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Abstract: The antioxidant potential (capacity and activity) of aqueous fullerene dispersions (AFD) of
non-functionalized C60, C70, and Gd@C82 endofullerene (in micromolar concentration range) was
estimated based on chemiluminescence measurements of the model of luminol and generation of
organic radicals by 2,2′-azobis(2-amidinopropane) dihydrochloride (ABAP). The antioxidant capacity
was estimated by the TRAP method, from the concentration of half-suppression, and from the
suppression area in the initial period. All three approaches agree and show that the antioxidant
capacity of AFDs increased in the order Gd@C82 < C70 < C60. Mathematical modeling of the long-
term kinetics data was used for antioxidant activity estimation. The effect of C60 and C70 is found
to be quenching of the excited product of luminol with ABAP-generated radical and not an actual
antioxidant effect; quenching constants differ insignificantly. Apart from quenching with a similar
constant, the AFD of Gd@C82 exhibits actual antioxidant action. The antioxidant activity in Gd@C82

is 300-fold higher than quenching constants.

Keywords: fullerene; endofullerene; aqueous fullerene dispersion; antioxidant capacity; antioxidant
activity; chemiluminometry

1. Introduction

Water-soluble fullerene species are promising for various medical applications, and
they have been proposed as vital components for humans and environmental systems [1].
Fullerenes and, in particular, their water-soluble derivatives, are considered radical scav-
enging agents [2], possess antioxidant activity [3], acquire remarkable antimicrobial proper-
ties [4], cytotoxicity [5], DNA cleavage, and lipid peroxidation mediated by reactive oxygen
species (ROS) [6].

The investigation of non-functionalized (without addends) aqueous fullerene disper-
sions (AFD), which are produced by ultrasound-assisted solvent exchange [7], dialysis [8],
or direct ultrasonic treatment [9], is developing widely. The mechanism of AFD stabiliza-
tion is not fully understood, but attempts have been made to explain it by hydroxylation of
the fullerene cage [10]. Recently, substantial advances have been made in areas of colloidal
fullerene properties [11], physicochemical interactions at the nano–bio interface [12], bio-
logical mechanisms and physicochemical characteristics responsible for driving fullerene
toxicity [13], and biological activity of water-soluble fullerene adducts [14].

The recent review discussed [15] that fullerenes possess an inert scaffold with antioxi-
dant functionalities. C60 is a very weak chain-breaking antioxidant with an inherent rate
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constant for trapping peroxyl radicals per se (kinh=0.3 × 103 M−1 s−1). However, some
antioxidants covalently bound to fullerenes increase antioxidant activity insignificantly.
Grafting their cage with small-molecule antioxidant moieties such as synthetic phenols
(2,6-di-tert-butyl-4-methylphenol) broadens their antioxidant potential conveying peroxyl
radical-trapping activity up to 30 times [16]. C60 conjugated with phenols indicates a sig-
nificant improvement of oxidative stability [17]. A C60 derivative with covalently bonded
analog of α-tocopherol with hydroxychromanyl moiety is an effective antioxidant acting
in model lipid matrices: saturated stearic acid and unsaturated linolenic acid during the
non-isothermal oxidation tested by differential scanning calorimetry [18].

Derivatives C60(C(COOH)2)2, C60(OH)22, and Gd@C82(OH)22 can stabilize the mi-
tochondrial membrane potential and reduce intracellular ROS production in the order:
Gd@C82(OH)22 ≥ C60(OH)22 > C60(C(COOH)2)2. These derivatives scavenge the stable
2,2-diphenyl-1-picryhydrazyl radical, ROS, and inhibit lipid peroxidation in vitro [19].
The common fullerene derivatives in the structure are fullerenols, with up to 42 hydroxyl
groups, depending on the fullerene type. Hydroxylation is one of the cheapest and most
straightforward approaches to dissolving fullerenes in water and does not require deep
purification of the resulting product. However, even minor surface derivatization may
increase the antioxidant activity of fullerenes [20]. Less toxicity and greater antioxidant
capacity are proven for fullerenols C60Oy(OH)x, C60,70Oy(OH)x, x + y = 24 ÷ 28 [21]. There
are two limitations of any derivatization of fullerene cage. First, these groups can be in-
volved in metabolic processes; they can reduce the π-electron system availability leading to
reversible free radical capture [22], differently affecting the spin environment [23]. Second,
fullerene derivatives could act as potent oxidizing agents under excitation with light in the
presence of oxygen [24].

The radical reactivity of fullerenes is discussed [25]. First attempts at studying super-
oxide dismutase (SOD) mimic activity have yet to be made [26] for in vitro and cell models.
It is known that unsaturated lipids are a target of free radicals. Their oxidation (lipid perox-
idation) mechanism has been described and proven [6]. The result is the accumulation of
lipid hydroperoxides as intermediate stable products. The ability of fullerenes to initiate
lipid oxidation has not been widely assessed. There is a report on their ability to trap lipid
peroxyl radicals and act as chain-breaking antioxidants [27]. The impact of fullerenes in
in vivo and in vitro experiments for Cyprinus carpio brains confirmed the absence of lipid
peroxidation [28]. The protective action of C60 most probably results from its ability to be
included in the cell membrane and avoid lipid peroxidation [29].

The antioxidant and superoxide anion-radical (SAR) scavenging properties of non-
functionalized AFDs have not been thoroughly studied [30]. The data on the antioxidant
activity of unmodified fullerenes in their aqueous dispersions are almost absent. There is
an ambiguity in the information about the ability of fullerenes to generate ROS. Several
studies deal with C60 solutions stimulating ROS generation [31]. Another study evidenced
the antioxidative properties of fullerenes [32]. Additionally, the possible antioxidant
mechanism of fullerenes, in particular C60, deals with loading their molecules with protons
to acquire a positive charge distributed over the fullerene. Such charge-loaded particles
could be transferred through the inner membrane of mitochondria. In this case, the
transmembrane potential is reduced [33], significantly reducing SAR production [34].
Furthermore, C60 is capable of penetrating an artificial lipid bilayer [35]. Fullerene soot
C60 and C70 not only retards oxidation as an alkyl radical quencher but also operates as a
peroxy radical scavenger [36] in the model reaction of initiated (2,2′-azobisisobutyronitrile,
AIBN). For reactivity of C60 during oxidation of a series of hydrocarbons shows that the
fullerene does not react with the RO2

• radicals indicate an extremely weak rate constant
estimated from CL [37].

The conventional approach to describing the antioxidant properties of low molecular
weight free-radical scavengers is based on a quantitative assessment of their ability to
terminate free-radical chain reactions against a standard antioxidant compound. Evalua-
tion of the antioxidant status of compounds, the total radical-trapping potential (TRAP)
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method, and total antioxidant reactivity (TAR) from luminol-enhanced chemiluminescence
(CL) measurements have been previously developed [38]. This approach is based on the
ability to trap radicals formed during the decomposition of thermolabile azo compounds.
However, this technique does not consider the physicochemical parameters of the antiox-
idant. A more rigorous approach to the description of antioxidant properties considers
the determination of the antioxidant concentration and the mathematical modeling [39] of
the rate constant of the interaction with the radicals [40]. Different antioxidants result in
different chemiluminescence curves, making it impossible to use any single parameter to
characterize the activity of substances of different chemical nature [41].

The antioxidant potential is an umbrella term to quantitatively describe the thermody-
namic and kinetic aspects of the antioxidant action [42]. In this work, we assessed both
the thermodynamic antioxidant capacity (the total number of neutralized radicals per unit
of fullerene concentration) by quantitative comparison with Trolox® as a reference com-
pound [38]. We also applied mathematical modeling to estimate rate constants of fullerenes,
i.e., the kinetic antioxidant activity (the dynamic interception ability of radicals) [39]. As far
as we are concerned, kinetics modeling for fullerenes were not used previously.

Thus, this paper deals with the antioxidant potential of aqueous fullerene dispersions
of C60, C70, and Gd@C82 as both antioxidant capacity and antioxidant activity using
various approaches, including computer simulation. The antioxidant potential of AFDs was
estimated using luminol-enhanced chemiluminescence with 2,2’-azobis(2-amidinopropane)
dihydrochloride (ABAP, 2.5 mM) as a source of free radicals at 37 ◦C in a phosphate buffer
solution (100 mM, pH 7.4).

2. Results
2.1. Assessment of the Antioxidant Capacity of AFDs

Here, the “antioxidant potential” means both antioxidant activity and antioxidant
capacity. In the technical IUPAC report [43], the terms “antioxidant capacity/activity” have
not been separated, although these parameters are rather complementary. The antioxidant
capacity (the number of neutralized radicals per unit of fullerene concentration) was
assessed using the modified TRAP protocol [44] and TAR protocol [38]. The TRAP index is
calculated from the latent period (Figure 1), while the TAR index is obtained from the rapid
decrease in luminescence after adding the antioxidant. The antioxidant activity (kinetic
constants of the reaction of an antioxidant with a free radical) has been determined using
the computer simulation of the chemiluminescence kinetics.
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In the TRAP method, Trolox is used as a reference substance [45]. The chemilumino-
grams for Trolox (100 and 200 nM) are shown in Figure 1. The effect of Trolox in the
ABAP/luminol system is typical for strong antioxidants: the complete suppression of
chemiluminescence followed by complete depletion of the antioxidant with a rapid in-
crease in the CL intensity to the previous stationary (blank) level after the latent period [46].
However, the latent period depends on the initial stationary CL level I0 and requires pre-
cise measurements of a short suppression period and restoration of the level I0 after the
antioxidant action. Thus, it provides reliable data for strong antioxidants only.

Therefore, to assess the antioxidant capacity by an alternative approach, we used the
area of suppression of chemiluminescence S (Figure 1), which is proportional to the total
number of radicals scavenged by the antioxidant, i.e., antioxidant capacity. The kinetics of
the antioxidant action for fullerenes differed from Trolox (Figure 2a,c,e). Instead of almost
rectangular (“trough”) suppression of the signal (Figure 1), we observed a decrease in
the stationary level typical for “weak” (or relatively slow) antioxidants. Strictly speaking,
it was not possible to wait until the signal returned to the stationary level for all three
fullerenes (i.e., the antioxidant was consumed, Figure 2b,d,f).

However, we estimated the area of signal suppression Ssupp for C60 and C70 (shaded
areas in Figure 2b,d; for Gd@C82, we failed to calculate this area correctly as the antioxidant
was not consumed during the operation of the CL model, and the CL intensity did not
return to the initial level. The integration suppression area normalized to concentration
(Table 1) showed the behavior, C60 > C70 > Gd@C82, ratios 4.3:2.4:1. The recalculation of
Ssupp to Trolox showed C60 has a 3-fold lower capacity than Trolox and Gd@C82, at 7%
capacity compared to Trolox.

Table 1. Antioxidant capacity parameters for aqueous fullerene dispersions: area of suppression of the chemiluminescence
signal (Ssupp) normalized to 1 µM of AFDs; Trolox equivalents calculated for 1 µM of AFDs; area of suppression of the
chemiluminescence signal for the first 20 min (S20); and half-maximal inhibitory concentration (c1/2 ); n = 5, p = 0.95.

AFD Concentration Range, µM
TRAP Suppression Area for the

First 20 min, Linear Fit c1/2, µM
Normalized Ssupp × 10–6 Trolox Equivalent, µM

C60 1.8 ÷ 18 0.51 0.31 S20 = (76 ± 6) × cFul,
r = 0.9955 6.4 ± 0.3

C70 2.0 ÷ 20 0.29 0.18 S20 = (46 ± 2) × cFul,
r = 0.9956 11.0 ± 0.4

Gd@C82 4.0 ÷ 40 0.12 0.072 S20 = (28 ± 5) × cFul,
r = 0.9754 22.6 ± 0.8

As calculating the area of suppression of chemiluminescence was unsuitable for
Gd@C82, and with some reservations applicable for C60 and C70, we used a different
method for determining the capacity. The addition of weak antioxidants leads not to
the complete suppression but to a decrease in chemiluminescence intensity plateau ∆I.
However, the dependence of ∆I on c for fullerenes proved to be nonlinear (Figure 2a,c,e),
and the CL intensity does not show a stable plateau. Thus, we used an approach based
on the combination of the intensity decrease and the suppression area [44]. We calculated
the suppression area for the first 20 min of the reaction, S20 (Table 1). This value for
low antioxidant capacities is more accurate than TRAP or TAR because the results do
not depend on the initial level of chemiluminescence [44], and thus both high and low
antioxidant capacities can be compared [47]. By this approach, AFDs can be ranked as
C60 > C70 > Gd@C82 (Table 1), capacity ratios are 2.7:1.6:1.

Furthermore, for weak antioxidants, the antioxidant capacity can be estimated by the
concentration of semi-suppression of the initial luminescence (c1/2) [21]. By this approach,
AFDs can be ranked as C60 > C70 > Gd@C82 (Table 1). Ratios of reciprocal half-suppression
signal concentrations were 3.5:1.7:1.
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Figure 2. Chemiluminograms of aqueous fullerene dispersions (AFD) in 2.5 mM ABAP and 2 µM luminol (a) C60 in the
concentration range of 1.8–18 µM up to 20 min; (b) long-term chemiluminograms of C60 (3.5 µM) up to 100 min; (c) C70 in a
range of concentration 2.0–20 µM up to 20 min; (d) long-term chemiluminograms of C70 (4.0 µM) up to 100 min; (e) Gd@C82

in a range of concentration 4.0–40 µM; (f) long-term chemiluminograms of Gd@C82 (17 µM) up to 100 min. A sharp decrease
in the signal between 5 and 10 min results from adding AFDs, the signal is not registered.



Int. J. Mol. Sci. 2021, 22, 5838 6 of 13

Thus, the results of estimation by TRAP suppression area, the suppression area for
the first 20 min of the reaction, S20, and c1/2 agree with each other. These rows are also
in accordance with the fraction of active molecules on the surface of fullerene clusters in
AFDs, 1.8:1.6:1 [26]. As a whole, the antioxidant capacities of studied fullerenes in AFD
by three approaches lie within one order of magnitude, and they show the properties of
weak antioxidants.

2.2. Antioxidant Activity (Chemiluminescence Kinetics before Antioxidant Depletion)

A mathematical model simulating the steady-state level of chemiluminescence without
antioxidants consisted of two reactions: (1) the free-radical generation from ABAP and (2)
chemiluminescence reactions:

1) ABAP→ R• (constant kR), decomposition of ABAP
2) R• + Lum→ RLum* (constant kLum), formation of the excited product
2a) RLum*→ P + hν luminescence

where R• is a free radical or reaction product in the electronically excited state, which reacts
with antioxidants, and P is the stable product of the free-radical reaction.

Fullerenes are known to be both antioxidants [48] and fluorophores [49] and act as
fluorescence quenchers [50,51]. We evaluated the properties of fullerenes as quenchers for
the ABAP–luminol system (Figures S1 and S2, Supplementary Materials). The Stern–Volmer
constants are C60~C70 > Gd@C82, (3.7± 0.1, 3.8± 0.1, and 2.9± 0.1)× 104 M−1, respectively,
which have good accordance with the existing data [32,52,53]. The fluorescence spectra are
presented in the Supplementary Materials. From these data, we expected that fullerenes
might play two roles in the system: actual antioxidant action and chemiluminescence
quenching. Thus, to model the action of AFDs, we took into account the following reactions:

3) AO + R• → . . . (antioxidant action, constant kIn1)
3a) AO + RLum*→ . . . (excited product quenching, constant kIn2)
Rate constants of the inhibition reactions 3 and 3a are used to prove and estimate the

antioxidant activity.
To simulate the reaction kinetics, we recorded the chemiluminograms until complete

luminol depletion [44]. All AFDs satisfy the requirements for mathematical modeling:
(1) the moment of antioxidant depletion is registered, and (2) the concentration dependence
is traced. To carry out the simulation, we selected the optimum concentration ranges of the
investigated AFDs (close to c1/2; Table 1). The initial simulation conditions are summed up
in Table 2. The experimental and model plots for AFD are shown for C60 (Figure 3a), C70
(Figure 3b), and Gd@C82 (Figure 3c).

Table 2. Constants for a one-stage mechanism for C60 and C70, and two-stage for Gd@C82. Initial simulation conditions
common for all the studied systems: ABAP, 2.5 mM; luminol, 2 µM; radical of ABAP and the excited product area were
absent at the starting points.

Initial Concentrations, µM C60 C70 Gd@C82 Trolox® Reaction

AO 3.5 4.0 17.2 0, 0.1, and 0.2 Quenching reaction (3a)

AO n/a n/a 0.172 n/a Radical interception reaction (3)

Value of Simulated Constant, µM−1 min−1

ABAP→ R 1.25 1.70 ABAP decomposition (1)

R + Lum→ RLum* 2 Formation of an excited product (2)

RLum*→ P + hν 1 4 Luminescence (2a)

AO + R• → . . . n/a n/a 30 10,000 Radical interception reaction (3)

AO + RLum*→ . . . 0.20 0.13 0.13 n/a Quenching reaction (3a)
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Figure 3. The experimental and simulated chemiluminescence plots for aqueous fullerene dispersions C60 (a), C70 (b), and
Gd@C82 (c) for one-stage mechanism. Black is the blank; blue is the simulated data of the blank; red is experimental data for
aqueous fullerene dispersions; and green is simulated data for aqueous fullerene dispersions.

Experimental and calculated plots have a sufficient degree of coincidence. For Trolox
and AFDs, recording the whole curve required ca. 100 min (Figure 2b,d,f). The simulation
shows the expected values of reactions (1), (2), and (2a) and the constant of the primary
antioxidant process, the radical interception reaction (3) of 104 µM−1 min−1 (Table 2).

For AFDs, the rate constants of (1) and (2) differed insignificantly, while the rate con-
stant of the luminescence process decreased by a factor of 4. Reaction (3a), the interaction
of the antioxidant with the excited product of luminol was revealed for all AFDs; rates are
in the order C60 > C70~Gd@C82, the ratio of reaction rate constants is 1.5:1:1. Along with a
decrease in the rate constant of (2a), it can be considered quenching.

The reaction (3) intercepting radicals from ABAP is observed for Trolox and Gd@C82
AFD. The simulation shows that this process has a rate constant 300 times higher than the
quenching (Table 2), while the concentration of the antioxidant calculated in the process
(3) is estimated as 100 times lower than the total fullerene concentration in the AFD. The
antioxidant activity of Gd@C82 is 300 times lower than for Trolox.
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3. Discussion

The study [44] classified the antioxidant activity by rate constants as strong, higher than
2 µM−1 min−1, medium, higher than 0.1 µM−1 min−1, and weak, below 0.01 µM−1 min−1.
Strong oxidants can be measured easily; the medium can be measured, as well. In the case
of weak oxidants, calibration is complicated as the action is weak and slow and probably
does not return to the pre-application stationary CL level.

C60, C70, and Gd@C82 are comparable and refer to medium-strength antioxidants
(Table 2). On the contrary, the same constants attributed to AO + RLum* reaction for C60,
C70, and Gd@C82 reveal that fullerenes intercept the excited product of luminol. It is the
quenching of chemiluminescence rather than competition with luminol molecules for free
radicals, as the magnitude of the constant values shows (Table 2). Such a quenching mech-
anism and the role of fullerenes in reducing the fluorescence signal are still unclear [54]. In
some cases, fullerenes and fullerenols can non-covalently bind molecules, e.g., Ribonucle-
ase A [52] exhibiting static quenching. However, binding sites in each case are individual;
for a more detailed study of the binding nature, molecular dynamics simulations should
be performed [55]. We evaluated quenching for an ABAP–luminol mixture and luminol
alone (see the Supporting information). In both cases, we observed comparable values
of Stern–Volmer quenching constants for C60, C70, and Gd@C82 as C70 > C60 > Gd@C82.
This quenching can be explained by the average polarizability (α) of fullerene molecules.
The polarizabilities as αEMF < αatom + αFullerene are 114.67 Å3 for Gd@C82 [56], 102.7 Å3 for
C70 [57], and 82.7 Å3 for C60. Thus, the higher quenching efficiency of C70 and Gd@C82
can be attributed to its higher polarizability [58]. In addition, the reactivity upon AE-type
reactions for fullerenes decreased from C60 to Gd@C82 [59] as the presence of endoatoms im-
proves the fullerene antiradical capacity [60]. A 1.3-fold decrease in the quenching constant
for Gd@C82 could also be due to a different behavior in the chemiluminescence reaction,
a change in the quenching mechanism to a bimolecular one [53] or another competing
process at multiple positions of the fullerene cage [59].

From the data on antioxidant activity of AFDS of C60 and C70, the following results can
be summed up. AFDs of C60 and C70 show no pro-oxidant activity in the tested model; thus,
they can be used for biomedical applications without any hazardous effect. In our opinion,
low activity values and mainly quenching properties mean that AFDs of unmodified C60
and C70 can be used as control values for testing the antioxidant properties of fullerene
derivatives. In such a case, any found activity can be attributed to the added functionality
and not the fullerene cage.

The most relevant difference in antioxidant activity is that while C60 and C70 showed
a single process that we attribute to quenching, a second process is revealed in Gd@C82.
This action in Gd@C82 is attributed to the interception of ABAP radicals, i.e., actual an-
tioxidant activity. However, the significant CL quenching intrinsic to Gd@C82 as to other
fullerenes makes it challenging to separate these two signals. This behavior for Gd@C82
AFD can be explained by the presence of a carbon cage containing the inner paramagnetic
metal ion Gd3+ with a spin of 7/2 or Gd@C82

3– anion acting as a radical located on the
outer shell [61]. Gd@C82

3– can be involved in free-radical addition reactions, which can
change the electronic structure of the inner cluster and affect its configuration [62]. The
electron affinity of Gd@C82 is more significant than those for pristine C60 and C70 (1.25 and
1.19 times, respectively2). Gd@C82 acts as a strong electron donor and acceptor [63], which
correlates with the relative efficiencies Gd@C82(OH)22 > C60(OH)22 to scavenge various
free radicals [19]. It is noteworthy that the concentration of Gd@C82 was 4 times higher
than C70 and C60 (17.2 and ~4 µM, respectively). Thus, the effect of the second process in
Gd@C82 kinetics was more prominent. AFDs C60 and C70 may show the same antioxidant
action, but it was less noticeable due to the concentrations.

Thus, for Gd@C82, we can conclude that it shows no pro-oxidant activity like AFDs of
C60 and C70, which is more relevant as Gd@C82 is considered for MRI applications [64]. Ad-
ditionally, Gd@C82 shows medium antioxidant activity; thus, it can exhibit cytoprotective
properties, which can be the topic of the subsequent study.
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4. Materials and Methods
4.1. Aqueous Fullerene Dispersion Preparation

Preparation and characterization techniques for aqueous fullerene dispersions were
recently described elsewhere [30]. In this work, we used long-term stable AFD of the
pristine C60, C70 (NeoTechProduct LLC (St. Petersburg, Russia), 99+% HPLC-grade); the
enriched soot containing the Gd@C2n EMFs (total content of Gd atoms up to 4 wt. % has
been synthesized by the evaporation of the composite graphite electrodes compounded by
gadolinium in the electric arc reactor as we previously described [65]. The sonication time
was increased up to 36 h totally, and an ultrasound probe with a large surface was used
(ca. 7 cm2). The main drawback of this process is a time-dependent accumulation of tita-
nium dioxide nanoparticles (TiO2 NPs) due to cavitation sonotrode erosion. It is confirmed
by ICP-OES analysis for metal impurities in AFDs (Table S1, Supplementary Materials).

A syringe hydrophilic polyvinylidene fluoride (PVDF) filter has been used to remove
particles from AFDs. The filter removes large fullerene nanoparticles (more than 1 µm) and
finally cleans out titanium nanoparticles (less than ca. 1 ppb) from the ultrasonic probe.
ICP-OES showed that AFDs contain silicon, which cannot be removed by syringe filtering.
The details on the aqueous fullerene dispersion preparation and material safety data sheet
are summarized in the Supplementary Materials.

4.2. Techniques and Reagents

The enhanced chemiluminescence protocol for quantification of the antioxidant po-
tential of AFD C60, C70, and Gd@C82 has been used. The chemiluminescent system con-
sisted of a source of free radicals, cationic 2,2′-azobis (2-amidinopropane) dihydrochlo-
ride (ABAP; Sigma, St. Louis, MO, USA), and a chemiluminescent probe, 5-amino-2,3-
dihydrophthalazine-1,4-dione. Reference antioxidant compound: Trolox® (±)-6-Hydroxy-
2,5,7,8-tetra-methylchromane-2-carboxylic acid (Sigma, St. Louis, MO, USA).

A luminol solution of 1 mM (Sigma, USA) and ABAP solution of 50 mM were prepared
by dissolving the weighed samples in a phosphate buffer solution 0.1 M KH2PO4 at pH 7.4
(Sigma, St. Louis, MO, USA). The total volume in a polycarbonate cuvette was 1.00 mL in all
experiments. The stock solution of ABAP (2.5 mM) and luminol (2 µM) in the mixture were
added to the buffer solution at 37 ◦C. Reagent addition order: (1) heated phosphate buffer
solution, (2) mixture of ABAP and luminol incubated in the dark at room temperature for
20 min. After reaching a steady-state CL signal level, the AFDs, or Trolox® was added
(shown as a sharp decrease in readout signal between 10 and 20 min, Figures 1 and 2). The
CL signal was recorded until the new stationary level was reached.

The chemiluminescence signal was recorded up to achieving stationary level, and
then an aliquot of the antioxidant solution of Trolox or AFDs was added. The registration
was performed until the new steady-state level.

4.3. Equipment

The measurements were carried out with a Lum-1200 12-channel chemiluminome-
ter (DISoft, Moscow, Russia). The chemiluminometer detects visible light in a range
of 300–700 nm. No bandpass filters were used. Signal processing was performed via
PowerGraph 3.3 Professional software (DISoft, Moscow, Russia). The relative standard
deviation of chemiluminescence intensity did not exceed 0.05. Fluorolog®-2 spectrofluo-
rimeter (Horiba Jobin Yvon, Kyoto, Japan) was used. An Agilent 720 ICP-OES spectrometer
(Mulgrave, Australia) with an axial view was used for elemental analysis. The statistical
processing of the data was performed with STATISTICA v.10.0 software (StatSoft Inc., Tulsa,
OK, USA).

Millex-HV Syringe Filter Unit, 0.22 and 0.45 µm, hydrophilic PVDF, 33 mm, non-
sterilized were used for AFD filtration during the preparation process (Merck Millipore,
Darmstadt, Germany). Sartorius Proline Plus (Göttingen, Germany) mechanical single-
channel pipettors of 10 ÷ 100, 100 ÷ 1000 µL were used for the graduation and preparation
of solutions calibrated by ISO 8655-2:2002. The ultrasound probe MEF93.T (LLC MELFIZ-



Int. J. Mol. Sci. 2021, 22, 5838 10 of 13

ul’trazvuk, Moscow, Russia) working in a continuous mode of exposure to ultrasonic
energy at operating frequency 22.00 ± 1.65 kHz has been used for AFD preparation. A
SevenCompactTM pH/Ion S220 pH-meter (Mettler-Toledo AG, Greifensee, Switzerland)
was used to prepare the phosphate buffer solution. According to IUPAC recommenda-
tion [66], calibration was performed using NIST Traceable standard buffer solutions with
pH 1.68, 4.01, 6.68, 9.18, and 11.00 (Hanna Instruments, Woonsocket, RI, USA).

4.4. Computer Simulation and Data Handling

The computer simulation was carried out with the specially designed computer
program Kinetic Analyzer (by Dr. D. Izmailov). For a set of the predetermined reactions
and the initial concentrations of the reactants, the rate constants were selected, providing
the maximal curve fitting of experimental and calculated plots. As a criterion for the best
curve fitting, the minimum sum of squared residuals was calculated using OriginPro 2015
software (OriginLab Corp., Northampton, MA, USA).

We recorded the kinetics of chemiluminescence of antioxidant action to the moment
of depletion of the antioxidant, ~100 min. The total areas and areas for the first 20 min
of the reaction were calculated using the functional features of PowerGraph software.
Chemiluminograms in the molecular model of generation of organic radicals were used
to determine the concentration of half-suppression of the chemiluminescent signal for
all AFDs (c1/2, µM). The concentration of half-suppression of luminescence (c1/2, µM)
is a concentration that reduces the area the signal S of the response by two times and
can hypothetically be taken as a quantitative indicator of the inhibitory activity of a
given compound.

5. Conclusions

Thus, the antioxidant potential requires the estimation of both the thermodynamic
and kinetic parts of this parameter. AFDs of C60 and C70 show no antioxidant activity in
the system of organic radical-induced ABAP decay. We prove that it is not free radical
capture but quenching. However, Gd@C82 has a dual-action mechanism involving a
significant antioxidant action. The results provide insights into the possible mechanism of
interactions of fullerenes between free-radicals C60, C70, Gd@C82, which are fundamental
to understanding the potential biomedical effects of AFDs. Evaluating the antioxidant
activity of fullerenes is helpful in further evaluation of antioxidant properties in a living cell.

We believe that this work helps create reference materials for further study of the
antioxidant properties of functional fullerene derivatives. AFDs of C60, C70 can be proposed
as model substances not exhibiting antioxidant properties. Moreover, the absence of a
significant free radical interception effect allows the development of sensors to control
impurity composition, acting as a free radical interceptor rather than as a quencher for
in vitro and in vivo experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115838/s1, Figures S1 and S2, fluorescent spectra of aqueous fullerene dispersions C60,
C70, and Gd@C82 act as a quencher at different systems ABAP-luminol, and only luminol. Table S1,
the elemental composition of fullerene dispersions by inductively coupled plasma atomic emission
spectroscopy (ICP-OES) and pH measurements.
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