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Background: The RV3-BB human neonatal rotavirus vaccine aims to provide protection from severe rota-
virus disease from birth. The aim of the current study was to characterise the rotavirus strains causing
gastroenteritis during the Indonesian Phase IIb efficacy trial.

Methods: A randomized, double-blind placebo-controlled trial involving 1649 participants was con-
ducted from January 2013 to July 2016 in Central Java and Yogyakarta, Indonesia. Participants received
three doses of oral RV3-BB vaccine with the first dose given at 0-5 days after birth (neonatal schedule),

I]:z{:\’]‘:;ﬁz: or the first dose given at ~8 weeks after birth (infant schedule), or placebo (placebo schedule). Stool sam-
Diarrhoea ples from episodes of gastroenteritis were tested for rotavirus using EIA testing, positive samples were
Neonatal genotyped by RT-PCR. Full genome sequencing was performed on two representative rotavirus strains.
Vaccine Results: There were 1110 episodes of acute gastroenteritis of any severity, 105 episodes were confirmed

as rotavirus gastroenteritis by EIA testing. The most common genotype identified was G3P[8] (90/105),
the majority (52/56) of severe (Vesikari score >11) rotavirus gastroenteritis episodes were due to the
G3P[8] strain. Full genome analysis of two representative G3P[8] samples demonstrated the strain was
an inter-genogroup reassortant, containing an equine-like G3 VP7, P[8] VP4 and a genogroup 2 backbone
[2-R2-C2-M2-A2-N2-T2-E2-H2. The complete genome of the Indonesian equine-like G3P[8] strain
demonstrated highest genetic identity to G3P[8] strains circulating in Hungary and Spain.
Conclusions: The dominant circulating strain during the Indonesian Phase IIb efficacy trial of the RV3-BB
vaccine was an equine-like G3P[8] strain. The equine-like G3P[8] strain is an emerging cause of severe
gastroenteritis in Indonesia and in other regions.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Rotavirus is the most common cause of severe gastroenteritis in
children under five years of age [1]. The currently available
rotavirus vaccines have been introduced into the national immuni-
sation programs of 92 countries globally and reduced hospital
admissions and child mortality from gastroenteritis [2-5]. Despite
this success, several barriers to global vaccine implementation
exist, including cost and sub-optimal efficacy in low-income
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countries [6]. The human neonatal rotavirus vaccine, RV3-BB, is
in clinical development with a birth dose vaccination schedule
and is proposed to address some of these barriers. The RV3-BB vac-
cine is based on a naturally attenuated asymptomatic neonatal G3P
[6] rotavirus strain, first identified in Melbourne obstetric hospitals
in the 1970s [7]. A randomized, placebo-controlled trial to evaluate
the efficacy of an oral human-strain neonatal rotavirus vaccine
(RV3-BB) was recently completed in central Java and Yogyakarta,
Indonesia [8]. Vaccine efficacy against severe rotavirus gastroen-
teritis from 2 weeks after dose 3 and to 18 months of age was
63% in the combined vaccine group (95% confidence interval [CI]
34, 80; p<0.001), 75% in the neonatal vaccine group (95% CI 44,
91; p<0.001) and 51% in the infant vaccine group (95% CI 7, 76;
p =0.03). The vaccine was also found to be immunogenic and
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well-tolerated when administered in either the neonatal or infant
schedules.

The rotavirus strains which circulate in the human population
demonstrate significant genetic diversity. The rotavirus genome
is comprised of 11 segments of double stranded RNA, encoding
six structural (VP1-4, VP6, VP7) and six non-structural proteins
(NSP1-5/6) [9]. The segmented genome facilitates reassortment
between strains, allowing both intra- and inter-genogroup reas-
sortment. Continued genetic variation by sequential point muta-
tions and zoonotic transmission of novel animal strains also
increases the genetic diversity within circulating rotavirus strains
causing human infection. A genotype classification system based
on capsid genes VP7 and VP4 is used in molecular epidemiology
of rotavirus strains denoting the G-type (glycoprotein) and
P-type (protease sensitive) respectively [9]. Whole genome classi-
fication is also used, the nomenclature Gx-P[x]-Ix-Rx-Cx-Mx-Ax-
Nx-Tx-Ex-Hx represents the genotypes of VP7-VP4-VP6-VP1-VP2-
VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 respectively [10]. Currently
there are 35 G, 50 P, 26,21 R,19C, 19 M, 30 A,21 N, 21T, 27 E
and 21 H types [11]. There are two major genotype constellations
of human rotaviruses, termed genogroup 1 (G1-P[8]-11-R1-C1-M1-
A1-N1-T1-E1-H1), genogroup 2 (G2-P[4]-12-R2-C2-M2-A2-N2-T2-
E2-H2) [12].

A more dynamic and diverse rotavirus strain population has
been observed in the vaccine era [13,14]. For rotavirus vaccines
to be effective they must provide protection against multiple circu-
lating genotypes. Strain diversity may also be a factor in vaccine
effectiveness in low- and middle-income countries, which can have
a higher diversity of strains and distinct dominant genotypes com-
pared to high-income settings [15]. Therefore, understanding the
genetic diversity of the rotavirus strains causing gastroenteritis
during the RV3-BB vaccine trial will provide valuable insights for
future implementation of this vaccine. During the phase IIb efficacy
trial, study participants were followed for episodes of gastroenteri-
tis from birth to 18 months of age. In the present study, we sought
to characterise the genetic diversity of strains causing acute gas-
troenteritis during the trial of the RV3-BB in Indonesia.

2. Method and materials
2.1. Study design and participants

The study design and recruitment for the Phase IIb efficacy,
safety and immunogenicity trial of the RV3-BB vaccine has been
previously described [8]. Briefly, a randomized, double-blind
placebo-controlled trial involving 1649 participants was con-
ducted from January 2013 to July 2016 in primary health centres
and hospitals in Klaten, Central Java, and Sleman, Yogyakarta,
Indonesia. Eligible infants (healthy, full term babies 0-5 days of
age, birth weight of 2.5-4.0 kg) were randomized into one of three
groups (neonatal vaccine group, infant vaccine group, or placebo
group) in a 1:1:1 ratio according to a computer-generated code
(block size = 6) which was stratified by province. The trial protocol
was approved by the ethics committees of Universitas Gadjah
Mada, Royal Children’s Hospital Melbourne and National Agency
of Drug and Food Control, Republic of Indonesia.

During the recruitment process, 2405 pregnant women gave
antenatal preliminary consent, 1649 were randomized, 549 to
neonatal vaccine schedule, 550 to infant vaccine schedule, 550 to
placebo schedule. The analysis of vaccine efficacy was performed
on per protocol (n=1513) and intention to treat (ITT) (n = 1649)
populations followed for severe episodes of rotavirus gastroenteri-
tis occurring from two weeks post investigational product (IP) dose
4 to 18 months of age [8]. To characterise all rotavirus positive
cases the current genotype analysis was performed on the ITT

population, and included episodes of rotavirus gastroenteritis of
any severity that occurred from administration of the birth dose
until 18 months of age.

The investigational product (IP) consisted of RV3-BB vaccine
(8.3-8.7 x 10° FCFU/ml) or Placebo (cell culture medium, DMEM).
RV3-BB clinical trial lots were prepared at Meridian Life Sciences
(Memphis, USA) to a titre of 8.3-8.7 x 10° FFU/mL in serum free
media supplemented with 10% sucrose. Placebo contained the
same media with 10% sucrose and was visually indistinguishable.
Vials were stored at —70 °C until thawed within 6 h prior to
administration.

2.2. Sample collection and processing

The participant’s parent(s)/guardian(s) were asked to collect at
least two faecal samples per diarrhoea episode, from separate
stools. Samples were obtained using faecal spatulas to scrape at
least two scoops of faeces from infants’ skin or nappy, which was
then stored in a faecal specimen container. If faeces were too liquid
and a specimen was unable to be obtained, plastic film inside the
nappy was used to assist sample collection or the whole nappy
was collected for analysis. Stool samples were stored at 2-10 °C
within 4 h of collection, and transported to the Universitas Gadjah
Mada microbiology laboratory within 24 h. Upon receipt at labora-
tory, stool samples were aliquoted and stored at —70 °C.

2.3. Rotavirus antigen testing

Stool samples were tested for rotavirus antigen using the com-
mercial rotavirus enzyme immunoassay (EIA) ProSpecT (Oxoid,
Ltd, UK), as per manufacturer’s instructions. Severe rotavirus
gastroenteritis was defined as rotavirus gastroenteritis with a
modified Vesikari score of >11 [8].

2.4. Rotavirus genotyping

Viral RNA was extracted from 10% to 20% w/v faecal extracts of
each specimen using the Viral Nucleic Acid Extraction Kit II
(Geneaid) according to the manufacturer’s instructions. The rota-
virus G and P genotype were determined for each sample by the
application of independent hemi-nested multiplex reverse tran-
scription polymerase chain reaction (RT-PCR) assays. The first-
round RT-PCR assays were performed using the Superscript III
One-Step RT-PCR (Invitrogen), using VP7 conserved primers
9Con1-L and VP7R, or VP4 conserved primers Con-2 and Con-3
[16,17]. The second-round genotyping PCR reactions were con-
ducted using specific oligonucleotide primers for G types 1, 2, 3, 4
and 9 or P types [4], [6], [8], [9], [10] [18]. The G and P genotype
of each sample was assigned using agarose gel analysis of second-
round PCR products.

2.5. Polyacrylamide gel electrophoresis

G3P[8] samples with adequate volume were selected for analy-
sis. The 11 segments of rotavirus dsRNA were separated on 10%
(w/v) polyacrylamide gel with 3% (w/v) polyacrylamide stacking
gel at 25 mA for 16 h. The genome migration patterns (electro-
pherotypes) were visualized by silver staining according to the
established protocol [19,20].

2.6. Amplification of complete rotavirus genomes

The 11 gene segments were reverse transcribed and amplified
by PCR using the PrimerScript High Fidelity RT-PCR Kit (Takara,
Japan) as previously described [21]. Primers used in the amplifica-
tion of the 11 gene segments are detailed elsewhere [22].
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2.7. Nucleotide sequencing

PCR amplicons were purified using the Wizard SV Gel for PCR
Clean-Up System (Promega, USA) according to the manufacturer’s
protocol. Purified cDNA was sequenced using an ABI PRISM BigDye
Terminator Cycle Sequencing Reaction Kit (Applied Biosystems,
Foster City, CA, USA) in an Applied Biosystems 3730x]l DNA
Analyzer (Applied Biosystems, Foster City, CA, USA). Primer walk-
ing was employed to cover the complete nucleotide sequence of
each gene [22].

2.8. Phylogenetic analysis

Contiguous DNA sequence files were constructed utilizing
Sequencher software (version 5.0.1; Gene Codes). The genotypes
of each of the 11 genome segments were determined using the
online RotaC v2.0 rotavirus genotyping tool (http://rotac.rega-
tools.be) in accordance with the recommendations of the Rotavirus
Classification Working Group (RCWG) [23]. Nucleotide similarity
searches were performed using the BLAST server on the GenBank
database. The nucleotide and deduced amino acid sequences of
each gene were compared with sequences available in GenBank
possessing the entire open reading frame using the Virus Variation
resource [24]. Multiple nucleotide and amino acid alignments were
constructed using the MUSCLE algorithm in MEGA 6.0 [25].
Nucleotide and amino acid distance matrixes were calculated
using the p-distance algorithm in MEGA 6.0. The optimal evolu-
tionary model was selected based upon the Akaike information
criterion (corrected) (AICc) ranking implemented in jModelTest
[26]. Maximum-likelihood phylogenetic trees using the selected
models of nucleotide substitution HKY + Gg4 (VP7) and GTR + Ggq
(VP4) were reconstructed using MEGA 6.0 [25,27]. The robustness
of branches was assessed by bootstrap analysis using 1000 pseudo-
replicate runs. The mVISTA software was used to visualize the
comparative sequence similarities of concatenated whole genome
of genetically related strains [28].

2.9. Accession numbers
Nucleotide sequences for RVA/Human-wt/IDN/D006389
b/2014/G3P[8] and RVA/Human-wt/IDN/D009617g/2015/G3P[8]

were deposited in GenBank under the accession numbers
MH704718-MH704739.

3. Results
3.1. Number of gastroenteritis episodes and stool samples
During the study 1649 participants were randomized and

included in the ITT population. Of the 1649 participants, 1640
received at least one dose of IP and 1588 were followed to

Table 1

Rotavirus genotypes identified in stool sample collected for cases of acute gastroenteritis.
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18 months of age. From the birth dose until 18 months of age,
701/1649 (42.5%) participants had at least one episode of gastroen-
teritis of any severity. There were 1110 unique episodes of
gastroenteritis, multiple episodes were recorded in a subset of
participants. Rotavirus enzyme immunoassay (EIA) antigen testing
was performed on 1246 stool samples. Testing was performed on
the first sample collected per diarrhoea episode, however in a lim-
ited number of episodes multiple samples were tested. There were
105/1110 (9.5%) episodes of gastroenteritis that were rotavirus
positive. There were 23/105 (21.9%) episodes in the neonatal vac-
cine schedule, 29/105 (27.6%) in the infant vaccine schedule and
53/105 (50.4%) in the placebo schedule.

3.2. Genotyping of rotavirus positive gastroenteritis episodes

Rotavirus genotyping was performed on the 105 rotavirus pos-
itive gastroenteritis episodes. The most common genotype identi-
fied was G3P[8], this genotype represented 85.7% (90/105) of
rotavirus strains (Table 1). Genotype G3P[8] rotavirus strains were
identified in participants from each vaccination schedule, the
majority (52/56) of severe rotavirus gastroenteritis cases (Vesikari
score > 11) were due to a G3P[8] strain. The other genotypes iden-
tified included G2P[6] (5/105, 4.7%), G1P[8] (1/105, <1%) and G3P
[6](1/105, <1%). None of the G2P[6] or G1P[8] strains were associ-
ated with severe rotavirus gastroenteritis. A small number of sam-
ples could only be partially genotyped (7/105, 6.6%) or had a mixed
genotype (1/105, <1%).

3.3. Whole genome analysis of representative G3P[8] strains

Polyacrylamide gel electrophoresis was performed on a subset
G3P[8] strains with sufficient sample volume (38/90). These strains
were collected from the Klaten district of central Java and Sleman
district of Yogyakarta throughout conduct of the trial. Strains with
a visible electropherotype (27/90) had similar profiles, however
there were several circulating variants with differences in the
migration of the NSP2, NSP4 and NSP5/6 RNA segments (data not
shown). Sequencing of the VP7 gene (nt 72-914) from 44/90 G3P
[8] strains demonstrated 98.7-100% nucleotide and 97.5-100%
amino acid identity. BLAST search and phylogenetic analysis of
these VP7 genes demonstrated that they clustered with previously
described human equine-like G3P[8] strains (data not shown) [22].

Whole genome analysis was performed on two G3P[8] strains,
one from the Klaten district collected in 2014, RVA/Human-wt/ID
N/D006389b/2014/G3P[8] and one from the Sleman district
collected in 2015, RVA/Human-wt/IDN/D009617g/2015/G3P[8].
These two strains demonstrated high nucleotide identity for all
gene segments (99.1-99.9%), with the genome constellation G3-P
[8]-12-R2-C2-M2-A2-N2-T2-E2-H2 identified.

The VP7 genes of RVA/Human-wt/IDN/D006389b/2014/G3P[8]
and RVA/Human-wt/IDN/D009617g/2015/G3P[8] clustered in a

Genotype No. (%) No. per schedule Vesikari score
Neonatal Infant Placebo Not severe (<11) Severe (>11)

G3P[8] 90 (85.7%) 20 23 47 38 52

G2P[6] 5 (4.7%) 1] 3 2 5 0

G3P[6] 1(<1%) 0 0 1 0 1

G1P[8] 1(<1%) 1 0 0 1 0

Mixed (G2,3P[6]) 1 (<1%) 1 0 0 1 0

Partial Type (GXP[8]; G3P[X]) 7 (6.6%) 1 3 3 4 3

Total 105 23 29 53 49 56

Neonate and Infant schedule participants received RV3-BB vaccine according the dosing schedule described in Section 2. Severe gastroenteritis defined by a Vesikari score

>11.
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lineage divergent to the majority of human and porcine G3 strains. with 90.6% nucleotide identity. The Indonesian strains clustered
This lineage comprised of strains derived from numerous animal within a lineage that contained two additional discrete sub-
species (Fig. 1A). Furthermore, the VP7 genes were distinct from lineages that were supported by strong bootstrap values, one com-
the G3 sequence of the RV3-BB vaccine which clusters in the main prised of equine strains, and one primarily comprised of canine,
human/porcine lineage, sharing only 82.4% nucleotide and 92.1% bovine, and lapine strains and human strains predominantly
amino acid identity. Both Indonesian strains clustered with derived from zoonotic transmission.

contemporary human equine-like G3P[8] strains from Australia, The VP4 genes of RVA/Human-wt/IDN/D009617g/2015/G3P[8]
Brazil, Japan, Spain, Thailand sharing > 99.1% nucleotide identity clustered with the Australian strains RVA/Human-wt/AUS/WAP
and the equine strain RVA/Horse-wt/IND/Erv105/2004-05/G3P[X] C2016/2014/G3P[8], RVA/Human-wt/AUS/D388/2013/G3P[8] and
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Fig. 1. Phylogenetic tress constructed from the nucleotide sequences of (A) VP7 and (B) VP4 genes of rotavirus strains D006389b and D009617g with other group A rotavirus
strains representing the G3 and P[8] genotypes respectively. The position of strains D006389b and D009617g are indicated by a # symbol and all strains from this study are in
bold. Bootstrap values > 70% are shown. Scale bar shows substitutions per site. The nomenclature of all the rotavirus strains indicates the rotavirus group, species isolated
from, country of strain isolation, the common name, year of isolation, and the genotypes for genome segment 9 and 4 as proposed by the RCWG [49].
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RVA/Human-wt/AUS/WAPC1740/2013/G3P[8] and the Thai strains
RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/T
HA/SKT-289/2013/G3P[8] (Fig. 1B). The VP4 gene of RVA/Human-
wt/IDN/D006389b/2014/G3P[8] clustered with multiple Spanish
strains including RVA/Human-wt/ESP/SS61720845/2015/G3P[8]
and Hungarian strains including RVA/Human-wt/HUN/ER
N8263/2015/G3P[8]. Both VP4 genes clustered within a sub-
lineage predominantly comprised of strains from Spain, Hungary,
the Philippines, Vietnam and Japan sharing > 99.3% nucleotide
identity.

The concatenated genomes of RVA/Human-wt/IDN/D006389
b/2014/G3P[8] and RVA/Human-wt/IDN/D009617g/2015/G3P[8]
were compared to equine-like G3 reassortant strains identified in
Hungary, Spain, and Thailand and to the G1P[8] inter-genogroup
reassortant strains identified in Japan and the Philippines (Fig. 2).
Across all gene segments, RVA/Human-wt/IDN/D006389b/2014/G
3P[8] and RVA/Human-wt/IDN/D009617g/2015/G3P[8] exhibited
the highest overall genetic identity to European strains, including
the Spanish strains RVA/Human-wt/ESP/S598244047/2015/G3P[8]
,RVA/Human-wt/ESP/SS61720845/2015/G3P[8] and the Hungarian
strains RVA/Human-wt/HUN/ERN8187/2015/G3P[8] and RVA/Hu
man-wt/HUN/ERN8263/2015/G3P[8]. With the exception of the
NSP4 genes, the Australian and Thai strains RVA/Human-wt/AUS/
D388/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8
| shared a highly conserved genome with RVA/Human-wt/IDN/DO
06389b/2014/G3P[8] and RVA/Human-wt/IDN/D009617g/2015/G
3P[8]. Similarly, with the exception of the VP7 gene, RVA/Human-
wt/IDN/D006389b/2014/G3P[8] and RVA/Human-wt/IDN/D00961
7g/2015/G3P[8] shared conserved genome segments with Japanese
RVA/Human-wt/JPN/HC12016/2012/G1P[8] and RVA/Human-wt/P
HI/TGO12-045/2012/G1P[8] from the Philippines.

Base genome: RVA/Human-wt/IND/D006389b/2014/G3P[8]
VP1 VP2
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4. Discussion

The human neonatal vaccine RV3-BB provided protection
against severe gastroenteritis in a Phase IIb efficacy trial conducted
in Yogyakarta and Central Java, Indonesia [8]. Here, we report that
the majority rotavirus gastroenteritis cases identified during the
Phase IIb trial were caused by an equine-like G3P[8] strain.

Full genome analysis on the Indonesia G3P[8] strain demon-
strated it was an inter-genogroup reassortant, containing an
equine-like G3 VP7, a P[8] VP4 gene and a genogroup 2 backbone
[2-R2-C2-M2-A2-N2-T2-E2-H2. This strain has not been previously
reported in strain surveillance conducted in Indonesia [29,30]. The
genomes of the Indonesian equine-like G3P[8] strains were most
similar to strains detected in Spain and Hungry in 2015 [31,32].
These inter-genogroup reassortant strains share a similar gen-
ogroup 2 backbone with G1P[8] and G3P[4] strains first associated
with multiple outbreaks in 2012-2013 in Japan [33,34]. The
Indonesia equine-like G3P[8] strains also demonstrated high
genetic similarity to an equine-like G3P[8] inter-genogroup reas-
sortant strain that emerged in Australia and was the dominant
strain in Australian children with severe rotavirus gastroenteritis
in 2013 [22]. Equine-like G3P[8] strains with the same genome
constellation have also recently been reported in other countries
in Asia and South America [35,36]. A recent report from Surabaya,
Indonesia (published while our work was under review), identified
two distinct equine-like G3P[8] strains circulating in 2015-2016
[37]. This data correlates with the multiple equine-like G3P[8]
strains we identified by PAGE and VP7 sequence analysis, suggest-
ing diversity in the circulating equine-like G3P[8] strains in
Indonesia. Whilst we are not able to describe the precise origins
of these strains, the detection of equine-like inter-genogroup G3P
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Fig. 2. The nucleotide sequence similarities of concatenated genome of D006389b were compared to strains D009617g, SS61720845, SS98244047, ERN8187, ERN8263, D388,
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[8] strains in Indonesia adds further evidence to the global impor-
tance of this strain as a cause of gastroenteritis.

The mechanisms of protection following vaccination with RV3-
BB and other rotavirus vaccines remains unclear. The rotavirus
strains which circulate demonstrate considerable genetic variation
from year to year, as well as within and between countries
[10,12,13,38]. Therefore, to be effective rotavirus vaccines must
provide heterotypic protection against a diverse population of
strains. Following infection antibody responses to the capsid pro-
teins VP7, VP4, VP6 and VP2 [39-42], and non-structural proteins
NSP2 and NPS4 [39,41,43,44] have been reported. Broadly hetero-
typic antibodies are directed at VP4 (VP5* and VP8*), VP7 and VP6
proteins [45] indicating that these proteins contain cross reactive
epitopes. In addition, conserved CTL epitopes have also been
described in the VP3 protein [46]. It is probable that one or more
of these cross-reactive epitopes contribute to heterotypic protec-
tion. Due to the predominance of the equine-like G3P[8] in our
study we are unable to assess the heterotypic protection provided
by RV3-BB. However, the equine-like G3P[8] is genetically distinct
when compared to RV3-BB and the previously circulating human
G3 strains [22]. The VP7 genes of the Indonesian equine-like G3P
[8] and RV3-BB share only 82.4% nucleotide and 92.1% amino acid
identity. Furthermore, RV3-BB has typical genogroup 1 genome
constellation G3-P[6]-11-R1-C1-M1-A1-N1-T1-E1-H1 [47], which
is distinct to the equine-like G3-P[8]-12-R2-C2-M2-A2-N2-T2-E2-
H2 constellation which we report here. This data suggests that
the protection provided by RV3-BB in the Indonesian trial was
cross protective and likely not solely dependent on homotypic
responses. The strong heterotypic serological responses to commu-
nity strains (G1, G2) provided by the parental RV3 strain further
supports this hypothesis [7,48]. However, additional studies are
required to demonstrate the degree of heterotypic protection pro-
vided by RV3-BB.

To conclude, we characterized a novel equine-like G3P[8] strain
circulating in Indonesia during the conduct of the Phase IIb RV3-BB
efficacy trial. This strain was genetically similar to the equine-like
G3P[8] inter-genogroup reassortant strain which has emerged
globally since 2013.
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