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Abstract
Covariate adjustment via a regression approach is known to increase the precision of statistical inference when fixed

trial designs are employed in randomized controlled studies. When an adaptive multi-arm design is employed with the

ability to select treatments, it is unclear how covariate adjustment affects various aspects of the study. Consider the

design framework that relies on pre-specified treatment selection rule(s) and a combination test approach for hypoth-

esis testing. It is our primary goal to evaluate the impact of covariate adjustment on adaptive multi-arm designs with

treatment selection. Our secondary goal is to show how the Uniformly Minimum Variance Conditionally Unbiased

Estimator can be extended to account for covariate adjustment analytically. We find that adjustment with different

sets of covariates can lead to different treatment selection outcomes and hence probabilities of rejecting hypotheses.

Nevertheless, we do not see any negative impact on the control of the familywise error rate when covariates are

included in the analysis model. When adjusting for covariates that are moderately or highly correlated with the out-

come, we see various benefits to the analysis of the design. Conversely, there is negligible impact when including cov-

ariates that are uncorrelated with the outcome. Overall, pre-specification of covariate adjustment is recommended

for the analysis of adaptive multi-arm design with treatment selection. Having the statistical analysis plan in place prior

to the interim and final analyses is crucial, especially when a non-collapsible measure of treatment effect is considered

in the trial.
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1. Introduction
For some clinical areas, such as mental health and infectious diseases, there are many candidate interventions available. A
key goal of an evaluation programme is to identify interventions that are beneficial to patients from the set of candidates.
One way to achieve this goal is to conduct experiments through the different phases of clinical trials. A multi-arm design
with many-to-one comparisons, i.e., comparing each candidate intervention with a control treatment, is one option for
phase II and III studies. It is more efficient than conducting separate two-arm parallel trials on the same set of candidate
interventions, since only a single control arm is recruited in a multi-arm trial.

Design adaptations have been proposed to further improve the efficiency of a multi-arm design based on accruing data
collected during a study. The idea is known as an adaptive multi-arm design, which has at least one interim analysis, and the
design structure can be considered as having multiple stages that are defined by the timing of interim analyses.1,2 For
example, the features of adding and dropping arms reduce the duration of the evaluation process,3,4 and adaptive random-
ization can optimise a utility function that is of interest to stakeholders.5–7 The focus of this work is on the adaptation that
achieves the “screening” (or treatment selection) goal with randomization probabilities being fixed in advance by design.
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Hereafter we use ‘adaptive multi-arm design’ (AMAD) to denote a multi-arm design that contains the pre-planned oppor-
tunity for such an adaptation.

Broadly, there are different types of design and inferential frameworks for AMADs.8,9 One framework is an extension of
two-arm group-sequential designs where the rejection boundaries for early stopping (via hypothesis tests) are computed at
the study planning stage.10–13 Another framework requires the pre-specification of rule(s) for treatment selection at the
planning stage, and utilises a flexible testing approach for the final inference, such as the combination test approach14–
17 or the error spending approach.18 Depending on the study context, AMADs have been known as drop-the-loser
designs, pick the winner designs, multi-arm screening trials and adaptive seamless phase II/III designs.8,19–22 In any
case, data collected from each stage is used in the final inference about the selected intervention(s); the inferential approach
under each framework ensures that the family-wise error rate (FWER) is controlled at the desired level. The FWER is
defined as the probability of falsely rejecting at least one null hypothesis, which is a generalisation of the type I error
rate that is often controlled in two-arm designs.

Most of the existing literature about AMADs focuses on the operating characteristics of the design when different
testing procedures are used.23,24 Some have also focused on the estimation of treatment effects 25–31 and confidence inter-
vals,32 respectively, in the absence of covariates. This is because the standard estimation procedures that have been used in
fixed designs may fail to have good properties (e.g. in terms of bias or coverage) when an AMAD is implemented.

One key feature of AMADs that has not been explored in the literature is the role of covariates in the design and analysis
of such trials. In studies using fixed designs, i.e., non-adaptive designs, it is well-known that covariate adjustment increases
the precision of the inference.33–37 To the best of our knowledge, only the work by Jaki and Magirr38 has briefly touched on
the topic of covariate adjustment in the context of AMADs, but the work is based on the framework of group sequential
designs. There are some publications that consider the role of covariates when other types of adaptation are implemented,
such as the blinded sample size re-estimation method,39,40 the standard group-sequential design,41 and adaptive random-
ization.42 In this paper, we aim to fill this gap in the literature and explore the impact of covariate adjustment in AMADs
with treatment selection. We show how covariate adjustment affects treatment selection rules, hypothesis testing and
power, as well as the estimation of the treatment effects. For the latter, we derive the Uniformly Minimum Variance
Conditionally Unbiased Estimator to account for covariate adjustment analytically. In addition, when the interest is in
the odds ratios for binary endpoint, or the hazard ratios for time-to-event endpoint, it is often overlooked by researchers
that covariate adjustment plays an important role in the definition of the estimand of interest. We evaluate the impact of
covariate adjustments by simulation when a collapsible measure of treatment effect is considered for a continuous endpoint
and revisit the concept of non-collapsiblity, emphasising the importance of considering conditional or unconditional treat-
ment effects in the context of AMADs.

This paper is organised as follows. In Section 2, we present the design and the analysis of AMADs. In Section 3, we
illustrate the treatment effect estimates following a linear regression model. In Section 4, we present a simulation study to
examine the role of covariate adjustment in treatment selection and in the final inference. A case illustration based on the
INHANCE study43 is then provided to depict the application of an AMAD framework. In Section 5, we discuss the issue
when the odds ratio and hazard ratio are considered as the primary descriptive statistics in AMADs. In Section 6, we
emphasise the practical aspects of implementing AMADs and give some concluding remarks.

2. Design and inference
Consider a two stage setting, i.e., where there is one interim analysis for treatment selection in an AMAD. We describe the
treatment selection rule, hypothesis testing approach and the procedure for identifying the required total sample size. We
present the standard estimators for a treatment effect as well as confidence intervals, noting that both of these may not be
compatible with the testing framework due to the complexity in combining the stage-wise data in the testing framework.

2.1. Treatment selection rule of AMAD
In general, an AMAD has K + 1 study arms at stage one and a subset of the intervention arms at stage two. The subset of
interventions that continue to stage two together with the control group is identified according to a pre-specified treatment
selection rule. Several treatment selection rules have been considered in the literature,23,44,29 which relate to the goal of the
study. For instance, a threshold rule selects interventions to continue to the second stage together with the control treatment
when their test statistics is greater than a pre-defined threshold. The size of the subset of interventions can range from 2 to
K + 1, where the former corresponds to selecting only one active intervention and the latter corresponds to selecting all the
initial interventions. The number of selected interventions can either be pre-defined in the selection rule or can be driven by
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the data of the initial stage. We emphasise that the control group continues in both stages of an AMAD such that contem-
poraneous control data is used in the final inference.

2.2. Hypothesis testing and sample size
When there are more than one primary research comparisons, the control of FWER is often required by regulators.45–47 A
statistical framework to control for the FWER is required for an AMAD, since it is designed to screen multiple interven-
tions at stage one (in a pre-defined way) and to test many-to-one comparisons at the end of the study (when more than one
intervention is selected). Here we describe the combination test approach briefly. It is a flexible approach in the sense that
other adaptations are allowed at interim analysis. For example, when the threshold rule is considered the number of selected
interventions given stage one data is not known in advance; resources can be reallocated accordingly without inflating the
FWER when the combination test approach is used in the final inference. This is the approach considered in the asd R
package,44 which can be used to conduct simulation studies for AMADs, but in the absence of covariates.

Let μk denote the treatment effect measure that compares an intervention k with the control treatment, where
k = 1, . . . , K. Examples of treatment effect measures are mean difference for a continuous endpoint, risk difference for
binary endpoint and the hazard ratio for survival outcome. A non-normally distributed treatment effect measure can
often be transformed such that the standard Z-test or t-test can be implemented accordingly. For example, applying the
logarithmic function to hazard ratios leads to an approximately normal distribution for the resulting parameter.

For superiority studies, the global null hypothesis in a multi-arm setting is μ1 = . . . = μK = 0; and the alternative
hypothesis is that there is at least one treatment effect which is greater than zero. If there was only a single stage or all
interventions continue to stage two with certainty, the classical Dunnett test48 can be applied to control for the FWER
under this global null hypothesis.

When the design of a study is modified at interim analyses, a combination test can be applied to ensure that the FWER is
controlled at the required level by combining the stage-wise p-values via a pre-specified function.14 For example, a Fisher’s
combination test considers the product of the stage-wise p-values, whereas the weighted inverse normal method considers
the summation of the weighted stage-wise p-values. When there is only one research comparison in a study, the stage-wise
p-values from the standard Z-test or t-test are computed using the corresponding stage-wise data. The combined value is
then compared with the α−level of the combination test for the decision to reject or not reject the hypothesis. When mul-
tiple hypotheses are tested, e.g., in the context of many-to-one comparisons, the stage-wise p-values can be computed from
the classical Dunnett test using the corresponding stage-wise data.

In AMADs, some of the interventions do not continue to stage two of the study. For the comparison involving these
interventions, only stage one data is available for the corresponding hypothesis test. In this context, the control of the
FWER in the strong sense might be desirable, i.e., ensure that the probability of falsely rejecting at least one null hypothesis
is less than the α−level under any configuration of true and false (elementary) null hypotheses. The closure test principle
can be applied to achieve this goal, which states that an individual null hypothesis, H0k ′ , is only rejected when the elem-
entary hypothesis and all the associated intersection hypotheses, HS =∩s∈S H0s where S ⊆ {1, . . . , K} with index sets that
include k ′ are also rejected at the α−level. In other words, additional null hypotheses, i.e., the intersection hypotheses, are
tested when the FWER is required to be controlled in the strong sense.

More specifically, the combination test is used to test HS where the stage-wise p-values are obtained from the classical
Dunnett testing procedure that is used to test the intersection hypotheses (see for example Section 2.1 of Friede and Stallard
23). For intersection hypotheses that involve the deselected interventions, the stage one p-values of all the associated com-
parisons are considered, but only the second stage p-values of the comparisons involving the selected (and associated)
interventions are considered in the combination test, since there is no data of the deselected interventions in stage
two.32 Note that other testing procedures can be applied in place of the Dunnett test for the intersection hypotheses,
such as Simes test, S̆idak test, and likelihood ratio tests (for normally distributed test statistics).16,32

For the power of an AMAD, different definitions can be considered when more than one intervention can be selected to
continue to stage two.49 For example, conjunctive power is the probability of detecting all effective interventions whereas
disjunctive power is the probability of detecting at least one effective intervention. Having specified the power, the choice
of the combination test function and the testing procedures, one can conduct a simulation study to identify the required
sample size under the (global) alternative hypothesis in an iterative manner.

One approach is to vary the sample size per arm per stage, while another is to vary the overall sample size until the
required power is obtained. Note that when the number of interventions to be selected to continue is not specified by
the selection rule, the overall sample size of the former approach varies considerably across the trial replications. This
may create uncertainty in costing if one does not plan to cover the maximum overall sample size. When the latter approach
is considered, one needs to specify the total sample size per-stage in the simulation setting. In this case, when the stage-one
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total sample size is small (relative to the stage-two total sample size), the chance of selecting the truly effective interven-
tions might be lower than the setting where the stage-one total sample size is larger. However, the latter setting can mean
more subjects are unnecessarily exposed to the ineffective interventions when only a small subset of interventions are truly
effective.

Having identified the required sample size for a given (global) alternative hypothesis, one can conduct a sen-
sitivity analysis to examine the operating characteristics of an AMAD at the design stage. For example, one can
vary the parameter configurations of treatment effects in the data generating mechanism (DGM) of the simulation
to mimic other plausible scenarios. This will indicate how much power is gained or lost when the global alternative
hypothesis does not hold.

2.3. Point estimation and confidence intervals
Estimating the treatment effects for AMADs is an additional important consideration, and one that has received relatively
little attention in the literature compared with error rate control in hypothesis testing.31 A standard approach is to fit a
regression model for the outcome/endpoint on the treatment group as well as the covariates of interest. The conventional
point estimate of the treatment effect μk at the end of the trial is given by β̂k , the estimated regression coefficient for treat-
ment group k from the regression model fitted to all of the trial data. Note that there is less data from the deselected inter-
vention arms than the selected arms. Similarly, at the interim analysis (i.e. the end of the first stage), the treatment effect
estimate is given by β̂(1)k , the estimated regression coefficient for treatment group k from the model fitted to just the stage
one data.

In general, given a selection rule based on the stage one data, the estimators β̂(1)s and β̂s for a selected treatment s ∈
{1, . . . , K} will be conditionally biased, i.e. E[β̂(1)s ] ≠ μs and E[β̂s] ≠ μs. This is because a selected candidate interven-
tion has to perform “well” according the the selection rule used in stage one in order to proceed to stage two, which leads
to overly optimistic estimates of the treatment effect.32,25 When multiple interventions have similar effects, then the
selected candidate is typically based on chance variability rather than true superiority.50 On the other hand, for the dese-
lected interventions, the stage one regression estimate will be negatively biased due to early stopping.32 A simple
unbiased estimator for a selected treatment effect μs is given by β̂(2)s , the estimated regression coefficient for treatment
group s from the regression model fitted to just the stage two data. This estimator is unbiased since it is based on data
post-selection. However, it is clearly inefficient since it ignores the stage one data. Hence unbiased and bias-adjusted
estimators have been proposed in the adaptive designs literature,25–29,51 which aim to reduce or eliminate the conditional
bias of the conventional end-of-trial estimate while still utilising all of the trial data. We give a concrete example of one
such unbiased estimator in Section 3.2..

As for the construction of confidence intervals at the end of the trial, for many commonly-used regression models, the
joint distribution of the estimated regression coefficients β̂k , k = 1, . . . , K, is (asymptotically) multivariate normal. This
allows the construction of confidence intervals for μk in the usual way. In general, given a selection rule based on the stage
one data, the confidence interval for a selected treatment effect μs constructed in this manner may not have the correct
coverage probabilities. This is because the distribution of the estimator β̂s is affected by the selection rule used and this
is not taken into account. There have been some limited proposals for the construction of adjusted confidence intervals
that take into account the treatment selection.32,52 However, in general these approaches can be very computationally
intensive.

3. Normal endpoint with baseline covariate adjustment
We illustrate the estimators and their properties when baseline covariate adjustment is made in AMADs.

3.1. Regression models
Consider a normally distributed endpoint, Y (t)

jk , that is measured on patient j in arm k at stage t = 1, 2, and two baseline
covariates, X1(t)jk and X2

(t)
jk which may be correlated with the endpoint. Here j = 1, 2, . . . , J , denotes the index of patients

in arm k, where k = 0 for the control group and k = 1, . . . , K for the intervention groups. We drop the superscripts (t)
when referring to the data from the whole trial, i.e. pooling the observed outcome data from both stages. Note that if an
arm k is dropped in stage one, we assume that there will not be any stage two data for the deselected arm. This is a potential
concern when fitting regression models to the trial data, since if there is a time trend between stages this may not be
accounted for.
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To analyse the data at the end of the trial, one can fit the following linear regression model

Y jk = α0 +
∑K
k=1

βk I(T j = k)+ γ1X1 jk + γ2X2 jk + ϵ jk (1)

where

• T j is the study arm that patient j is randomized to;
• βk are the stage-wise treatment contrasts between intervention k and the control treatment (k = 0);
• γ1 is the effect of covariate X1;
• γ2 is the effect of covariate X2;
• α0 is the model intercept;
• ϵ jk are iid N (0, σ2) errors

Note that setting γ1 = 0 corresponds to not adjusting for X1, and similarly setting γ2 = 0 corresponds to not adjusting for
X2. At the interim analysis one can fit the same model to only stage one data Y (1)

jk for the interim analysis where a pre-
defined selection rule is used to select treatments for further study in stage two. For what follows, we also consider the
same model fitted to only the stage two data Y (2)

jk .

3.2. Treatment effect estimators
The conventional point estimator at the end of the trial for the mean treatment effect of intervention k is given by β̂k , which
is the ordinary least squares (OLS) estimator arising from fitting model (1) to all of the trial data. As discussed in Section
2.3., given a selection rule based on the stage one data, this estimator will be conditionally biased. An unbiased but inef-
ficient estimator is given by β̂(2)k , which is the OLS estimator from the model fitted to only the stage two data. For treatment
selection at the interim analysis, let β̂(1)k denote the OLS estimator from the model fitted to the stage one data.

To derive an alternative unbiased estimator that utilises all of the trial data, the distributions of the stage-wise estimators
β̂(1)k and β̂(2)k can be used. From standard theory for OLS estimators, the joint distribution of the β̂(1)k is as follows

(β̂(1)1 , . . . , β̂(1)K )T ∼ MVN (β1, . . . , βk)
T , σ2 D(1)TD(1)

[ ]−1
( )

where D(1) denotes the observed design matrix for the model fitted to the stage one data (which includes any covariate

information). Meanwhile, the marginal distribution for β̂(2)s , corresponding to a treatment s selected to continue to stage
two is given by

β̂(2)s ∼ N (βs, σ
2 D(2)TD(2)
[ ]−1

s,s )

where D(2) denotes the observed design matrix for the model fitted to the stage two data. Using these distributional prop-
erties, we can use the theory given in 53 to derive the Uniformly Minimum Variance Conditionally Unbiased Estimator
(UMVCUE). As the name suggests, this estimator has the minimum variance out of the class of unbiased estimators. It
is conditionally unbiased since we condition on the (pre-defined) selection rule used in the trial.

The UMVCUE for a treatment effect βs given some selection rule Q is as follows:

Ûs =

∫
A

ys������
2πη2s

√ exp − 1

2η2s
ys −

τ2(2),sZs

τ2(1),s + τ2(2),s

( )2
⎡
⎣

⎤
⎦dys

∫
A

1������
2πη2s

√ exp − 1

2η2s
ys −

τ2(2),sZs

τ2(1),s + τ2(2),s

( )2
⎡
⎣

⎤
⎦dys

(2)

where

ηs =
τ2(2),s�������������

τ2(1),s + τ2(2),s

√ , Zs = β̂(1)s + τ2(1),s
τ2(2),s

β̂(2)s ,

τ2(1),s = σ2 D(1)TD(1)
[ ]−1

s,s , τ2(2),s = σ2 D(2)TD(2)
[ ]−1

s,s
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and
�
A denotes integrating over the possible values of β̂(2)s given the the selection rule Q and (z1, . . . , zK).

As an explicit example, consider selection rules based on ranking the treatments by their z-statistics, where (without loss
of generality) the treatments are relabelled so that this corresponds to the event

Q = β̂(1)1

τ(1),1
≥

β̂(1)2

τ(1),2
≥ · · · ≥ β̂(1)K

τ(1),K

{ }
.

A common selection rule would then be to select the top k treatments based on this ranking (where k is pre-defined). Using
this selection rule, the UMVCUE for βs given Q has the following closed form expression:

Ûs =
τ2(2),sZs,s

τ2(1),s + τ2(2),s
− τ2(2),s�������������

τ2(1),s + τ2(2),s

√ ϕ(W1)− ϕ(W2)

Φ(W1)−Φ(W2)
(3)

where

Zi,s = β̂(1)i + Vi,s

τ2(2),s
β̂(2)1 for i = 1, . . . , K

Wl =
cj

�������������
τ2(1),s + τ2(2),s

√
τ2(2),s

− Zs,s�������������
τ2(1),s + τ2(2),s

√ for l = 1,2

c1 = min
τ2(2),s τ(1),i+1 Zi,s − τ(1),i Zi+1,s

[ ]
τ(1),i+1 Vi,s − τ(1),i Vi+1,s

: τ(1),i+1 Vi,s > τ(1),i Vi+1,s; i = 1, . . . , K − 1

{ }
,

c2 = max
τ2(2),s τ(1),i+1 Zi,s − τ(1),i Zi+1,s

[ ]
τ(1),i+1 Vi,s − τ(1),i Vi+1,s

: τ(1),i+1 Vi,s < τ(1),i Vi+1,s; i = 1, . . . , K − 1

{ }
,

Vi,s = σ2 D(1)TD(1)
[ ]−1

i,s

Note that for c1 and c2, we define min {∅} = +∞ and max {∅} = −∞, where∅ denotes the empty set. When c1 = ∞ this
corresponds to the selection rule not inducing an upper limit to the stage 2 estimator (considered as a function of the com-
plete sufficient statistic), and similarly c2 = −∞ corresponds to the selection rule not inducing a lower limit.

4. Illustration of AMADs with normal endpoint and covariates
Following the above example of a selection rule where the seemingly best intervention is selected at interim analysis, we
explore the impact of covariate adjustment on several aspects of an AMAD with a simulation study. Note that the total
number of patients in this two-stage AMAD is J × (K + 1)+ 2J , where each study arm has the same number of patients
per stage.

We describe the background of our simulation study and some performance measures. We look at the simulation results
that cover the treatment selection characteristics of AMADs and the analysis perspective when different sets of covariates
are considered in the modelling approach. For each simulation scenario, which consists of a data generating mechanism
(DGM) under a specific parameter configuration for the treatment effects, we conducted 100,000 trial replications using
R version 4.0.5.54 An example R script is available in the supplemental material.

4.1. Simulation settings and performance measures
Consider a simple example where there is a total of K = 2 active interventions, which are denoted T1 and T2 respectively.
Consider the presence of two independent normally distributed covariates and a normal outcome. The following is the joint
distribution of the outcome and the covariates for each arm k = 0, T1, T2:

X1(t)jk

X2(t)jk

Y (t)
jk

⎛
⎜⎜⎝

⎞
⎟⎟⎠ ∼ MVN

μk,X1
μk,X2
μk,Y

⎡
⎢⎣

⎤
⎥⎦,

σ2k,X1 0 ρk,X1,Yσk,X1σk,Y

0 σ2k,X2 ρk,X2,Yσk,X2σk,Y

ρk,X1,Yσk,X1σk,Y ρk,X2,Yσk,X2σk,Y σ2k,Y

⎡
⎢⎣

⎤
⎥⎦

⎛
⎜⎝

⎞
⎟⎠,
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where μk,v and σ
2
k,v are the mean and variance of variable v = X1(t)jk , X2

(t)
jk , Y

(t)
jk , and ρk = {ρk,X1,Y , ρk,X2,Y} denotes the cor-

relations between the covariates and the outcome variable. Given a DGM with a specific parameter configuration for the
treatment effects, we simulate responses and the covariates from this multivariate normal distribution.

In terms of the treatment selection rule used, we assume that one intervention s is selected, where (using the notation
from Section 3.1.)

s = argmaxk∈{T1,T2}
β̂(1)k

τ(1),k

{ }

i.e. the intervention with the largest stage one z-statistic is selected. In practice, σ is unknown. So in our simulations we use
t-statistics rather than z-statistics for both the treatment selection and the final inference. The difference will be minimal
except in small samples.

In the simulation, we set μk, X1 = μk, X2 = 0.5 and σ2k,v = 1 ∀k, v. Note that the values of μk, X1 and μk, X2 have no
impact on the performance measures as we simulate the covariates and responses from their joint distribution.

4.1.1. Data generating mechanisms and parameter configuration for treatment effects
Each of the following DGMs are considered in our simulation study:

• DGM1: no correlation between the covariates and the outcome, i.e., ρk = {0, 0} ∀k
• DGM2: X1k is not correlated with Yk , but X2k is correlated weakly with Yk ∀k, i.e., ρk = {0, 0.2}
• DGM3: both X1k and X2k are correlated with Yk weakly ∀k, i.e., ρk = {0.2, 0.2}
• DGM4: X1k is correlated with Yk weakly, but X2k is correlated with Yk moderately ∀k, i.e., ρk = {0.1, 0.6}

For each DGM, we run simulations for scenarios that are defined by the following parameter configuration for
μY = {μ0,Y , μ1,Y , μ2,Y}:

• Null: the global null configuration that has μY = {0, 0, 0}
• LFC50: a least-favourable-configuration that has μY = {0, 0, 0.22}
• LFC80: a least-favourable-configuration that has μY = {0, 0, 0.304}
• STEP50: a stepwise-configuration that has μY = {0, 0.11, 0.22}
• STEP80: a stepwise-configuration that has μY = {0, 0.152, 0.304}

The above numerical examples of effect sizes have been chosen as follows. Since we want to explore the impact of cov-
ariate adjustment on the operating characteristics of an AMAD, we fix the total sample size and identify the effect sizes
required for a level of power under an alternative hypothesis. More specifically, consider J = 100 for each arm per
each stage, the value of μ2,Y is chosen to achieve a 50% and 80% power to reject any one (out of the two) hypothesis
under DGM1 with the LFC50 and LFC80 parameter configurations respectively, when the unadjusted approach is imple-
mented, i.e., without covariate adjustment. The inverse normal combination test is used to control FWER in the strong
sense at a significance level of 2.5%. For illustration purpose, we consider similar values of μ2,Y and let μ1,Y = 0.5μ2,Y
for the stepwise scenarios.

4.1.2. Comparators: modelling approaches
Since there are two covariates considered in the simulation study, we consider the following modelling approaches for both
the interim and final analyses, using the linear model defined by equation (1) in Section 3.1.:

• Unadjusted: a linear model for the outcome on the treatment variable only, ignoring the covariate information, i.e.,
setting γ1 = γ2 = 0 in equation (1). This is similar to considering the difference between the average mean responses
of the comparator groups.

• AdjustedX1: a linear model for the outcome on the treatment variable and X1 jk only, i.e., setting γ2 = 0 in equation (1).
• AdjustedX2: a linear model for the outcome on the treatment variable and X2 jk only, i.e., setting γ1 = 0 in equation (1).
• Adjustedboth: a linear model for the outcome on the treatment variable, X1 jk and X2 jk .

4.1.3. Performance measures
To illustrate the role of covariate adjustment in AMADs, we examine the following performance measures to make com-
parisons between the analysis approaches under different scenarios in the simulation study.
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Regarding the treatment selection operating characteristics of the AMAD, we consider the frequency when one specific
treatment is selected over trial replications and the frequency when an adjusted approach selects a different treatment to the
unadjusted approach. The former reflects if the AMAD is selecting the truly effective arm(s) correctly based on the interim
analysis; a higher frequency of selecting the truly effective arm(s) is desirable. The latter reflects how often an adjusted
modelling approach could lead to a different treatment selection outcome to the unadjusted analysis approach. This indi-
cates the disparity of the treatment selection outcome when covariate adjustment is considered in the framework of an
AMAD.

For the inferential properties of the AMAD, we evaluate the probability of rejecting (any) one hypothesis and the mar-
ginal probability of rejecting a specific hypothesis under the above described scenarios. We look at the standard properties
of different estimators following different modelling approaches in terms of the bias and mean squared error (MSE). In
what follows, the bias of an estimator β̂ for a parameter β is defined as E[β̂]− β, while the MSE is defined as E[(β̂ − β)2].

4.2. Simulation results
We describe the simulation results by part: i) Frequency of selecting a specific treatment, ii) Probability of rejecting a
hypothesis, and iii) Properties of different estimators of the treatment effect.

4.2.1. Frequency of selecting a specific treatment
First consider the treatment selection operating characteristics of the AMAD. For the LFC parameter configurations, it is
desirable to select T2 as frequently as possible. When the interim data is such that T1 is selected, that means an incorrect
selection has been made and the study will fail to detect a truly effective treatment. For the stepwise-configurations, select-
ing T1 is not an incorrect selection but it is less desirable than selecting T2 as T2 is more effective than T1. For the null
scenario where the interventions have the same effectiveness to the control treatment, it does not matter which intervention
is selected when the DGMs have such a parameter configurations. For this reason we exclude the null scenario in this part
of the results.

Figure 1 shows the result from our simulation study under some DGMs (column wise) with different parameter config-
urations for the mean responses (x-axis). The first row of plots shows that when adjusting for correlated covariates, the

Figure 1. Treatment selection frequency/ probability: when an adjusted approach has a different selection result to the unadjusted

approach (first panel), when both an adjusted approach and the unadjusted approach select T1 (second panel), and when both an

adjusted approach and the unadjusted approach select T2 (third panel).
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result of treatment selection can be different to that from the unadjusted approach; this can be as high as 14% of the times
when DGM4 with STEP50 is the true scenario, i.e., see Adjustedboth and AdjustedX2 in the first plot of column four in
Figure 1. When covariates are not correlated with the outcome variable, as in DGM1, this occurrence is less frequent
when comparing an adjusted approach with an unadjusted approach; the probability is less than 2.5% for all the compar-
isons. This observation highlights the importance of specifying which covariates to adjust for when performing treatment
selection at interim analyses, since adjusting for different sets of covariate can lead to different treatment selection outcome
given the data of one trial replication.

The second and third row of plots shows the probability that T1 and T2 are selected, respectively, to continue with the
control treatment to the second stage of the study. (The third row is the complement of the second row as probability sums
to one.) In general, we find that adjusting for covariates that are truly correlated with the outcome can reduce the probability
that T1 is selected and increase the probability that T2 is selected under all the considered non-null scenarios, from the
probabilities that are obtained by the unadjusted approach. This is desirable as T2 is the most effective treatment
among the three options across the scenarios on the x-axis of Figure 1. See for example Step 80 in the third column of
plots for DGM3 where Adjustedboth is the desirable approach.

Moreover, we find that adjusting for a highly correlated covariate can lead to a better treatment selection result even
when the weakly correlated covariate has been omitted. This is reflected by AdjustedX2 in the plots in column four of
Figure 1 where Adjustedboth is the desirable approach for DGM 4.

When the correlations of the covariates are weak, failing to include the covariates in the modelling approaches has little
impact on the probability of treatment selection when compared with the desirable approach. This is observed from the
unadjusted approach and AdjustedX1 in the second column of plots where AdjustedX2 is the desirable approach for
DGM2; and the unadjusted approach, AdjustedX1 and AdjustedX2 in the third column of plots where Adjustedboth is the
desirable approach for DGM3. Nevertheless the disparity between the probabilities is tiny when comparing across the ana-
lysis approaches for a given parameter configuration under these DGMs; it is more noticeable for the stepwise-
configurations than for the LFC configurations.

On the other hand when uncorrelated covariates are mistakenly being included in the model, the probability of one treat-
ment being selected is similar to the approach that has the correct adjustment. For example, the desirable approach for
DGM1 is the unadjusted approach, both the plots in column one of Figure 1 show that all the other three approaches
have similar performance to the unadjusted approach. Similar finding is observed for Adjustedboth in the second column
of plots where AdjustedX2 is the desirable approach for DGM2.

In summary, adjusting for covariates that are highly correlated with the outcome leads to a higher chance of selecting the
truly best treatment in AMADs, whereas including uncorrelated covariates or omitting weakly correlated covariates has
little impact on the selection result when compared with the unadjusted approach. The maximum and minimum of the prob-
abilities of treatment selection and their differences are presented in Table S1 in the supplemental material.

4.2.2. Probability of rejecting a hypothesis
We focus on the results of hypothesis tests for AMADs. Recall that we have two elementary null hypotheses,
H01 : μ1,Y = 0, and H02 : μ2,Y = 0. Since the effect sizes of the illustrations are chosen with the unadjusted approach
under DGM 1 based on the LFC settings and the power is defined by the probability of detecting any one effective treat-
ment, the marginal probability of rejecting H01 and H02 respectively can vary according to the non-null parameter config-
urations and be affected by covariate adjustment.

Table 1 shows the probability of hypothesis rejections under the null scenario for each combination of DGM and the
analysis approaches. Overall we find that covariate adjustment has negligible impact on FWER if there is any: we observed
values that are close to 2.5% from our simulation across the analysis approaches, and they lie within the expected 95%
confidence interval of the true FWER. The marginal probability of rejecting H01 and the marginal probability of rejecting
H02 are both close to 1.3%.

For the non-null scanarios, Figure 2 shows the unconditional probabilities of hypothesis rejections from our simulation
study. First consider the probability of rejecting any one of the hypotheses, i.e., the overall power under the non-null scen-
arios. We find that accounting for uncorrelated covariates in the final analysis has a negligible impact on the overall power
when compared with the unadjusted approach. For example all three adjustment approaches have similar level of power to
that of the unadjusted method in the first plot of column one under DGM 1; AdjustedX1 has a similar performance to the
unadjusted approach under DGM 2 where X1 is not correlated with the outcome variable.

When adjusting for at least one covariate that is correlated with the outcome, we find that the overall power becomes
higher than that achieved by the unadjusted approach. This is true even when an approach includes an uncorrelated cov-
ariate (to the outcome) in addition to the covariate that is correlated with the outcome; for example, see the first plot in
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column two of Figure 2 where Adjustedboth gives a probability that is of similar magnitude to that obtained from the desir-
able approach, AdjustedX2, where X1 is not correlated with the outcome variable under DGM 2.

This highlights the benefit of covariate adjustments on the overall power of AMAD. The increases in the overall power
can be as high as 21% under DGM 4 when either AdjustedX2 or Adjustedboth is implemented for scenarios where the par-
ameter configurations follow LFC50 and Step50 respectively.

Figure 2. Unconditional rejection probabilities from the two-stage AMAD: when any one hypothesis is rejected (first panel), when

H01 is rejected (second panel), and when H02 is rejected (third panel).

Table 1. Probability of hypothesis rejections under the null scenario for each DGM when each analysis approach is implemented. The

Monte-Carlo simulation error for the nominal FWER is
������������������������
0.025 ∗ 0.975/100000√

and the 95% confidence interval for the nominal FWER

is [0.02403, 0.02597].

ρ1 = 0 ρ1 = 0 ρ1 = 0.2 ρ1 = 0.1

ρ2 = 0 ρ2 = 0.2 ρ2 = 0.2 ρ2 = 0.6

Approach FWER

Unadjusted 0.02520 0.02522 0.02564 0.02574

AdjustedX1 0.02527 0.02551 0.02501 0.02536

AdjustedX2 0.02530 0.02542 0.02569 0.02541

Adjustedboth 0.02534 0.02530 0.02488 0.02495

Probability of rejecting H01

Unadjusted 0.01272 0.01243 0.01271 0.01274

AdjustedX1 0.01257 0.01253 0.01254 0.01273

AdjustedX2 0.01265 0.01294 0.01278 0.01305

Adjustedboth 0.01272 0.01274 0.01266 0.01281

Probability of rejecting H02

Unadjusted 0.01248 0.01279 0.01293 0.01300

AdjustedX1 0.01270 0.01298 0.01247 0.01263

AdjustedX2 0.01265 0.01248 0.01291 0.01236

Adjustedboth 0.01262 0.01256 0.01222 0.01214
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Now focus on the probability of rejecting H01, i.e., the second row of plots in Figure 2. For LFC50 and LFC80, this
marginal probability can be considered as a type I error rate because T1 has the same effect as the control treatment.
We see that under DGMs 1-3 with these parameter configurations, all the analysis approaches lead to a similar level to
this probability; under DGM 4, AdjustedX1 and the unadjusted approach give a slightly higher rate than the other two
approaches that adjust for X2, which is a covariate that is highly correlated with the outcome. This observation may be
related to the frequency of selecting T1 at interim analysis: in Figure 1 second row of plots, all the four approaches
select T1 at a similar level of frequency under DGMs 1-3, whereas there are some noticeable differences in the frequency
level under DGM 4 for LFC50 and LFC80. In the later case, AdjustedX1 and the unadjusted approach select T1 more fre-
quently than the other two approaches, which may lead to a higher rejection frequency on average.

For Step50 and Step80, the probability of rejecting H01 can be considered as a marginal power because T1 is more
effective than the control treatment but it is less effective than T2. Similar to the other two parameter configurations, prob-
ability of rejecting H01 is fairly consistent across the four analysis approaches under DGMs 1-3. But, under DGM 4,
AdjustedX1 and the unadjusted approach give a lower marginal power than the other two approaches for scenario
Step50 but the opposite for scenario Step80. This is an interesting observation and might be explained as follows.
From Figure 1 second row fourth column, we see that AdjustedX1 and the unadjusted approach select T1 more frequently
than the other two approaches for DGM 4 with both Step50 and Step80. When the effect size to detect is small as in scen-
ario Step 50, failing to account for the covariate that is highly correlated to the outcome in the final analysis leads to a loss in
the marginal power of rejecting H01. On the other hand for Step80, the other two approaches have a lower marginal power
than AdjustedX1 and the unadjusted approach, which is likely due to their lower frequency in selecting T1.

Lastly for the marginal probability of rejecting H02, the same observations for the overall power applies: adjusting for
covariates that are correlated with the outcome improves the power over the unadjusted approach. The gain in power by
covariate adjustment is larger when the effect size is small than when effect size is large; this is due to the non-linear rela-
tionship between the power and the effect size. On the other hand, including covariates that are not correlated with the
outcome in the analysis unknowingly has minimal impact on the power when compared with the unadjusted approach.

4.2.3. Treatment effect estimators
We consider the properties of the treatment effect estimators described in Section 3.2.. First we focus on the bias and then
the MSE of these estimators, as defined in Section 4.1.3.. Figure 3 shows the bias of the stage one and Overall estimators of
the treatment effect under the different scenarios for μY . We do not show the bias for the stage two estimator and
UMVCUE, since both are theoretically unbiased under all scenarios and adjustment methods, which was borne out in
the simulation results. Note that the UMVCUE was empirically unbiased even though it was derived under the assumption
of known values of τ(1),k , whereas in the simulations we estimate this from the trial data.

Looking across the different scenarios, both the Stage one and Overall estimators exhibit a positive bias and the mag-
nitude of this bias has the following ordering (for any given adjustment method): Null > Step50 > Step80 > LFC50 >
LFC80. This reflects how the upwards selection pressure is greatest for the Null scenario (since all the treatment effects
are identical), which then decreases as the treatment effects become more distinct, i.e. as the difference (μ2,Y − μ0,Y )−
(μ1,Y − μ0,Y ) = μ2,Y − μ1,Y increases. The magnitude of the bias can be relatively substantial – for example, under
DGM 1 with the Step50 scenario, the bias of the Stage one and Overall estimators is 0.04 and 0.02 respectively, while
μY = (0, 0.11, 0.22). For any given adjustment approaches, the bias of the Overall estimator is approximately 50% that
of the bias of the Stage one estimator. This is because the Overall estimator combines the biased Stage one estimator
and unbiased Stage two estimator, with the same number of patients per arm for Stages one and two.

Looking now at the different adjustment approaches, when the correlation between the covariates and outcome is zero or
low (i.e. under DGMs 1-3), there is minimal difference in the bias of either the Stage one or Overall estimators. In particu-
lar, there is no loss in terms of increased bias when adjusting for covariates that are uncorrelated with the outcome (i.e.
DGM 1). When there is a moderate correlation between covariate X2 and the outcome (DGM 4), there is a noticeable
decrease in the bias when adjusting for X2 (i.e. AdjustedX2 and Adjustedboth). For example, under the Step50 scenario
the bias of the Overall estimator decreases by 33% when comparing the Unadjusted analysis with Adjustedboth.

Figure 4 shows the MSE of the Stage one, Stage two and Overall estimators as well as the UMVCUE. Note that since the
Stage two estimator and the UMVCUE are unbiased, the MSE is equal to the mean variance of these estimators. For any
given adjustment approach, the MSE of the Stage one and Stage two estimators are virtually identical, and double the MSE
of the Overall estimator. As well, the MSE of the Stage one, Stage two and Overall estimators remain virtually identical
across the different scenarios for μY .

For the UMVCUE, the MSE has the same ordering (for any given adjustment approach) as the ordering for the bias of
the Stage one and Overall estimators, i.e. Null > Step50 > Step80 > LFC50 > LFC80. This reflects how the larger adjust-
ments made by the UMVUCE to the Overall estimator in scenarios with a larger bias results in a larger variance and hence
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MSE. The UMVCUE has a larger MSE than the Overall estimator (up to a maximum increase of 25%, under the null scen-
ario), with the magnitude of this difference having the same ordering as above. Hence the UMVCUE pays the largest price
in terms of MSE precisely in the scenarios where the Overall estimator pays the largest price in terms of bias. Reassuringly,
when there is little bias in the Overall estimator (e.g. in the LFC80 scenario) then the MSE of the Overall estimator and
UMVCUE are virtually identical.

Finally, looking at the different adjustment approaches, when there is no or low correlation between the covariates and
outcome, there is little difference in the MSE for a given estimator. In particular, there is no increase in MSE when adjust-
ing for covariates that are uncorrelated with the outcome. When there is a moderate correlation between covariate X2 and
the outcome (DGM 4), we observe a noticeable decrease in the MSE when adjusting for X2. For example, the MSE of the
Overall estimator decreases by 39% when comparing the Unadjusted analysis with Adjustedboth.

4.3. Case illustration: INHANCE study
One of the objectives of the INHANCE study was to demonstrate the efficacy of indacaterol (intervention) versus placebo
on patients with moderate-to-severe chronic obstructive pulmonary disease.43 An adaptive seamless phase IIb/ IIIa study
design was used to screen six interventions at stage one (with 376 patients randomized to seven arms including the placebo
group), and select three interventions to be continued with the placebo group to stage two based on 2-week efficacy and
safety data. A total of 1683 patients were randomised to four arms at the second stage of the study: placebo, double-blind
indacaterol 150 μg, double-blind indacaterol 300 μg or open-label tiotropium 18 μg. The primary efficacy endpoint was
forced expiratory volume (FEV) measured at 24 hours post dose after 12 weeks. A Bonferroni correction was applied
to account for testing multiple intervention versus placebo comparisons, and a mixed model analysis of covariance was

Figure 3. Bias of the Stage one and Overall estimators of the treatment effect.
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employed in the intention-to-treat analysis, with treatment, smoking status and country as fixed effects and baseline FEV
and baseline reversibility as covariates, and centre within country as random intercept. The covariate adjusted result based
on stage two data indicated that all the three interventions are more efficacious than the placebo.

To illustrate what might happen using the AMAD framework, consider a hypothetical scenario where the placebo and
three interventions mentioned above are to be evaluated again using a similar design, but with only two of them selected to
continue (together with the placebo) in the subsequent stage. This can be considered as a confirmatory two-stage multi-arm
design where a strict control of the FWER is required when one intervention arm is closed at the end of stage one. Here we
focus on using the treatment selection rule where the best two interventions would be selected, as opposed to using some
pre-defined progression criteria based on the safety and efficacy data. We use the observed efficacy and covariate infor-
mation (in terms of the means and standard deviations) from the INHANCE study, as given in Table 2 to simulate a real-
isation of this trial design. For all interventions, the assumed standard deviations of the efficacy endpoint (FEV), baseline
FEV and reversibility were 0.375 L, 0.504 L and 16.63%, respectively. For illustration, we used a sample size of J = 100
subjects per arm per stage to simulate one replication of the hypothetical study.

Table 3 shows the selected interventions and rejected hypotheses under different adjustment methods. We see that under
Unadjusted, AdjustedX1 and AdjustedX2, the same interventions (1 and 3) are selected, whereas under Adjustedboth,

Figure 4. Mean Square Error of various estimators of the treatment effect. S1 = Stage one, S2 = Stage two, O = Overall, U =

UMVCUE.

Table 2. Observed results from the INHANCE study.

Intervention Efficacy
Covariate

Mean FEV (L) Baseline FEV (L) Reversibility (%)

0: Placebo 1.28 1.52 15.6

1: Indacaterol (150μg) 1.46 1.53 15.2

2: Indacaterol (300μg) 1.46 1.45 15.6

3: Tiotropium 1.42 1.51 15.5
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interventions 2 and 3 are selected. The corresponding null hypothesesH0k (that the treatment difference for intervention k is
equal to zero) for the selected treatments are all rejected under the adjustment methods, except for the unadjusted analysis
where interventions 1 and 3 are selected but only hypothesis H03 can be rejected.

Table 4 gives the values of the various estimators (Stage one, Stage two, Overall and UMVCUE) as well as the standard
confidence intervals (Stage one, Stage two, Overall) for the treatment difference of the two selected interventions for each
adjustment method. We see that the Overall estimate for intervention 3 is very similar regardless of the adjustment method
used. In contrast, the Stage one estimate and UMVCUE are noticeably larger under Unadjusted and AdjustedX2 compared
to under AdjustedX1 and Adjustedboth, with the opposite seen for the Stage two estimate. As for intervention 1, the Overall
and Stage two estimates have the following ordering: AdjustedX2 > AdjustedX1 > Unadjusted. The UMVUCE has virtually
identical estimates under AdjustedX1 and AdjustedX2, which are both noticeably larger than the UMVUCE under an
Unadjusted analysis.

Across all the adjustment methods, the Stage one estimate is substantially larger than the Stage two estimate for inter-
ventions 1 and 3, which is particularly noticeable for intervention 3. This reflects the upward selection pressure on the top
and second-ranked interventions in Stage one. For interventions 1 and 3, the Overall estimate is approximately halfway
between the Stage one and Stage two estimates, while the UMVCUE corrects the Overall estimate towards the unbiased
Stage two estimate. Interestingly, this correction is minimal when not adjusting for X1 (i.e under an Unadjusted and
AdjustedX2). Finally, for intervention 2, which is only selected under Adjustedboth, the Stage two estimate actually
increases from Stage one, and the Overall estimate and UMVCUE are virtually identical in this case.

5. Marginal vs conditional measures: binary and survival outcomes
For a continuous outcome where the treatment effect measures are normally distributed, we have illustrated that adjusting
for covariates can improve the trial operating characteristics and the precision of the estimated treatment effects. For binary
and survival outcomes, covariate adjustment requires extra considerations when the main interest is usually in the odds
ratio and the hazard ratio. The problem arises because the odds ratio and the hazard ratio are non-collapsible, meaning
that the conditional estimand is not equivalent to the marginal estimand of these treatment effect measures.55 In this
section, we briefly revisit the concept of non-collapsibility and highlight the role of covariate adjustment in the context
of AMADs.

Recall that a conditional odds ratio (or hazard ratio) describes the effect on the outcome of an individual patient when
taking an intervention instead of the control treatment; the marginal odds ratio (or hazard ratio) describes the effect on the
outcome of the samples of a target population when they were given the intervention instead of the control treatment. The

Table 3. Selected interventions and rejected hypotheses under different adjusted methods.

Adjustment Selections Rejections

Unadjusted 1, 3 H03

AdjustedX1 1, 3 H01, H03

AdjustedX2 1, 3 H01, H03

Adjustedboth 2, 3 H02, H03

Table 4. Estimates (and standard confidence intervals) for the treatment difference with placebo for the selected interventions under

different adjustment methods.

Estimates

Adjustment Stage one Stage two Overall UMVCUE

Unadjusted 1 0.115 (0.02, 0.21) 0.005 (−0.10, 0.11) 0.060 (−0.01, 0.13) 0.015

3 0.193 (0.09, 0.29) 0.033 (−0.07, 0.14) 0.113 (0.04, 0.18) 0.116

AdjustedX1 1 0.129 (0.04, 0.21) 0.044 (−0.05, 0.14) 0.086 (0.04, 0.21) 0.050

3 0.166 (0.08, 0.25) 0.064 (−0.03, 0.16) 0.115 (0.05, 0.18) 0.107

AdjustedX2 1 0.126 (0.04, 0.21) 0.063 (−0.03, 0.15) 0.095 (0.03, 0.15) 0.050

3 0.192 (0.11, 0.27) 0.036 (−0.05, 0.12) 0.114 (0.05, 0.17) 0.117

Adjustedboth 2 0.141 (0.07, 0.21) 0.184 (0.12, 0.25) 0.164 (0.12, 0.21) 0.162

3 0.164 (0.10, 0.23) 0.066 (−0.00, 0.13) 0.116 (0.07, 0.16) 0.095
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conditional estimand accounts for the individual patient characteristics or background via the incorporation of the asso-
ciated covariates in the regression models. On the other hand, the marginal estimand depends on the distribution of the
associated covariates implicitly, meaning that the estimate of a marginal odds ratio (or hazard ratio) obtained from a
study may not be applicable to other populations that have different characteristics, see for example the illustration in
Figure 1 of Groenwold et al. 56.

The subtlety in the interpretation of the marginal versus conditional odds ratio (or hazard ratio) make them non-
comparable with respect to the benefits of covariate adjustment. This is not the case for continuous outcome where the
conditional and the marginal estimand are equivalent in nature (but not numerically as obtained from different regression
models). Other measures that are collapsible include the absolute risk difference, the relative risk difference, the log odds
ratio and the hazard difference in the additive hazards models. The interested reader is referred to Daniel et al. 55 and the
references therein for more details about non-collapsibility.

We emphasise that when the odds ratio (or hazard ratio) is used as a measure of treatment effect in a trial, the pre-
specification in the statistical analysis plan of which covariates to be included in the analyses (both interim and final) is
paramount. One should not make comparisons of treatment effect estimates from analyses with different sets of covariates
because the resulting conditional treatment effects convey different information. In the context of AMADs, the same set of
covariates should be included in both the treatment selection and the final analyses for the same reason.

The consideration of marginal odds ratio (or hazard ratio) is less useful since the focus of early phase clinical studies
often is on the average treatment effect on individual patients, and not the average treatment benefits for the target popu-
lation. For AMADs, a caveat to using the marginal odds ratio or the marginal hazard ratio for both the treatment selection
and the final analyses is that the patient composition may vary across stages. Consequently the stage wise parameter esti-
mates may not be congruent in terms of the applicability of the results to the target population when the distribution of the
characteristics of patients recruited in stage one is different to that in stage two.

Nevertheless, one may produce a marginalised-covariate-adjusted odds ratio (or hazard ratio) as supplemental informa-
tion following the procedure in Daniel et al. 55. However, it might be less straightforward to produce the UMVCUE for
these treatment effect measures using the procedure as the standard deviation of the stage-wise parameters requires
approximation by using either the Delta method or bootstrapping.

6. Discussion
Within a two-stage design, we have evaluated the impact of covariate adjustments on the operating characteristics of AMADs
and the properties of treatment effect estimators. More simulation results on trial operating characteristics in the presence of add-
itional six covariates that are uncorrelated with the outcome are presented in the supplemental material. In general, we find that
including covariates that are uncorrelated with the outcome has a negligible impact on the treatment selection outcome and the
final inference. On the contrary, including covariates that are moderately or highly correlated with the outcome can increase the
chance of selecting the truly effective intervention to continue to the second stage of AMADs, increase the study power, and
reduce the bias and MSE of estimators of the treatment effect. Moreover, the FWER is controlled at the nominal level when
covariates are adjusted via the regression approach. The UMVCUE also has good properties in terms of being unbiased with
only a relatively small increase in the MSE compared to the standard overall estimator of the treatment effect.

Our simulation study and the discussion in Section 5 also emphasise the importance of specifying the covariates in
advance of the analyses. More specifically, adjusting for different sets of covariates in a single trial replication may
lead to different treatment selection outcomes and different results of hypothesis testing. For treatment effect measures
that have the inherit property of non-collapsibility, comparing adjusted results of different sets of covariates requires
care. This is because extra analysis steps to marginalise the treatment effect estimates are necessary to ensure that the esti-
mates are comparable. To avoid data dredging, having a statistical analysis plan in place prior to any of the data analyses is
crucial. Such a practice also maintains the integrity of randomised studies.

Like any other randomized control trials, the sample size calculation of AMADs assuming the absence of covariates at
the design stage is an approximation. The gain in power is maximised with covariate adjustment when all other assump-
tions made in the sample size calculation hold, e.g., dropout rate, the values of the nuisance parameter and the treatment
effect under the (global) alternative hypothesis. Alternatively, one may perform simulation studies to identify an appropri-
ate sample size given the information about the distribution of the covariates. This is still an approximation as there are
uncertainties in the distributional assumptions.

We note that the benefits from implementing AMADs is affected by the recruitment rate and the length to observe the
data that is used for treatment selection. In some health problems where the primary outcome is not available immediately,
a surrogate (or a short-term) endpoint that is correlated with the long-term endpoint might be used for treatment selection.
This has been one of the active research areas about AMADs.17,57–60 In this case, the probability of selecting the truly
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effective interventions can vary according to the correlation between the surrogate endpoint and the primary endpoint.
When an uncorrelated (or weakly correlated) surrogate endpoint is used, there is a higher chance of selecting the truly inef-
fective interventions compared to the ideal case where the main outcome on all recruited patients is available for the interim
analysis. We have not explored this but hypothesise that the role of covariates adjustment is similar in such a context.

We also have not incorporated randomization procedures in our simulation set-up but have assumed the ideal scenario where
patients in each arm are comparable with respect to the baseline characteristics and other unmeasured factors. In practice, cov-
ariate imbalance can happen in a randomised trial due to the random nature in treatment allocation.61 A common practice is to
adjust for the variables used in the randomisation procedures, e.g., minimisation, in the final analysis. This can improve the stat-
istical power when the variables are predictive of the outcome.62 We believe chance imbalance has little impact on our general
findings especially when a covariate-adaptive randomization procedure 63 is in place, the stage one sample size of AMADs is not
small, and that the analyses adjust for the covariates used in the randomization procedure.

Another limitation of our investigation is that we have considered treatment selection without other adaptations, such as
sample size re-estimation and adaptive randomization. We note that when an intervention is not selected to continue to
stage two, there is no formal claim about its inference until a formal testing is conducted at the end of the study. The
AMAD framework that is based on the group-sequential design accounts for this adaptation in a more direct sense and
can include covariate adjusted for some of the commonly used models as shown by Jennison and Turnbull 41. We have
also assumed that there is no missing data in our simulation study. Future work can explore how the missing data
approaches may impact on AMADs when some of the covariates and responses are missing at random or missing not
at random. Another direction could be exploring the sensitivity of some estimators in the presence of a population drift,
especially when there are more than two stages. Note that we also have not provided the confidence interval for the
UMVCUE in the case illustration in Section 4.3. This is because there are no established methods to construct valid con-
fidence intervals based on the UMVCUE. More investigation is required to explore the construction of confidence intervals
in the presence of covariates.
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