence area (Village: village-like household clusters; Upland:
upland areas; Riverbanks: better-preserved riverbank areas); bednet use
(Bednet); crop-plot ownership (Crop-plot); use of a closed toilet/latrine
(Toilet/latrine); adequate solid waste disposal (Waste); and the keeping/
rearing of pigs (Pig) or dogs (Dog). Estimates are presented as odds
ratios (solid circles) and 95% confidence intervals. The dotted line at
odds ratio = 1 represents no effect; values .1 indicate a positive effect
(increased risk of infection), and values ,1 a negative (protective)
effect.
doi:10.1371/journal.pntd.0001846.g002

Table 7. Model-averaged effect-sizes (b coefficients) from the
final 128-model set.

Factor* b coefficient SE Lower 95%CI Upper 95%CI

Village** 2.93 0.41 2.21 3.82

Upland** 20.56 0.33 21.16 0.14

Riverbanks** 22.37 0.55 23.63 21.48

Bednet use 20.95 0.28 21.53 20.44

Crop-plot 0.39 0.22 20.04 0.84

Toilet/latrine 0.19 0.13 20.07 0.44

Waste 0.09 0.09 20.09 0.28

Pig 20.14 0.10 20.35 0.05

Dog 20.05 0.08 20.21 0.11

SE: standard error; 95%CI: 95% confidence interval.
*See main text for the definition of covariates;
**With respect to the other two area categories considered together.
doi:10.1371/journal.pntd.0001846.t007
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But what factors modulate MAYV infection risk? Previous work

is strongly suggestive of a pattern overtly dominated by forest

transmission, with outbreaks sporadically recorded in rural

communities embedded within rainforest environments [3,4,27–

29,33–37,48–53]. Antibody prevalence is also typically higher, and

clinical illness more frequent, among post-pubertal men, suggest-

ing labor-related exposure involving forest activities [3,4,29,51];

sex bias may nonetheless be absent in traditional communities in

which both men and women make regular use of forested habitats

[35,48,49]. All these conclusions are however based on merely

descriptive accounts or on bivariate, NHT-based data treatments,

rarely with age adjustment (e.g., [35]); they must therefore be

interpreted with caution.

Our results are in partial contrast with these findings – and,

hence, partly at odds with the prevailing hypothesis of forest

transmission and sporadic spillover. Notably, age- and sex-specific

seroprevalence suggest that people of both sexes and all age classes

were similarly exposed to MAYV in our study population of non-

indigenous settlers. The youngest seropositive subject was a girl

just under two years of age residing in one of the village-like

clusters; seropositive ,3-year-olds were living in the two village-

like clusters and in two distinct upland sites. This suggests, at least

for these cases, that transmission was relatively recent and

geographically widespread at the scale we consider, and casts

doubts on the forest-transmission-only scenario.

In addition, our data strongly suggest that residing in the more

densely populated village-like clusters greatly increased MAYV

infection risk, whereas living in the better-preserved, sparsely

populated riverbanks was protective. This sharply contrasts with

previous reports explicitly showing the opposite pattern [29,33];

again, it also contradicts the predictions of the forest-transmission

hypothesis. However, our MMI approach revealed a role for crop-

plot ownership as a relatively important risk factor, which would

partially reconcile both results. Note that, had we based inference

on NHT-SWR only, this relationship with forest crop-plots would

have gone undetected and unreported (Table 1): the ‘best’ SWR

model implicitly estimates [20] a zero effect for this covariate, even

after adjustment, whereas MMI estimates a positive, marginally

non-significant effect on the risk of MAYV seropositivity (Table 7,

Figure 2). This crop-plot effect was in fact larger when young

children (,8-years-old, n = 56) were excluded from the ‘best’

model in Table 6 (b = 0.7460.40 vs. b = 0.5460.33), suggesting

that crop-plot work did increase risk-exposure.

The strong protective effect of regularly sleeping under a

mosquito bednet (Figure 2) is also at odds with the assumption that

MAYV is transmitted only by diurnal, canopy-dwelling mosqui-

toes. In addition, both NHT and MMI suggested an intriguing

(albeit weak after adjustment) relationship between owning a

closed toilet/latrine and an increased risk of seropositivity

(Figure 2). Finally, and in plain disagreement with bivariate

NHT results, domestic animals had very small effects (effectively

not distinguishable from zero) on MAYV infection risk (Figure 2).

Thus, when considered as a whole, which MMI allows us to do,

the effects of residence area and bednet use, and the clear lack of

effect of age and gender, all suggest the possibility that MAYV

cycles other than the classical ones (maintained by diurnal, forest-

dwelling vectors) might occur in our study settlement. Ongoing

research examines two main hypotheses: (i) that an alternative,

nocturnal, endophilic vector species is involved in transmission,

and (ii) that some local Haemagogus populations have shifted habitat

and habits, adapting to densely populated landscapes and

nocturnal biting. That MAYV can naturally infect Psorophora and

Mansonia [54–56] and be transmitted by Culex and Aedes [57–59]

lends more support to the first scenario. Culex and Psorophora were

the most abundant vectors in the village-like clusters of our study

site, where non-native Aedes spp. have never been recorded.

Haemagogus and Mansonia seem to prefer forest and crop-plot

habitats; both could therefore be involved in more typical MAYV

transmission cycles in forested landscapes, which would help

explain why owning a crop-plot increases risk, particularly among

.8-year-olds.

Conclusions
We have presented the first MMI-based assessment of risk

factors for MAYV infection. The results suggest that two different,

possibly overlapping MAYV transmission cycles might co-occur in

a typical settlement of the Amazon agricultural frontier. If

transmission by synanthropic vectors is confirmed, it could

ultimately increase the risk of MAYV emergence in non-forest

settings – perhaps even urban or periurban. This might have

serious public health consequences [3], as the chikungunya

example has shown [30], and calls for a tighter surveillance of

arboviruses and their vectors in the Amazon. Finally, our analyses

show how NHT and SWR result in the loss of valuable

information when used to analyze observational data – a pervasive

problem that is by no means particular to arbovirus epidemiology

[12–14]. By revealing subtle associations that conventional risk

factor analyses miss, MMI can foster our understanding of

emerging infectious disease epidemiology and thus enhance

disease control/surveillance systems.
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Arboviral etiologies of acute febrile illnesses in western South America, 2000–

2007. PLoS Negl Trop Dis 4(8): e787.

Mayaro Virus Risk Factors in Amazonia

PLOS Neglected Tropical Diseases | www.plosntds.org 8 October 2012 | Volume 6 | Issue 10 | e1846



5. McBride WJ, Mullner H, Muller R, Labrooy J, Wronski I (1998) Determinants

of dengue 2 infection among residents of Charters Towers, Queensland,
Australia. Am J Epidemiol 148(11): 1111–1116.

6. Cobelens FG, Groen J, Osterhaus AD, Leentvaar-Kuipers A, Wertheim-van

Dillen PM, et al. (2002) Incidence and risk factors of probable dengue virus
infection among Dutch travellers to Asia. Trop Med Int Health 7(4): 331–338.

7. van Benthem BH, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart

K, et al. (2005) Spatial patterns of and risk factors for seropositivity for dengue
infection. Am J Trop Med Hyg 72(2): 201–208.

8. Naish S, Hu W, Nicholls N, Mackenzie JS, Dale P, et al. (2009) Socio-

environmental predictors of Barmah forest virus transmission in coastal areas,
Queensland, Australia. Trop Med Int Health 14(2): 247–256.

9. Hu W, Clements A, Williams G, Tong S, Mengersen K (2010) Bayesian

spatiotemporal analysis of socio-ecologic drivers of Ross River virus transmission
in Queensland, Australia. Am J Trop Med Hyg 83(3): 722–728.

10. Vazquez-Prokopec GM, Vanden Eng JL, Kelly R, Mead DG, Kolhe P, et al.

(2010) The risk of West Nile virus infection is associated with combined sewer
overflow streams in urban Atlanta, Georgia, USA. Environ Health Perspect

118(10): 1382–1388.

11. LaBeaud AD (2008) Why arboviruses can be neglected tropical diseases. PLoS
Negl Trop Dis 2(6): e247.

12. Gardner MJ, Altman DG (1986) Confidence intervals rather than P values:

estimation rather than hypothesis testing. Br Med J (Clin Res Ed) 292(6522):
746–750.

13. Cohen J (1994) The earth is round (p,.05). Am Psychol 49(12): 997–1003.

14. Greenland S (2006) Bayesian perspectives for epidemiological research: I.
Foundations and basic methods. Int J Epidemiol 35(3): 765–775.

15. Hobbs NT, Hilborn R (2006) Alternatives to statistical hypothesis testing in

ecology: a guide to self teaching. Ecol Appl 16(1): 5–19.

16. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we

still use stepwise modelling in ecology and behaviour? J Anim Ecol 75(5): 1182–

1189.

17. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing:

problems, prevalence, and an alternative. J Wildl Manage 64(4): 912–923.

18. Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for
strong inference in ecological studies. Wildl Res 28(2): 111–119.

19. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach. New York: Springer.

20. Burnham KP, Anderson DR (2004) Multimodel inference – Understanding AIC

and BIC in model selection. Sociol Methods Res 33(4): 261–304.

21. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and
the effect of individual variation on disease emergence. Nature 438(7066): 355–

359.

22. van Boven M, Koopmans M, Du Ry van Beest Holle M, Meijer A, Klinkenberg
D, et al. (2007) Detecting emerging transmissibility of avian influenza virus in

human households. PLoS Comput Biol 3(7): e145.

23. Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, et al. (2010) Age-
patterns of malaria vary with severity, transmission intensity and seasonality in

sub-Saharan Africa: a systematic review and pooled analysis. PLoS ONE 5(2):

e8988.

24. Ezenwa VO, Milheim LE, Coffey MF, Godsey MS, King RJ, et al. (2007) Land

cover variation and West Nile virus prevalence: patterns, processes, and
implications for disease control. Vector Borne Zoonotic Dis 7(2): 173–180.

25. Winters AM, Eisen RJ, Lozano-Fuentes S, Moore CG, Pape WJ, et al. (2008)

Predictive spatial models for risk of West Nile virus exposure in eastern and
western Colorado. Am J Trop Med Hyg 79(4): 581–590.

26. Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosà R (2009) Forest
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