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Abstract
At rest, human brain functional networks display striking modular architecture in which coherent clusters of brain regions
are activated. The modular account of brain function is pervasive, reliable, and reproducible. Yet, a complementary
perspective posits a core–periphery or rich-club account of brain function, where hubs are densely interconnected with one
another, allowing for integrative processing. Unifying these two perspectives has remained difficult due to the fact that the
methodological tools to identify modules are entirely distinct from the methodological tools to identify core–periphery
structure. Here, we leverage a recently-developed model-based approach—the weighted stochastic block model—that
simultaneously uncovers modular and core–periphery structure, and we apply it to functional magnetic resonance imaging
data acquired at rest in 872 youth of the Philadelphia Neurodevelopmental Cohort. We demonstrate that functional brain
networks display rich mesoscale organization beyond that sought by modularity maximization techniques. Moreover, we
show that this mesoscale organization changes appreciably over the course of neurodevelopment, and that individual
differences in this organization predict individual differences in cognition more accurately than module organization alone.
Broadly, our study provides a unified assessment of modular and core–periphery structure in functional brain networks,
offering novel insights into their development and implications for behavior.
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Introduction

Human cognition and behavior are grounded in the brain’s
complex neuroanatomical architecture and reflected in its
functional dynamics. Recent efforts in network neuroscience
(Bassett and Sporns 2017), an interdisciplinary fusion of network
science and neuroimaging, have begun to uncover network-
level explanations for this architecture (Bullmore and Sporns
2009, 2012) and mechanisms for these dynamics (Hutchison
et al. 2013; Chaudhuri et al. 2015). Here, network nodes are
defined as brain regions, and network edges are defined as
summary statistics, reflecting either interregional tractography
in a structural brain graph or statistical relationships among
regional activity time series in a functional brain graph (Fornito
et al. 2013). The formal representation of the brain as a graph
facilitates the application of graph theoretical tools to link
the graph’s topology and dynamic properties to higher-order
cognition (Bassett et al. 2011, 2015; Chai et al. 2016), including
changes in cognitive capabilities that accompany development
(Gu et al. 2015; Chai et al. 2017).

In the context of human neuroimaging, one particularly
important set of tools—community detection—offers methods
to decompose a network into modules or communities (Sporns
and Betzel 2016). A common example applied to both structural
(Sporns et al. 2005; Hagmann et al. 2007) and functional
(Van Den Heuvel and Pol 2010) brain graphs is modularity
maximization (Newman 2006), which identifies groups of
nodes such that nodes within a group are more densely
connected to other nodes in their group than anticipated in
an appropriate random network null model. While useful, mod-
ularity maximization and similar approaches such as Infomap
(Rosvall and Bergstrom 2008) make the important assumption
that the brain’s mesoscale architecture is best characterized
by modules that are maximally independent from one another.
Such an assumption is not without support from philosophical
work in neuroscience and psychology over the last few
decades. For example, the Fodorian view is that modules are
characterized by informational encapsulation, with little need
to refer to other psychological systems in order to operate
(Fodor 1983).

Nevertheless, despite its historical roots, recent empirical
evidence and emerging theoretical understanding have begun to
call into question the notion that the brain network architecture
supporting complex cognition is best characterized by largely
independent modules. At a neuroanatomical level, the pattern
of white matter connections displays structural connectivity
among modules (Hagmann et al. 2008), and the strength of
that intermodular connectivity differs according to the modules
involved (Betzel et al. 2018, 2019). The heterogeneous pattern
of strong and weak intermodular connectivity at the large-
scale level of white matter structure is thought to facilitate
and constrain integration of neural activity across diverse cog-
nitive systems, enabling their collective function (Baum et al.
2017). Consistent with these observations of underlying struc-
ture, at the physiological level, the pattern of functional connec-
tions also displays nontrivial integration between modules, with
some module pairs being more or less integrated than others
(Meunier et al. 2009). For example, executive modules such as
the frontoparietal system tend to be more integrated with other
brain systems (Power et al. 2013). The strength of between-
module connectivity changes over development (Gu et al. 2015),
differs in individuals in accordance with cognitive capabili-
ties (Satterthwaite, Wolf, et al. 2015), and is altered in psychi-

atric diseases in both adults (Sharma et al. 2017) and youth
(Satterthwaite, Vandekar, et al. 2015), underscoring its relevance
to brain function.

An important open question is whether there is a simple
organizing principle that explains the heterogeneous patterns of
intermodule connectivity observed in both anatomy and func-
tion. For example, are modules connected in a small-world
organization, where modules tend to form clusters enabling
local integration between modules, with a few modules extend-
ing topologically long-distance connections to other modules
enabling global integration? Or perhaps, a few modules serve
as hubs in the intermodule network, while most modules are
sparingly connected. While the literature has not settled on
conclusive answers to these questions, one coarse-grained topo-
logical principle that has been shown to account for some of
this heterogeneity is rich-club organization (Colizza et al. 2006),
a specific sort of core–periphery structure (Borgatti and Everett
2000; Rombach et al. 2014; Zhang et al. 2015) whereby a set
of highly connected and strongly interconnected hubs in the
brain is complemented by a more sparsely connected network
periphery (van den Heuvel and Sporns 2013). The core–periphery
structure of underlying anatomy has important implications for
the dynamics that can occur upon them (Betzel et al. 2016), to
some degree explaining the core–periphery organization that is
also observed in functional networks estimated from functional
magnetic resonance imaging (fMRI) data collected during task
performance (Ekman et al. 2012; Bassett, Wymbs, et al. 2013) and
during the resting state (Gu et al. 2017).

The observation that both modular structure and core–
periphery structure characterize brain graphs raises several
challenging questions. How are modules related to cores or
to peripheries? Is there a simple organizational principle
explaining these 2 characteristics of network architecture? How
is that principle altered across development or manifested in
different individuals? Answering these questions is particularly
challenging because the methodological tools to identify
modules are entirely distinct from the methodological tools to
identify core–periphery structure. Here, we employ a recently-
developed model-based approach—the weighted stochastic
block model (WSBM) (Aicher et al. 2014)—that simultaneously
uncovers modular structure, core–periphery structure, and
other organizational features that can occur in networks with
richly and heterogeneously connected modules (Betzel et al.
2018, 2019). We apply the WSBM to functional networks
extracted from resting-state data acquired in a large sample of
youth imaged as part of the Philadelphia Neurodevelopmental
Cohort (PNC) (Satterthwaite et al. 2014). We hypothesized
that functional brain networks would display rich mesoscale
organization beyond that sought by modularity maximization
techniques, that richer mesoscale organization would change
over the course of normative neurodevelopment, and that
individual differences in this organization would be more
predictive of individual differences in cognition than individual
differences in module organization alone (Gordon et al. 2016).

Materials and Methods
Participants

Resting-state fMRI data were obtained from n = 1601 youth
who participated in a large community-based study of brain
development, now known as the PNC (Satterthwaite et al. 2014).
The present sample includes n = 872 participants between
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the ages of 8 and 22 years (mean = 15.65, standard deviation
[SD] = 3.3; 377 males, 495 females). A total of 729 of the initial
1601 participants were excluded for the following reasons.
First, as in-scanner motion is the most important confound
for studies of development, we used exclusion criteria that
have been applied in many prior papers (Satterthwaite et al.
2012; Satterthwaite, Wolf, et al. 2013; Satterthwaite et al. 2014).
The motion threshold for exclusion is either mean relative
displacement > 0.2 mm or more than 20 frames with motion
exceeding 0.25 mm. These criteria resulted in the exclusion
of 478 subjects due to motion during the resting-state scan.
Additionally, we excluded 80 subjects due to a poor quality
T1 image, as judged by 3 expert manual raters who evaluated
each image (for full details, see Rosen et al. 2018). Finally, as in
prior studies of the PNC (Satterthwaite et al. 2014), we excluded
340 participants due to other factors that could impact brain
function, including medical problems that could impact the
central nervous system, potentially psychoactive medications,
or a history of psychiatric inpatient hospitalization. Naturally,
some subjects met more than 1 exclusion criterion, and
therefore, the total number of excluded subjects was 729.

Neurocognitive Battery

Cognition was measured outside the scanner using the Penn
Computerized Neurocognitive Battery (CNB) (Gur et al. 2010,
2012). Briefly, the 1-h CNB was administered to all participants
and consisted of 14 tests that evaluated a broad range of cog-
nitive functions. Twelve of the tests measure both accuracy
and speed, while 2 of the tests (motor and sensorimotor) mea-
sure only speed. Here, we used the factor score for executive
efficiency from a best-fitting 4-factor solution comprising tests
from the executive function domain, attention, abstraction, and
working memory (Moore et al. 2015). The tests contributing
to the executive efficiency score include the Penn Continuous
Performance Test, the Letter N-Back task, and the Penn Verbal
Reasoning Test (Moore et al. 2015, 2016, 2019). In the present
study, we use this factor score for executive efficiency as our
primary measure, hereafter referred to simply as “executive
function.”

Imaging Data Acquisition and Preprocessing

MRI data were acquired on a 3-Tesla Siemens Tim Trio whole-
body scanner and 32-channel head coil at the Hospital of the
University of Pennsylvania. A T1-weighted image was acquired
for each subject. All subjects underwent functional imaging
(time repetition = 3000 ms, time echo = 32 ms, flip angle = 90◦,
field of view = 192 × 192 mm, matrix = 64 × 64, slices = 46, slice
thickness = 3 mm, slice gap = 0 mm, effective voxel resolution
= 3.0 × 3.0 × 3.0 mm) during a 6-min resting-state sequence,
during which a cross-hair for fixation was displayed.

Raw resting-state fMRI blood oxygen level–dependent (BOLD)
data were processed using a preprocessing pipeline that has
been shown to markedly reduce the impact of in-scanner
motion with greater efficacy than other commonly used
pipelines (Satterthwaite, Elliott, et al. 2013; Ciric et al. 2017).
This pipeline included 1) distortion correction with FSL’s FUGUE
utility, 2) template registration with MCFLIRT, 3) despiking
with AFNI’s 3DDESPIKE utility, 4) demeaning to remove linear
or quadratic trends, 5) boundary-based registration to the
individual high-resolution structural image, 6) 36-parameter

global confound regression, and 7) first-order Butterworth
filtering to retain signal in the 0.01 Hz to 0.08 Hz range. For
all analyses of fMRI data, we excluded subjects with incomplete
data or excessive motion, as previously noted.

Network Construction

Here, we model the resting-state functional connectivity of each
subject as a network (Bassett et al. 2018). We begin by noting
that a simple networked system can be represented by the
graph G = (V ,E), where V and E are the vertex and edge
sets, respectively. Let aij be the weight associated with the edge
(i, j) ∈ E , and define the weighted adjacency matrix of G as
A = aij, where aij = 0 whenever (i, j) /∈ E . In this study, each
network node represents 1 of 333 cortical areas specified by the
Gordon atlas (Fig. 1A). Each network edge was defined as the
Pearson correlation coefficient between the regional mean BOLD
time series of region i and region j, followed by the application
of a Fisher’s r-to-z transformation (Fig. 1B).

Weighted Stochastic Block Model

Fundamentally, the stochastic block model is a generative model
for random graphs that seeks to partition nodes into sets such
that nodes with similar patterns of binary connectivity to the
rest of the brain are grouped together with one another. Here, we
applied a recent extension of this method to weighted graphs,
commonly referred to as the WSBM (Aicher et al. 2014). Formally,
we follow the notation in Aicher et al. (2014), which describes the
generative model for weighted pairwise interactions among n
vertices, with an exponential family distribution F and a block
structure R. For a subject s with an adjacency matrix As, the
probability of observing that graph given the model is

Pr
(
As|zs, θs,Ms

F ,R
)

=
∏
i≤j

f s

(
As

ij|θs
R

(
zi ,zj

)
)

, (1)

where zs is the community label and θs is the matrix of edge
bundle parameters θ. For an estimated model MF ,R, the log-
evidence score

LMF ,R = log Pr
(
A|MF ,R

)
(2)

is used to quantify the goodness of fit and to inform model
selection.

Next, we define summary statistics that can be used to
describe the organization of the estimated block structure, and
we also consider how to extend the model to reflect the shared
structure in a group of subjects. We begin by supposing that
we have N subjects with adjacency matrix A1, . . . , AN and the
optimized density f s with Pr(As) = f s(As). Because the WSBM
groups nodes together into sets (or blocks), we have the oppor-
tunity to quantify the interblock connectivity strength as well
as the intrablock connectivity strength. For the block average
adjacency matrix �s = ωs

mn with corresponding block set Cm,
the block average strength between block m and n of subject s is
defined as

ωs
mn =

⎧⎪⎨
⎪⎩

∑
i∈Cm ,j∈Cn ,i�=j As

ij
|Cm |·|Cm |−|Cm | if m = n,∑

i∈Cm ,j∈Cn As
ij

|Cm |·|Cn | if m �= n,
(3)
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Figure 1. A conceptual schematic. (A) We first subdivide the brain into 333 cortical areas from the Gordon atlas (Gordon et al. 2016) and extract the regional mean BOLD
time series. (B) Next, we estimate the functional connectivity between all pairs of regions by calculating the Pearson correlation coefficient between regional time

series and applying a Fisher r-to-z transformation. For each subject, this approach produces a graph or network that we represent in an
∣∣∣V∣∣∣ ×

∣∣∣V∣∣∣ weighted adjacency
matrix. (C) Traditionally, this sort of network has been subdivided into functional modules based on various community detection methods. Here, we show 1 example
partition of network nodes (brain areas) into 13 modules (Power et al. 2007) forming auditory, cingulo-opercular (CinguloOperc), cingulo-parietal (CinguloParietal),
default mode (Default), dorsal attention (DorsalAttn), salience, frontoparietal, retrosplenial temporal, somatomotor hand (SMhand), somatomotor mouth (SMmouth),

ventral attention (VentralAttn), and visual systems. For clarity of visualization, nodes are color coded according to their module assignment, and we show the strongest
3% of edges in the group-averaged functional brain network. (D) When we plot the group-averaged functional connectivity matrix with nodes ordered by the 13 a priori
defined modules, we observe a nonzero mean and heterogeneous pattern of intermodule connectivity.

and the block allegiance matrix Fs representing the expected
strength between 2 regions for each subject is defined as

Fs
ij = E

s

(
At

ij|θs
R

(
zi ,zj

)
)

= ωs
zi ,zj

, (4)

where E
s is the expectation of the estimated model of the s-th

subject and zi, zj are the block labels of region i and region j.
The mean block average strength � = {ωmn} is then defined

as the mean of �s across subjects:

ωmn = 1
N

∑N

s=1
ωs

mn, (5)

and the average block allegiance matrix is defined as the mean
of Fs

ij across subjects:

Fij = 1
N

N∑
s=1

Fs
ij, (6)

where N is the number of subjects.

Identification of Group-Level Hierarchical Mesoscale
and Macroscale Structures

In order to obtain an estimated hierarchical block structure at
the group level, we designed a 4-step procedure composed of
repeated application of the WSBM. At the first scale of the
hierarchy (Step 1), we applied the WSBM-based clustering to
single-subject functional connectivity matrices, and we varied
the number of blocks ks from kmin to kmax in increments of 1 to
obtain individual-level estimates of block structure. To move to
the next level of the hierarchy (Step 2), we computed the average
block allegiance matrix F for each ks using Equation (6). We
examined the effect of ks on Fij to determine the value of ks above
which Fij remained relatively stable. For the remaining steps in
this hierarchical procedure, we fixed F at this stable architecture.
Next (Step 3), we applied the WSBM to the fixed F and tuned the
number of blocks k to attain the highest log-evidence. This pro-
cedure produced an optimal group-level mesoscale structure.
From this structure, we next computed the associated mesoscale
connectivity matrix, where each node represented a block from
the WSBM and where each edge was weighted by the mean
connectivity strength between pairs of blocks. Finally (Step 4),
we applied the WSBM to this mesoscale connectivity matrix to
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obtain a macroscale structure that represented the relationships
among blocks. Through this 4-step procedure, we acquired the
individual block structures as well as representative group-level
mesoscale and macroscale structures, which we study through-
out the article. For a flow diagram of the 4 steps, please see
Supplementary Figure 1.

Quantitative Examination of Core–Periphery Structure:
Estimating the Regional Core Score

We used the core scores defined in Rombach et al. (2014) to
perform our core–periphery analysis. The core score for node i
is defined as

CS(i) = Z
∑

γ
Ci (γ) × Rγ, (7)

where Z is the normalization factor so that maxi[CS(i)] = 1,
and γ = (α, β) is the scale parameter for the local core value

Ci (γ) = Ci (α, β) = 1
1 + exp

(− (
i − |V| β) × tan (πα/2)

) , (8)

where |V | is the number of nodes, and Rij = ∑
ijAijCiCj is the core

quality.

Identification of Interblock Relations in the Mesoscale
Structure

After examining the existence of core–periphery relationships
in the resting functional brain networks, we further investigated
how different blocks interact with each other on the mesoscale.
Consider a given pair of blocks m, n with associated within-block
mean strengths ωmm and ωnn and with associated between-
block mean strength ωmn. We say that this pair forms a “core–

periphery pair” when |ωmm| ≤ |ωmn| ≤ |ωnn| (or |ωnn| ≤ |ωmn

∣∣∣ ≤
|ωmm|), a “bipartite pair” when |ωmn| ≥ max{|ωmm|, |ωnn|}, or an
“independent pair” when |ωmn| ≤ min{|ωmm|, |ωnn|}.

After identifying the core–periphery pairs in the functional
connectivity matrix, it is necessary to ask whether the findings
are statistically significant. Here, we conduct a nonparametric
permutation test to assess statistical significance. For a sub-
ject s with a block average adjacency matrix �s, we define
Hs = ηs

mn as its characteristic matrix of core–periphery structure,
where

ηs
mn =

⎧⎪⎨
⎪⎩

−1 if ωmm < ωmn ≤ ωnn

1 if ωnn ≤ ωmn < ωmm

0 otherwise
. (9)

The average core–periphery role H is then defined as the
mean of Hs across subjects:

H = 1
N

N∑
s=1

Hs. (10)

To determine whether the core–periphery pairs are located
uniformly at random, we consider a null model in which core–
periphery pairs are chosen uniformly at random for each sub-
ject. Under the null hypothesis instantiated by this model, the
probability η0

mn that a pair mn is a core–periphery pair is esti-

mated as (
∑N

s=1|ηs
mn|)/N and its SD is σ0

mn =
√

η0
mn(1 − η0

mn)/N,

where N is the number of subjects. Thez score of a pair mn being
a core–periphery pair is then defined as

zmn = |ηmn| − η0
mn

σ 0
mn

, (11)

which represents the regularized difference between the fre-
quency of pair mn and the expected probability of a random
pair to appear as a core–periphery interaction. The associated p
values are denoted as pmn and calculated following the standard
normal distribution. By applying a false discovery rate (FDR)
correction for multiple comparisons, we can binarize the aver-

age core–periphery role H to
∼
H = { ∼

ηmn}, where
∼

ηmn = 1 for
pcorrected

mn < pFDR, representing the existence of a significant core–
periphery pair.

Identification of Core–Periphery Junctions

After identifying core–periphery interactions, we next explored
the possibility of complex conjunctions among multiple blocks.
Specifically, by integrating core–periphery pairs with common
blocks, we recognized a pattern that we call a “core–periphery
junction.” Mathematically, a core–periphery junction is defined
as a connected component of the core–periphery relationship
graph (see Eqs. 9–10). Intuitively, a junction represents a sector of
the system in which specific blocks act as linkers between a core
block and a periphery block. By examining this integrated struc-
ture, we can probe relations between more integrative structures
(cores) and more segregated structures (peripheries).

Modularity Maximization

The modular structure is obtained by modularity maximization
with a Newman–Girvan null model, where the modularity func-
tion is defined as

Q =
∑

ij

[(
A+

ij − γ+ p+
i p+

j

2μ+

)
+

(
A−

ij − γ− p−
i p−

j

2μ−

)]
δ
(
ci, cj

)
, (12)

where A+ is the positive part of the weighted adjacency matrix
A, A− is the negative part of A, p+

i = ∑
jA

+
ij , p−

i = ∑
jA

−
ij ,

μ+ = ∑
ijA

+
ij , μ− = ∑

ijA
−
ij , ci is the community assignment for

node i, and γ+ and γ− are resolution parameters that tune the
relative size of modules detected. We optimized this modularity
quality function using a Louvain-like locally greedy algorithm
(Jutla et al. n.d.; Blondel et al. 2008). We performed a parameter
sweep across values of γ (Bassett, Porter, et al. 2013) to iden-
tify a γ value that produced the same number of modules as
the number of blocks in the WSBM. At that γ value, we then
identified a consensus partition across multiple runs of the
algorithm.

Assessing the Variability or Consistency of Intrablock
Edge Weights

We assessed the performance of the WSBM and modularity
maximization algorithms by calculating the variance in the edge
weights located within blocks or modules. Intuitively, this metric
served to probe the fit of the model to the data, with low edge
weight variability indicating greater internal homogeneity of
blocks or modules. Biologically, we speculate that such homo-
geneity could be driven by the recently reported redundancy
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of genetic encoding of functional connectivity, and age-related
changes in that homogeneity could reflect developmental pro-
gramming (Bertolero et al. 2019). Specifically, for subject s with
ks blocks or modules in its adjacency matrix, we denote the SD
of edge weights within block m’s upper triangle as σs

m. Then, we
calculate the SD σs as the squared mean of σs

m’s, that is,

σs =
√∑ks

m=1

(
σs

m
)2

ks
. (13)

Statistical Testing

Throughout the majority of the Results section, we reported
standard parametric statistical tests and associated P values.
In the context of Figures 4 and 5, we employed nonparametric
permutation testing due to the nonnormal distribution of the
data. First, the P value reported in Figure 4 was computed via a
permutation test in which each of the 100 000 random instan-
tiations was created by randomly shuffling the block labels
and recalculating the within-block mean of core scores. These
estimates then formed the null distribution of block-averaged
core scores shown in the bottom row in Figure 4. Second, the
P value reported in Figure 5B was computed via a 2-sample t-
test between the distribution of the number of core–periphery
pairs in the partition by WSBM and that in the partition obtained
in a nonparametric permutation-based null model. For each
subject, we randomly shuffled the block association achieved
by WSBM for each node with the block size retained. Next, we
applied the rule implemented in Figure 5A and Equation 9 to
identify the number of core–periphery pairs for each subject.
These estimates formed the null distribution that we used in
the 2-sample t-test.

In the context of Figure 6, the correlations were computed
between the block connectivity strength and age, after par-
tialing out the effects of mean framewise displacement and
sex. The standard P values associated with partial correlations
were reported here. In the context of Figure 7, the P values
were associated with the Pearson’s correlation between block
connectivity strength and age-regressed executive score. We
note that no significant correlations were observed between the
age-regressed executive function scores and covariates of no
interest, including in-scanner motion and sex.

Results
In this study, we seek to unify the detection and quantitative
characterization of modular and core–periphery structure under
a single framework and to understand how such mesoscale
organization is associated with neurodevelopment and cog-
nitive ability. To achieve this goal, we study functional brain
networks estimated from resting-state fMRI data acquired in
872 youth between the ages of 8 and 22 years. An increasingly
common approach to studying these sorts of data is to consider
modules that are defined a priori from other data using com-
munity detection techniques (Fig. 1C) or to apply a community
detection technique directly to the data to extract modules. Cur-
rently, both approaches depend on techniques that frequently
remain agnostic to any structure of connectivity observed out-
side those modules, for example, in the off-diagonal blocks of the
connectivity matrix (Fig. 1D). To provide a broader perspective
on potential interactions between modules, we use the WSBM
to coarse-grain the data, identifying mesoscale structure that
is characteristic of each individual and that is characteristic of

the group, at both finer and coarser topological scales. After
characterizing this mesoscale structure, we map the association
between structure and age and reveal associations with indi-
vidual differences in cognitive function. We demonstrate that
a unified assessment of modular and core–periphery structures,
made possible through use of the WSBM, provides novel insights
into functional network organization, its development in youth,
and its implications for behavior.

Comparison Between WSBM and Modularity
Maximization

Fundamentally, the WSBM follows the rule to group nodes by
similar patterns of connectivity different from that employed
by other common approaches for community detection such as
modularity maximization and Infomap. Moreover, the focus on
pattern similarity allows the WSBM to simultaneously detect
modules, cores, and other mesoscale structures. Specifically, if a
few nodes are all densely connected to one another and sparsely
connected to the rest of the brain, they will be identified as a
block using the WSBM and also tend to be identified as a mod-
ule using community detection techniques such as modularity
maximization (Fig. 2A). If a few nodes are strongly connected
to one another and more weakly connected to (but not discon-
nected from) the rest of the brain, they will be identified as a
block using the WSBM and also tend to be identified as a core
using core–periphery detection techniques (Fig. 2B). A third type
of mesoscale structure that is not explicitly detected by either
modularity maximization or core–periphery techniques, but is
explicitly detected by the WSBM, is bipartite structure, where
one set of very sparsely intraconnected nodes is strongly and
preferentially connected to another set of sparsely intracon-
nected nodes.

The fact that the WSBM groups nodes with similar connec-
tion patterns provides it with the flexibility to identify such
diverse mesoscale structures simultaneously. To gain an intu-
ition for the WSBM’s sensitivity, we considered a group-averaged
functional brain network constructed by taking the mean over
all subject-specific connectivity matrices. To this group network,
we applied both the WSBM and modularity maximization meth-
ods. We separately tuned the free parameter of both models to
ensure that the subsequent solutions separated brain regions
into 21 groups (a number that we will justify further below),
referred to as “blocks” in the case of the WSBM and as “mod-
ules” in the case of modularity maximization. We observed that
the modularity maximization approach produced a nonuniform
distribution of module sizes, tending to group nearly half of
the nodes into a single module (Fig. 2C). In contrast, the WSBM
produced a more uniform distribution of block sizes, tending to
group nodes into similarly sized blocks (Fig. 2D).

To determine the generalizability of this observation across
subjects and across parameter choices, we considered the func-
tional connectivity matrices derived for each subject separately.
We then applied both modularity maximization and the WSBM
to each matrix and varied the free parameter in both algorithms
to sweep across scales of the network’s community architecture.
We assessed performance with 2 metrics. First, we calculated the
variance in the edge weights located within blocks or modules
(Eq. 13); this metric served to probe the fit of the model to the
data, with low edge weight variability indicating greater internal
homogeneity of blocks or modules. Second, we calculated the
variance in the sizes of blocks or modules; this metric served
to probe the capacity of the method to assess the presence of
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Figure 2. Comparison between the WSBM and modularity maximization. (A) Modularity maximization is designed for community detection in a modular graph
where the within-community connectivity is much stronger than the between-community connectivity. (B) Accurate and reliable detection of core–periphery structure
requires a distinct methodological approach. Notably, characterizations of networks that display both modular and core–periphery structures require yet another
distinct method, an example being the WSBM. (C) Group-averaged functional connectivity matrix with nodes ordered according to an example partition obtained from

the modularity maximization approach, with the resolution parameter γ tuned to obtain 21 modules. (D) Group-averaged functional connectivity matrix with nodes
ordered according to an example partition obtained from the WSBM, with k tuned to obtain 21 blocks. (E) Compared with the modularity maximization approach,
the WSBM recognized communities with a lower SD in the edge weights located within blocks or modules (Eq. 13). (F) Compared with the modularity maximization
approach, the WSBM also recognized communities with a lower SD in community size. In panels E and F, the thick line indicates the mean calculated over the 872

subjects, and the error bars indicate the standard error of the mean.

community structure evenly across the network, with low com-
munity size variability indicating the capacity to detect blocks or
modules of similar sizes. We observed that the WSBM achieved a
lower SD in both metrics (Fig. 2E,F). The more evenly distributed
nature of the WSBM blocks suggests that the method detects
the presence of structure in functional brain networks that
exists more homogenously than has perhaps been previously
appreciated.

Hierarchical Mesoscale Structure of Resting-State fMRI
in Youth

After noting broad dissimilarities between the partitions
obtained from modularity maximization and the WSBM, we next
sought to better understand the full mesoscale organization of
subject-level resting-state connectivity matrices in the youth
of the PNC. Moreover, we wished to extract features of that
mesoscale organization that were specific to individuals as well
as features that were conserved across the group. We therefore
developed a multistep clustering procedure, where we obtained
an estimate for the block structure characteristic of single
individuals, an estimate for the block structure characteristic
of fine-scale organization in the group (Fig. 3A,C), and an
estimate for the block structure characteristic of coarse-scale
organization in the group (Fig. 3B,D).

In first considering the block structure characteristic of sin-
gle individuals, we note that the WSBM has one important
free parameter: k, or the number of blocks. To determine the
impact of this parameter on the block solution and to offer
statistical support for a specific choice of k, we varied k in

4, 7, 10, 13, 16, 19, 22, 25, 28 and estimated the model’s goodness
of fit with the log-evidence for each subject (see Eq. 2 in Methods
and Supplementary Figure 1). We observed that the goodness
of fit first increased as k increased from 4 to 16 and then
appeared to plateau for 15 < k < 28. As a second measure
of reliability and robustness, we calculated the average block
allegiance matrix (see Eq. 4 in Methods) over all subjects for each
k in the above range. We found that matrices were highly similar
to one another for k > 10, as measured by a Pearson correlation
coefficient between the vectors representing the upper triangles
of the matrices (see Supplementary Figure 1). Given these tests,
we chose to set k = 16 for each subject, which is in fact a
value that is similar to that chosen for the number of functional
modules or cognitive systems in previous literature (Power et al.
2007; Yeo et al. 2011).

We next turned to the question of understanding consistent
block structure characteristic of all youth in the sample. We
applied the WSBM to the average block allegiance matrix and
again varied the number of blocks from 3 to 30 (see Supple-
mentary Figure 1). We observed maximal log-evidence for 21
blocks (see Eq. 2 in Methods and Fig. 3A). That a larger number
of blocks are required to accurately fit the group-level data in
comparison with the individual-level data is expected: With the
added statistical power of 872 subjects, we are able to accurately
observe structure at a finer scale within the matrix. Next, we
calculated the block-level average adjacency matrix as the aver-
age strength of connectivity within each of the 21 × 21 blocks
across subjects (see Eq. 5 in Methods). By visual inspection of this
matrix, we note the existence of a nonzero edge weights in off-
diagonal blocks, and we also note that this nontrivial interblock
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Figure 3. Hierarchical representation of mesoscale structure in resting-state fMRI in youth. We apply the WSBM to each functional network extracted from a single
individual. (A) Next, we calculated the average block allegiance matrix (see Eq. 4 in Methods) over all subjects and applied the WSBM to this matrix to obtain the

fine-scale block structure characteristic of the group. This fine-scale block structure segregates the functional network into 21 blocks. (B) Next, we calculated the
block-level average adjacency matrix as the average strength of connectivity within each block across subjects (see Eq. 5 in Methods). Upon this average matrix, we
again applied the WSBM to obtain the coarse-scale block structure characteristic of the group. This coarse-scale block structure segregates the functional network into
3 components: a set of regions reminiscent of the frontotemporal system, a set of regions reminiscent of the default mode system, and a set of regions reminiscent

of the sensory system. Panels C and D show the reordered matrices corresponding to panels A and B, where the regions below the same color strip are located within
the same block.

connectivity displays a heterogeneous pattern indicative of a
complex mesoscale architecture, which is not well described by
the simpler notion of modularity (Fig. 3C).

We note that group-level blocks differ appreciably in size
(Fig. 3C) and in their spatial extent across the brain (Fig. 3A). It
is therefore compelling to ask whether there exists a mean-
ingful coarse-grained summary of these 21 blocks that accu-
rately describes the spatial organization of the brain in broader
strokes. In order to evaluate whether such a hierarchal structure
exists, we applied the WSBM to the block-level average adja-
cency matrix (of size 21 × 21; see Eq. 5 in Methods) and observed
maximal log-evidence for 3 blocks (see Supplementary Figure
1). This coarse-grained solution segregates the functional brain
network into 3 groups composed of regions that are reminiscent
of systems defined in prior reports, including a frontotemporal
system, a default mode system, and a sensory–motor system
(Gordon et al. 2016).

Cores, Peripheries, and Other Building Blocks of
Mesoscale Structure

Next, we used the WSBM to investigate how modular structure
and core–periphery structure might coexist in brain networks.

Specifically, we examined each block and asked whether some
blocks were more core-like while others were more periphery-
like. To assess the degree to which a given block played the role of
a network core, we calculated the core score of each node in the
network that assesses the node’s relevant associations to dense
versus sparse blocks (see Methods), and then we averaged these
values over nodes in a block to obtain a core score for the block
(Rombach et al. 2014). Our null hypothesis was that core scores
would be uniformly distributed across regions and therefore
also uniformly distributed across blocks. We first observed that
core scores were heterogeneously distributed across regions of
the cortex, with the highest values present in the motor strip
(Fig. 4A, top). Across blocks, the average core score was also
heterogeneously distributed, with 6 blocks displaying greater
core scores than expected (FDR correction with q < 0.1, P < 0.05
for a nonparametric permutation test in which region labels
were permuted uniformly at random) and 9 blocks displaying
weaker core scores than expected (Fig. 4A, bottom).

We next evaluated the coarse-grained group-level structure
constituting the 3 large blocks shown in Figure 3B. For each
block, we computed the core scores of each region assigned
to that block, and we examined the distribution of core scores
within a block. In the block reminiscent of the default mode
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Figure 4. Anatomical distribution and statistical testing of core scores. We compute core scores for each region both in the network representing the whole brain and

in the subnetworks representing the 3 macroscale blocks identified in the group-level WSBM analysis. (A, top) In the whole brain, the motor strip generally and the
temporo-parietal junction specifically exhibited higher core scores than expected in the nonparametric null model. (A, bottom) Across blocks, the average core score
is heterogeneously distributed, with 6 blocks showing greater core scores than expected and 9 blocks showing lower core scores than expected. (B, top) In the subgraph

constituting the coarse-scale block that is reminiscent of the default mode network, we observed the strongest core scores in known default mode hubs including the
posterior cingulate and ventromedial prefrontal cortex and the weakest core scores along the lateral surfaces. (B, bottom) Across meso-blocks within the default mode
macro-block, the average core score is also heterogeneously distributed, with 1 block showing a greater core score than expected and 1 block showing a lower core
score than expected. (C, top) In the subgraph constituting the coarse-scale block composed predominantly of sensory regions, we observed that the temporo-parietal

junction displayed the greatest core score. (C, bottom) Across meso-blocks within the sensory macro-block, the average core score is also heterogeneously distributed,
with 4 blocks showing greater core scores than expected and 5 blocks showing lower core scores than expected. (D, top) In the subgraph constituting the macro-block
composed predominantly of frontal and temporal regions, we observed no clear anatomical localization of high core scores. (D, bottom) Across meso-blocks within
the frontotemporal macro-block, the average core score was not significantly different than that expected in the nonparametric null model. In the bottom panels of

each figure, violin plots are ordered according to the mean core score of each block. Red asterisks indicate P < 0.05, FDR corrected at q < 0.1.

network, we observed that the posterior cingulate and medial
orbitofrontal areas displayed higher core scores than expected
and that the supramarginal, middle frontal, and inferior frontal
areas displayed lower core scores than expected (FDR q < 0.1, P <

0.05; Fig. 4B, top). Across blocks, the average core score was also
heterogeneously distributed, with 1 block displaying a greater
core score than expected (FDR q < 0.1, P < 0.05) and 1 block
displaying a weaker core score than expected (Fig. 4B, bottom).
In the block consisting predominantly of sensory regions, we
observed a pattern of core scores that is consistent with that
observed in the whole brain, with the highest values in the right
temporo-parietal junction (FDR q < 0.1, P < 0.05; Fig. 4C, top).
Across blocks, the average core score was also heterogeneously
distributed, with 4 blocks displaying greater core scores than
expected (FDR q < 0.1, P < 0.05) and 5 blocks displaying weaker
core scores than expected (Fig. 4C, bottom). In the block consist-
ing predominantly of frontotemporal regions, a few spatially dis-
tributed areas displayed higher core scores than expected, but
no blocks were significantly different from the null model (FDR
q < 0.1, P < 0.05; Fig. 4D, top). Collectively, these results indicate
that the WSBM identifies blocks that play variable roles within a
global core–periphery structure and therefore motivates a more
thorough examination of the nature of those roles.

Interactions Between Blocks in the Mesoscale Structure

We sought to better understand how blocks interact with one
another and whether we could distinguish important principles
guiding interblock connectivity. We began by considering a pair
of blocks, which is the smallest unit in which interblock connec-
tivity can be studied. From the relative strength between the 2

blocks in a pair, we could determine whether the 2 blocks were
relatively independent or tended to interact in either a core–
periphery or bipartite manner. In applying this heuristic (Fig. 5A;
see Methods for details) to the data, we found a preponderance
of independent pairs, some core–periphery pairs, and only a few
bipartite pairs. To assess statistical significance, we considered
a nonparametric permutation-based null model in which nodes
are randomly assigned to blocks. We observed that the true
data displayed a greater number of independent pairs and a
smaller number of core–periphery pairs than expected in the
null model (Fig. 5B), indicating that core–periphery architecture,
while present, complements a broad segregation consistent with
the modularity commonly studied in resting fMRI.

In the exposition that follows, we did not consider the inde-
pendent pairs, as it is impossible (by definition) to infer princi-
ples of interblock connectivity from total independence. We also
neglected bipartite pairs due to their infrequent existence, ham-
pering statistical power in hypothesis testing (0.8 per subject
on average). Focusing on core–periphery pairs, we first wished
to determine whether their anatomical location was consistent
across subjects. To address this question, we defined a char-
acteristic measure ηs

mn (see Eq. 9), which we will refer to as
the core–periphery role, to represent the core–periphery relation
between blocks m and n of subject s. The value of this measure
is+1 if block m acts as the core in the pair, −1 if block m acts
as the periphery in the pair, and 0 if the pair does not display
a core–periphery relationship. The average core–periphery role
is defined as the mean of ηs

mn over subjects, and intuitively, it
represents the empirical probability of a pair appearing as a
core–periphery pair (see Eq. 10). Here, we confine ourselves to
considering the pairs that are core–periphery pairs in at least
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Figure 5. Existence of core–periphery junctions. (A) For each pair of blocks, we classified an interaction as a core–periphery interaction if the average interblock strength
was intermediate between the average intrablock strength. (B) We compared the number of core–periphery pairs that we detected in the true data with the number
of core–periphery pairs that we detected in a nonparametric permutation-based null model in which nodes are randomly assigned to blocks. We observed that the
true data displayed a greater number of independent pairs and a smaller number of core–periphery pairs than expected in the null model (2-sample t-test t = −127,

P < 0.0001). (C–E) We detected 2 core–periphery junctions where (C) different core blocks were connected through common periphery blocks. (D) The default mode core–
periphery junction consisted of 3 meso-blocks: 2 core blocks sharing the same periphery block. (E) The executive core–periphery junction consisted of 5 meso-blocks:
2 hierarchical core–periphery chains sharing the same periphery block. Abbreviations: C, core; P, periphery.

half of the participant sample: That is, the block pair mn displays
an ηs

mn of +1 (or of −1) in at least 50% of the subjects. We find that
core–periphery pairs do not appear at random locations in each
subject but instead display a consistent anatomical distribution
across subjects (z > 40 for Eq. 11; see Methods for a description
of the null model).

In addition to observing that the anatomical distribution
of core–periphery block pairs was relatively conserved across
subjects, we also observed that some core–periphery pairs
interacted with one another in what we term “core–periphery
junctions.” We observed the existence of 2 core–periphery
junctions: one composed of regions in the default mode system
and one composed of regions in the executive system. The
default mode core–periphery junction consisted of 3 blocks: The
periphery block—composed of regions in the rostral anterior
cingulate and frontal pole—linked 2 core blocks, one of which
was located in the superior and medial frontal area and the other
was located in the precuneus and inferior parietal area (Fig. 5D).
The executive core–periphery junction consisted of 5 blocks:
Core blocks were connected through a periphery block in a 2-tier
hierarchical core–periphery structure (Fig. 5E). More specifically,
the periphery block in the superior frontal area connected 2
core blocks: One core block was located in the supramarginal
and posterior cingulate area, and the other core block was
distributed across superior parietal, pars opercularis, and
fusiform areas. Two blocks in the superior frontal, precuneus,
and rostral middle frontal areas acted as the provincial cores.
The presence of these 2 core–periphery junctions suggests an
important principle by which hubs that are located in the 2
extreme cores might communicate with one another via shared
peripheries.

Age-Related Differences in Block Structure during
Neurodevelopment

Next, we asked whether features of core–periphery structure
are associated with age. We recognize that changes in topology
can occur upon changes in overall network strength and that
it is important to distinguish between the two. Thus, we first
examined the association between overall network strength
and age (Fig. 6A). We observed that the average magnitude of the
positive edge weights increased significantly with age (r = 0.11,
P = 0.0017) and that the average magnitude of the negative
edge weights decreased significantly with age (r = −0.15,
P = 1.63×10−5), after partialing out the effects of sex and motion.
These observations are consistent with previous reports of
growing system segregation with development (Fair et al. 2007;
Gu et al. 2015). To determine whether this segregation resulted
from the emergence of more core–periphery interactions, we
calculated the Pearson correlation coefficient between the
number of core–periphery pairs and age, after partialing out
the effects of sex and motion. We observed a significant
positive relationship (r = 0.19, P = 2.25 × 10−8; Fig. 6B),
which remains significant after partialing out the average
magnitude of the positive and negative edge weights (r = 0.16,
P = 1.28 × 10−6). Next, focusing solely on the 2 core–periphery
junctions described in the previous section, we found that the
interaction strength among core blocks increased significantly
with age (r = 0.15, P = 4.93 × 10−6; r = 0.21, P = 1.89 × 10−10),
while the interaction strength among periphery blocks was
unchanged with age (P > 0.05; Fig. 6C), again after partialing
out the effects of sex and motion. These results suggest that
neurodevelopment can be described as an enhancement of
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Figure 6. Development of core–periphery junctions in youth. (A) The average strength of functional connectivity increases with age. The average magnitude of positive

edge weights increases significantly with age (r = 0.11, P = 0.0017), and the average magnitude of negative edge weights increases significantly with age (r = 0.15,
P = 1.63×10−5). These observations are consistent with previous reports of growing system segregation with development. (B) To better understand changes in network
topology beyond that explained by changes in the strength of connectivity, we calculated the correlation between age and the number of core–periphery block pairs.
We observed a significant relation between these 2 variables, both based on their raw values (r = 0.19, P = 2.25 × 10−8) and after partialing out the average magnitude

of positive edge weights and the average magnitude of negative edge weights (r = 0.16, P = 1.28×10−6). These results indicate an increase in heterogeneous mesoscale
network architecture with age. (C) Focusing on the 2 core–periphery junctions in Figure 5D,E, we next calculated the correlation between age and the average edge
strength within the core and periphery blocks. We found that the cores increase in strength over development (r = 0.15, P = 4.93 × 10−6; r = 0.21, P = 1.89 × 10−10),
while the peripheries remain unchanged (P > 0.05). To further investigate the source of change in connectivity strength, we considered the (D) default mode, (E) default

mode to executive, and (F) executive core–periphery junctions. Default mode and executive core–periphery junctions display similar changes in block strength with
developmental trajectories, where the interaction strength among core areas increases with age (D,F). In contrast, the interaction strength between the 2 junctions
decreases with age (E). Abbreviation: CP, core–periphery.

core–periphery structure, driven in part by a strengthening of
network cores in higher-order cognitive systems.

To better understand age-related effects on the 2 core–
periphery junctions that we identified in higher-order associ-
ation areas, we considered the elemental blocks that composed
each junction. In the default mode core–periphery junction
composed of 2 core blocks sharing a periphery, we observed
that the edge weights within cores increased significantly with
age (P < 0.005; Fig. 6D). Considering the connectivity between
the default mode and executive core–periphery junctions, we
observed that interjunction edges tended to decrease in weight
with age (Fig. 6E), indicating a growing segregation between
the 2 junctions. Here, we report the significant effects at
different levels of stringency in statistical testing to present
an even-handed account. Specifically, of the 15 interjunction
relations, 13 displayed decreasing edge weight with age at a
level of P < 0.005 and 7 displayed decreasing edge weight
with age at a level of P < 0.0005. In the executive core–
periphery junction, we observed that the edge weights within

cores tended to increase significantly with age (P < 0.0005;
Fig. 6F). Notably, all of these trends held when we computed the
correlation after partialing out the effects of sex and motion.
See the Supplementary Information (SI) for details on the
partial correlation values and associated estimates of statistical
significance. Collectively, these results support the more general
conclusion that development is associated with a strengthening
of network cores in higher-order cognitive systems and an
increasing segregation between such systems.

Cognitive Correlates of Mesoscale Block Structure

As mentioned previously, the WSBM groups similarly-connected
regions together into a block, and each of these blocks can
play a different role in the brain’s mesoscale network organi-
zation, including the role of a core and the role of a periphery.
In the previous section, we showed that the interaction strength
among core blocks changed appreciably over development. Here,
we asked whether individual differences in cognitive perfor-
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mance were related to the partition of nodes into blocks iden-
tified by the WSBM. If such a relationship existed, it would be
important to determine whether the relationship was specific
to the WSBM or whether it could also have been found with
previously developed approaches. To address this question of
specificity, we tested whether individual differences in cognitive
performance were also related to the partitions of nodes into
modules identified from the modularity maximization algo-
rithm (Newman 2006). Specifically, we tested for significant
correlations between interblock (or intermodule) strength and
age-regressed executive function score (see Methods). We note
that the age-regressed executive function scores used here were
not significantly associated with sex (r = −0.017, P = 0.598)
and were also not significantly associated with mean framewise
displacement (r = 0.0022, P = 0.949).

In the WSBM partition, we observed 19 intrablock and
interblock strengths distributed throughout the brain that were
significantly correlated with individual differences in executive
function (Pearson correlation coefficients, FDR corrected
for multiple comparisons at q < 0.05). In the modularity
maximization partition, we found only 3 modules whose
intermodule strength was correlated with individual differences
in executive function; these modules were composed of regions
in the default mode, dorsal attention, and visual systems (see
Supplementary Figure 3 for details). Given the more extensive
relation between the WSBM blocks and executive function, we
probed the WSBM partition further. Specifically, we observed
that executive function scores were positively correlated with
overall core strength in both of the core–periphery junctions and
were not strongly correlated with periphery strength (Fig. 7A,B).
We also noted that the block pairs whose interblock strengths
were significantly correlated with individual differences in
cognition tended to be located at the centers of the 2 core–
periphery junctions that we identified in a previous section.
The interaction strength between the cores located within junc-
tions was positively correlated with individual differences in
executive function (Fig. 7C). In contrast, the interaction strength
between the cores located between junctions was negatively
correlated with individual differences in executive function. In
assessing the sensitivity of our findings, we note that the age-
regressed cognitive scores that we used here were uncorrelated
with age (by definition), and they were also uncorrelated with
sex and motion, and thus we did not include these 3 covariates
in our analysis. Broadly, the pattern of results that we uncover
suggests that the extent of segregation between the default
mode junction and the executive junction explains significant
variance in individual differences in cognitive performance.

Discussion
Here, we adopted the weighted stochastic model (WSBM) to
investigate the nature, development, and cognitive significance
of mesoscale architecture in functional brain networks. Unlike
other common approaches, the WSBM is built on a generative
model of graph architecture, which is sensitive to modular
structure, core–periphery structure, and other mesoscale motifs
(Betzel et al. 2018, 2019). Because each block is composed of
nodes with a similar pattern of connectivity to the rest of the
network, the method fundamentally crystallizes interblock
interactions, facilitating a rich quantitative assessment of
mesoscale graph structure. By applying the method to resting-
state functional brain networks estimated from 872 youth
ages 8–22 years in the PNC, we observed that blocks vary in

their topological nature, with some blocks being composed
predominantly of regions that play a core role within the
network, other blocks being composed predominantly of regions
that play a peripheral role within the network, and still other
blocks being composed of regions of both types. Core and
periphery roles were not only played by single regions within
blocks, but they were also played by blocks themselves in
their interactions with one another. Notably, we uncovered the
existence of block junctions in which different cores shared
the same periphery and demonstrated that the strength of
cores increased with development. Finally, we observed that
individual differences in the interaction strength between
cores were correlated with individual differences in executive
function, particularly among the cores that participated in
core–periphery junctions. Collectively, our results offer a rich
depiction of mesoscale structure in functional brain networks
and highlight the role of core–periphery structure in cognition
and development.

Mesoscale Block Structure in Functional Brain
Networks

Traditionally, mesoscale structure in resting-state functional
brain networks has been studied from the perspective of mod-
ularity (Betzel and Bassett 2016; Sporns and Betzel 2016), where
brain regions are more strongly connected to other regions in
their module than expected in an appropriately defined null
model (Newman 2006). The notion that modules are important
for brain function, development, and cognition has a long intel-
lectual history (Fodor 1983), and the recent formalization of that
notion with the mathematical tools of network science has led
to important insights into the role of modules in development
(Gu et al. 2015; Baum et al. 2017) and aging (Meunier et al.
2009). The notion of modularity has also become important in
understanding individual differences in cognitive capacity such
as probed by general measures of executive function in youth
(Baum et al. 2017; Chai et al. 2017) as well as more specific
measures of response to training both in healthy adults and
in individuals with brain injury (Arnemann et al. 2015; Gallen
et al. 2016). However, common tools for community detection
that are applied in the neuroimaging field focus on identify-
ing modules with algorithms that seek independent groups of
brain regions (Porter et al. 2009; Fortunato 2010; Fortunato and
Hric 2016). This assumption of module independence that is
implicit or explicit in common algorithms is fundamentally at
odds with our intuitions, supported by neuroscience, that some
modules may control, compete, or cooperate with other modules
and that these interactions might change according to context,
differ in youth and the elderly, and vary in health and disease.
The assumption that modules are independent also stands at
odds with recent empirical evidence underscoring the impor-
tance of the patterns of intermodule connectivity for transitions
between cognitive states (Cole et al. 2014; Mattar et al. 2015),
long-term changes in behavior (Bassett et al. 2015), and alter-
ations in connectivity characteristic of adolescent development
(Gu et al. 2015).

An approach that embraces the potential heterogeneous pat-
terns of interconnectivity between modules is the WSBM, which
explicitly quantifies mesoscale network architecture, thereby
offering insights into how control, competition, and/or coopera-
tion between modules can be instantiated. Rather than treating
modules as independent, the WSBM explicitly seeks to capture
the mesoscale topology connecting modules with one another
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Figure 7. Individual differences in interblock strength are correlated with individual differences in executive function. For each subject, we calculated the average
strength both within and between blocks or modules. We then estimated the correlation coefficient between that value and age-regressed executive function scores
across subjects. Focusing on the block structure, we next computed the correlation between the executive function scores and the connectivity strength within
the core and periphery blocks recognized in the 2 junctions. (A) Overall, we find that the core strength is positively correlated with the executive function scores.

(B) We do not find a strong correlation between periphery strength and executive function scores. (C) By considering the 2 core–periphery junctions and their
interaction in greater detail, we observed that the strength of core–periphery junctions was associated with individual differences in executive function. Specifically,
we found that interaction strengths particularly among cores were significantly correlated with executive function scores, where the within-junction correlation

was positive and the between-junction correlation was negative. The P values were exploratory and not corrected for multiple comparisons. Abbreviation: CP,
core–periphery.

and can be used to understand small-world organization of
modules, as well as the presence of hub modules, connector
modules, and provincial modules. Prior studies applying the
WSBM to brain networks have compared block structure and
module structure (Pavlovic et al. 2014; Rajapakse et al. 2017) and
have sought to better understand the diversity of mesoscale
architecture consistent across species and aligned with genetic
underpinnings (Betzel et al. 2018, 2019). Here, we complement
these prior studies by offering a systematic block-based analysis
to better understand how blocks interact with one another in the
wider brain network and how those interactions might change
with development or track cognitive efficiency.

Core–Periphery Junctions

Using the WSBM, we found compelling evidence for blocks that
were best described as 1) core blocks (being strongly connected
to most blocks and weakly connected to a few blocks), 2) periph-
ery blocks (being weakly connected to most blocks but strongly

connected to a few blocks), or 3) blocks that—like modules—
were neither core-like nor periphery-like. In addition to these
more commonly studied mesoscale features (modules, cores,
and peripheries), we uncovered the existence of block junctions
in which different cores shared the same periphery. While the
exact functional role of these block junctions is unknown, it is
possible that they offer a means by which cores can transiently
communicate with one another. It would be interesting in the
future to test this possibility using recently developed tools
for measuring transient synchrony (Palmigiano et al. 2017) in
the context of tasks that activate these regions and whose
demands vary on a time scale that is longer than the time
scale of the imaging measurement (Gerraty et al. 2018). Specif-
ically, we note that peripheries are composed of regions that—
over long periods of time—display weak static functional con-
nectivity. However, these regions can display transient control
processes or coupling dynamics over shorter time scales. Our
results are consistent with the possibility that peripheries could
engage in these transient dynamics as a means of facilitating
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communication between cores and the network hubs that they
often contain. Notably, the 2 core–periphery junctions that we
uncovered—containing regions of the default mode and execu-
tive systems—were reminiscent of the task-positive and task-
negative systems commonly observed in resting-state fMRI and
associated with executive function (Kelly et al. 2008; Hampson
et al. 2010). Notably, the periphery blocks in the center of both
junctions contained portions of the medial frontal gyrus, sug-
gesting an important mediating role for this region in mesoscale
network function of resting-state brain dynamics, consistent
with the region’s known role in top-down control of cognitive
processes (Salmi et al. 2009).

Role of Core–Periphery Structure in Development and
Cognition

Two blocks that form a core–periphery structure are collectively
referred to as a core–periphery pair. We demonstrate that core–
periphery pairs increase significantly in number over the devel-
opmental period of 8–22 years of age. Notably, we find that this
increase cannot be explained by changes in the overall strength
of connectivity across the brain. Rather, it is specifically driven
by an increase in the strength of core blocks, a phenomenon
that also serves to increase the heterogeneity of block topol-
ogy and the potential for localization of functional systems.
Importantly, this finding is consistent with prior observations
of increasing functional segregation of cognitive systems with
age (Fair et al. 2009; Gu et al. 2015). Our data put a finer point
on the notion of functional segregation, providing insight into
a specific topological change—the increase in cores—that sup-
ports the more general observation. Based on prior theories
regarding the role of core–periphery organization in brain net-
work function (Fedorenko and Thompson-Schill 2014), we spec-
ulate that the increasing core–periphery organization in youth
facilitates an emerging balance between temporally invariant
processes critical for task performance and temporally transient
processes critical for adaptation and control (Bassett, Wymbs,
et al. 2013). To more explicitly test this hypothesis, we examined
the relationship between summary metrics of this organization
and individual differences in executive function. Notably, we
observed a negative correlation between executive function and
the strength of block interactions in the 2 core–periphery junc-
tions, suggesting that the more the 2 junctions were anticorre-
lated, the greater an individual’s efficiency might be in executing
complex tasks. Such enhanced anticorrelation is consistent with
greater segregation between the 2 junctions, a finding that is
conceptually consistent with prior work providing evidence that
age-related improvement of executive function is mediated by
increasing segregation of modules (Baum et al. 2017).

Methodological Considerations

There are several methodological considerations pertinent to
this work. First, the broad community cohort that we study
here is sampled cross-sectionally, and thus we cannot address
any questions related to developmental trajectories. It would be
interesting in the future to consider longitudinal samples and
samples enriched for deficits in executive functioning. Second,
participant motion is a well-known confound that impacts the
BOLD signal. In the context of studies of development, this con-
found is particularly important to address, as in-scanner motion
tends to decrease with age. Here, we address this issue with
an extensively validated preprocessing pipeline that mitigates

the influence of motion artifact (Ciric et al. 2017, 2018), as well
as postprocessing inclusion of motion as a potential confound
in all statistical analyses. Third and finally, the WSBM that we
use here is applied to the static functional connectivity matrix
and is therefore unable to assess any dynamic reconfiguration
of network architecture over time. It would be interesting in the
future to consider new methods for applying the WSBM to time-
evolving graphs (Matias and Miele 2017).

Conclusion
Our study offers a new perspective that complements 2 com-
peting perspectives in the field: one that describes functional
brain networks as composed of segregated modules and one that
describes functional brain networks as composed of hubs and a
rich club. We unify the 2 perspectives by employing a WSBM,
which is a model-based approach with an explicitly network-
based prior that can detect groups of brain regions with similar
connectivity profiles to the rest of the brain. In addition to
providing a unified perspective on functional brain organization,
the approach that we take offers a blueprint for other future
studies in other populations tackling important questions in
development, cognition, and disease.
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