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Abstract

An agent-based computer model that builds representative regional U.S. hog production

networks was developed and employed to assess the potential impact of the ongoing trend

towards increased producer specialization upon network-level resilience to catastrophic dis-

ease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity

patterns of contact networks often predict epidemic spreading dynamics. Our model heuris-

tically generates realistic systems composed of hog producer, feed mill, and slaughter plant

agents. Network edges are added during each run as agents exchange livestock and feed.

The heuristics governing agents’ contact patterns account for factors including their industry

roles, physical proximities, and the age of their livestock. In each run, an infection is intro-

duced, and may spread according to probabilities associated with the various modes of con-

tact. For each of three treatments—defined by one-phase, two-phase, and three-phase

production systems—a parameter variation experiment examines the impact of the spatial

density of producer agents in the system upon the length and size of disease outbreaks.

Resulting data show phase transitions whereby, above some density threshold, systemic

outbreaks become possible, echoing findings from percolation theory. Data analysis reveals

that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spa-

tial densities, have more abrupt percolation transitions, and are characterized by less-pre-

dictable outbreak scales and durations. Key differences in network-level metrics shed light

on these results, suggesting that the absence of potentially-bridging producer–producer

edges may be largely responsible for the superior disease resilience of single-phase “farrow

to finish” production systems.

Introduction

There is widespread agreement among livestock veterinarians and epidemiologists that miti-

gating disease outbreaks is critical to promote food safety, maintain food availability, and

reduce economic risk in the marketplace. Livestock epidemiologists commonly focus on
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promoting the adoption of discrete biosecurity measures, such as truck wash facilities and bio-

containment procedures at individual premises [1]. However, empirical research has increas-

ingly revealed the importance of understanding how the structures of trade and transportation

networks can aid in predicting and preventing outbreaks [2–4]. In light of these observations,

more work is clearly needed to understand how livestock biosecurity may be bolstered from a

systems perspective.

Recent years have seen significant structural changes within the U.S. hog industry, with a

marked trend toward increased producer specialization. Whereas in the past it was standard

practice for a single producer to take a pig “from farrow to finish,” it is now increasingly com-

mon for livestock to be housed at two or, more recently, three different producer operations

throughout their lives, with each operation specializing in a specific life cycle stage [5]. While

operational efficiency advantages may be gained through increased specialization, its effect on

disease spread is not fully understood.

To address this question, we developed an agent-based susceptible / infective (SI) computer

model to simulate epidemiological events in hog production networks. Agent-based models

(ABMs) have been used extensively to analyze complex phenomena that emerge from the rela-

tively-simple actions of a cohort of interacting individuals [6–8]. Using the 2013 PEDv out-

break as a case study, three key mechanisms facilitating disease transmission in the hog

industry were identified: (a) the transfer of infected animals between premises, (b) deliveries of

contaminated feed, and (c) contaminated livestock and feed transportation equipment [9, 10].

Contact between producers, slaughter plants, and feed mills was found to be largely responsi-

ble for spreading the virus. In our ABM, structured populations of these three agent types are

placed in the simulation, an infection is introduced randomly, and decision heuristics define

how and when agents come into contact, potentially transmitting the infection. Using this

model, we report on a series of parameter variation experiments that investigate the epidemic

spread characteristics resulting from varied levels of producer specialization and numbers of

producers in the system, finding evidence of percolation dynamics, with increased specializa-

tion leading to significantly diminished epidemiological resilience.

Percolation theory

The “robust yet fragile” nature that describes a diversity of complex systems offers a useful

framework to understand the spread of diseases through networks. Pathogens are regularly

introduced with little consequence, but due to stochasticity and internal heterogeneities in con-

tact network structures, a single pathogen can occasionally ignite a widespread epidemic [11–

16]. Percolation is the mathematical phase-change that occurs when the density of entities in a

system becomes sufficient that the expected outbreak magnitude no longer scales linearly with

each added node, but instead accelerates rapidly toward near-complete spreading. The point at

which this transition occurs—the percolation threshold—is defined as the density at which, in

an infinite network, the expected size of the “giant component” is also infinite [17–22]. While

much of the work in this area has concerned itself with analytically-formalizing percolation

behavior in relatively-simple systems, the insights gained through such investigations are rele-

vant for understanding dynamical regimes in complex real-world systems as well. To investi-

gate percolation in our experimental results, we numerically assess how the size and duration

of epidemic events in a series of model runs scale with the addition of producer nodes.

Models of epidemic spreading

At the core of many model-based inquiries into disease spread is the susceptible / infective /

recovered (SIR) framework. In SIR models, an infective individual may spread a disease to
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susceptible individuals for a period of time, after which the infective individual transitions to

the recovered state and cannot be reinfected [23]. The SI framework, a common SIR deriva-

tive, allows for repeated infections. SIR models based on differential equations (DEs) have suc-

cessfully replicated many of the complex temporal patterns typical of epidemics [24–26].

However, the DE approach has been criticized, as it implicitly posits both a homogeneous pop-

ulation and complete mixing [27]. Structured population models partially overcome these

shortfalls, defining heterogeneous distributions for parameters such as age, size, spatial posi-

tion, and movement [28, 29]. Cellular Automata (CA) SIR models additionally reproduce spa-

tial phenomena such as waves of infection radiating outward from a source [30, 31], and can

also produce percolation-type phase transitions [32], providing insights into the impact of

agents’ relative spatial positions on spreading dynamics [33, 34]. More advanced CA models

examine the impact of heterogeneous susceptibilities, transmission rates, and infectious peri-

ods [35], as well as modulating parameters as a function of spatial proximity [36, 37].

In recent years, epidemiological modelers have increasingly investigated the role of the

structural topology of “mixing networks” on disease percolation [38]. SIR simulation studies

on complex networks demonstrate the impact of degree distribution on the speed, size, and

variability of epidemic events, with more heterogeneously-distributed networks pushing the

percolation threshold towards zero as N!1 [39]. Epidemics on scale-free networks cascade

from highly-connected hubs through smaller degree classes [40], although a sharp percolation

threshold is not observed [41, 42]. In metapopulation (or subpopulation) networks, surpassing

critical values for the rate of spreading between subpopulations can trigger percolation, shed-

ding light on the mechanism behind the “robust yet fragile” nature of these systems [43–45].

Coelho, Cruz, and Codeço [46] characterize the complexification of epidemiological simu-

lations over time as a shift between “strategic models” that explore the fundamental features of

epidemics, to “tactical models” that mirror the conditions within which a real-world epidemic

may unfold. Agent-based models are often examples of the latter, generating empirically-cali-

brated networks of interacting agents that are heterogeneous not only in their parameter val-

ues, but also in the behavioral heuristics that govern how and when contact occurs [47].

Modelers can hard-code agents’ positions or spatial distributions using a GIS framework [48],

and may incorporate empirical data—such as airline routes or telephone records [49, 50]; or,

in the case of livestock epidemics, the operational details and locations of farms [51, 52]—that

have been shown to correlate with outbreak patterns. Other modelers let networks emerge

organically during each model run as a result of agents’ decision-making heuristics. Using the

latter methodology, Ghani & Garnett [53] found network centrality measures that predicted

an agent’s chance of either getting or spreading a sexually-transmitted disease. Eubank et al.

[54] developed an ABM that utilized heuristics parameterized from large-scale datasets to gen-

erate realistic urban social contact networks and identified resulting epidemiological vulnera-

bilities. Gojovic et al. [55] implemented a model to evaluate optimal immunization strategies

during the 2009 H1N1 pandemic, using demographic and employment records to assign agent

parameters, and incorporating differential transmission probabilities for multiple contexts.

Keeling et al. [56] developed a model of U.K. farms—parameterized via census data—and per-

formed a Monte Carlo simulation to understand how factors including agent heterogeneities

and movement restrictions explain the observed spread of the 2001 UK Foot and Mouth epi-

demic. The ABM we have developed for this experiment builds on prior work in this area,

leveraging empirical data to heuristically generate hog production systems that are structur-

ally-parallel to real-world examples, and encoding behavioral rules in collaboration with

industry experts that allow the contact networks underlying disease spread to emerge organi-

cally in each model run.

Livestock producer specialization and disease resilience
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Network analytics and epidemiological vulnerability

Bailey [43] was among the first to suggest that, while contagions are generally confined to

small network clusters, global epidemics may result when an edge forms a bridge between clus-

ters. This pattern has been empirically observed in both human and livestock epidemics. Fire-

stone et al. [2] analyzed infected premises during the 2007 Equine Influenza outbreak in

Australia, finding strong evidence that the movement of infected horses between spatially-clus-

tered groups of premises correlated with the spread of the disease. Fournié et al. [3] investi-

gated the network connectivity patterns of agents involved in Vietnam’s live bird markets

during an H5N1 influenza outbreak, concluding that the contact network could have been

largely “disconnected” by focusing on disinfection of transportation equipment at a few of the

large hubs. The structure of transportation networks for feed and livestock was found to be the

primary factor underlying the 2013 U.S. hog industry PEDv epidemic, with slaughter plants

and feed mills serving as the primary hubs [4].

Network theorists have conducted several investigations into the relationships between

metrics describing a network’s structure, and the propensity of that network to promote or

inhibit spreading [57, 58]. Experiment two below evaluates six network metrics that may

impact epidemiological resilience. As a baseline, we investigate whether—as would be

expected—hog production networks with higher average degree hki promote disease spread.

Small-world graphs—a class into which many real-world livestock production networks fall

[59–61]—are characterized by a smaller mean shortest path length hli and greater clustering

C than corresponding random graphs with equivalent hki [62]. Research shows that spread-

ing in small-world networks (versus corresponding random graphs) proceeds more rapidly

but results in fewer infected nodes, and also that small-world networks exhibit significantly

higher k-core densities [63]. Other studies have found that k-core boundaries often define

the part of a graph in which a spreading event is more likely to persist [64]. Experiment two

thus analyzes the role of k-core size Skc, in addition to k-core order Okc, and number of k-

cores Nkc. While there is debate over whether weighted versus unweighted—as well as

directed versus symmetrized—versions of network metrics are more appropriate, at least in

some contexts, metrics calculated on unweighted, symmetrized graphs best predict epidemi-

ological vulnerability [65]. In light of this, we opt to binarize and symmetrize the graphs in

our analysis.

Research questions and hypotheses

This study uses an agent-based model to investigate the impact of two ongoing network-struc-

tural trends in the U.S. hog industry upon system-level epidemiological resilience. The first of

these trends is the growing spatial density of networks. With more potential trading partners

from which to choose, the average degree of the network will tend to increase, which should

correlate positively with outbreak severity. The second trend, increasing producer specializa-

tion, will necessarily add producer–producer edges where previously there were none. Follow-

ing the empirical and computational studies cited above, we can hypothesize that a greater

probability of large-scale “global” epidemics should be observed wherever the network typol-

ogy is such that, without these additional edges acting as bridges, the contagion would have

been isolated within localized clusters. By systematically varying both the spatial density of the

simulated networks, along with the level of producer specialization, the experiments described

below investigate how the interplay between these two factors may render a system more or

less vulnerable to catastrophic disease outbreaks.
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Materials and methods

Model design concepts

The Regional U.S. Hog Production Network Biosecurity Model (RUSHPNBM) generates sim-

ulated hog production systems composed of producer, slaughter plant, and feed mill agents.

Heterogeneous parameter values, multiple interaction contexts, and spatial proximity consid-

erations, are incorporated into agents’ decision heuristics, and determine contact patterns and

infection spread potentials. The epidemiological submodel is of the SI type, since, in the case

of PEDv, reinfections of the same premises have been reported [66].

RUSHPNBM is a “tactical” model, in that it is empirically-calibrated to mirror a real-

world system, but it also aims to avoid being overly context-specific, leaving sufficient flexi-

bility to analyze a variety of scenarios [46]. To this end, elements that were deemed significant

facilitators of disease spread by a cohort of industry consultants were included in the model,

while many extraneous and/or uncertain details were bracketed [67]. The baseline parameter-

ization—although ground-truthed by our advisors as well as several datasets—is not meant to

project the course of a specific infectious agent through any real-world production network,

but rather to facilitate a workable and reasonably-realistic simulation useful for understand-

ing the network trends important for this experiment.

The model was developed using AnyLogic 7 software, with all functions written in Java.

The sections below provide an overview of initialization procedures, agents’ behavioral heuris-

tics, and parameter calibration methods. For full implementation details, see S1 Protocol.

Agent initialization

At model initialization, all agents are assigned a fixed location stochastically within a continu-

ous two-dimensional spatial framework defined by an 880 x 490 unit rectangle, with units rep-

resenting kilometers. Producer agents are assigned one of five industry roles (see Fig 1)

according to distributions corresponding to the treatment scenario (see Experimental design

section). The livestock capacity of each producer agent is assigned by drawing from a normal

distribution (Table 1 gives parameter values). Producer agents may have one or several batches

of pigs, with each batch considered to be the same age. Each producer begins at full capacity,

with the age of pig batches drawn from a uniform distribution corresponding to the industry

role of the producer.

Network initialization

Network edges in the model are subdivided into three contexts: (a) producer–producer, (b) pro-
ducer–slaughter plant, and (c) feed mill–producer. The basic structure of connections between

Fig 1. Structure of agent connections in the model. Shows 1-phase (low-specialization), 2-phase (mid-specialization), and 3-phase (high-specialization) connectivity

heuristics. Also indicates livestock transfer age conditions.

https://doi.org/10.1371/journal.pone.0194013.g001
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agents of each industry role is visualized in Fig 1. A network initialization function generates a

set of potential trading partners for each agent, defining the possible edges across which con-

tact may occur during the remainder of the model run. Producer agents are each assigned to

their most proximal feed mill, and finishing producers are also assigned to their most proximal

slaughter plant. Each non-finishing producer is assigned a pool of potential transferee produc-

ers of the appropriate industry role for outgoing shipments (see Fig 1), and within a maximum

distance of 100km. Fig 2 shows a sample network as displayed on the model dashboard, and

briefly describes the heuristics associated with each agent class.

Initial infection

The initial infection event is triggered after one model year, to skip the transient period and

allow the simulation to stabilize. At this point, a single producer agent is selected randomly

and transitioned to the infected state.

Behavioral heuristics

The major functions controlling agent behavior, network connectivity, and infection transmis-

sibility, are detailed below. Specific parameter values appear in Table 1.

Table 1. Parameter values used in the experiment.

Parameter Value(s) Explored

Network parameters
Area of network region (km2) 431200

Number of producer agents in the model [10:10:1500]

Number of livestock per producer [normal distribution; rounded to integer] μ = 1,000; σ = 300; x� 50

Number of producer production phases [1, 2, 3]

Number of slaughter plant agents in the model 3

Number of feed mill agents in the model 10

Epidemiological parameters
Suckling pig mortality rate 0.95

Nursery pig mortality rate 0.6

Grow/finish hog mortality rate 0.1

Length of producer infection (days) [triangular distribution] μ = 30; 0� x� 60

Length of slaughter plant contamination (days) [triangular distribution] μ = 5; 0� x� 10

Farrowing parameters
Frequency of farrowing (days) 30

Minimum farrowing quantity as a proportion of producer capacity 0.25

Producer–producer parameters
Maximum producer to producer connection distance (km) 100

Minimum transfer quantity as a proportion of transferee capacity 0.25

Prob. of infection via trailer returning from infected transferee 0.15

Feed mill–producer parameters
Frequency of feed distribution trips (days) 1

Percent of producers in feed mill service area visited per trip 15

Probability that truck will be contaminated upon visiting an infected producer 0.15

Probability that contaminated truck will infect subsequent producers on route 0.15

Producer–slaughter plant parameters
Probability that infected hogs will contaminate slaughter plant receiving area 0.75

Probability of infection via truck returning from infected slaughter plant 0.15

https://doi.org/10.1371/journal.pone.0194013.t001
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Farrowing. Farrowing producers (where piglets are born) periodically replenish their

inventories by generating new pig batches. New batches are the size of the producer’s spare

capacity. A minimum farrowing quantity parameter ensures reasonably-sized batches.

Producer–producer livestock transfers. Non-finishing producers transfer pig batches

that have reached the transfer age corresponding to their industry role to an appropriate trans-

feree (see Fig 1). A minimum transfer size requirement ensures realistically-sized shipments

between producers. Transferee producers are sequentially evaluated in order of proximity

until a producer with sufficient excess livestock capacity is identified, at which point the pig

batch meeting the transfer age requirement is deleted from the transferring producer’s stock

and added to the transferee’s. If the transferring producer is infected, the infected livestock will

spread the disease to the transferee. If the transferee producer is infected but the transferring

producer is not, the returning “delivery truck” may become contaminated and infect the trans-

ferring producer according to a set probability. If a producer becomes infected, the size of each

of its pig batches is diminished by the mortality rate associated with the batch’s age. Producers

remain infected for a duration determined by a triangular distribution—an intuitive and reli-

able proxy for the beta distribution [68]—with a mean of 30 days.

Producer–slaughter plant livestock transfers. Finishing producers ship livestock to their

slaughter plant as soon as a pig batch reaches the designated age. If the transferring producer is

infected, the receiving area of the slaughter plant may become contaminated according to a set

probability. If infected, a slaughter plant will remain infected for a duration determined by a

triangular distribution with a mean of 5 days. If the receiving area of the slaughter plant is

already contaminated when a shipment arrives, the returning “delivery truck” may infect the

shipping producer according to a set probability.

Feed mill–producer delivery routes. Every model day, each feed mill generates a delivery

route by first selecting a producer agent within its service area at random. From this location,

the nearest producer within the feed mill’s service area that has not been visited becomes the

next stop on the route, and this process is repeated until the “delivery truck” has visited the

designated number of farms. Should the truck encounter an infected producer premises on its

route, the truck may become contaminated according to a set probability. Once a truck is con-

taminated, the infection may spread to subsequent producers on the route according to a set

probability.

Fig 2. Sample network map as displayed on the model dashboard. Shows agents as nodes and inter-agent contacts (both potential and active) as

edges. Key provides an overview of connectivity heuristics for each agent type.

https://doi.org/10.1371/journal.pone.0194013.g002
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Parameter calibration

The structural makeup and contact patterns of the simulated hog industry network are based

on several statistical datasets, as well as qualitative input from a cohort of experts including vet-

erinarians, epidemiologists, and hog industry analysts. Distributions of producer livestock

capacity and spatial density were generalized from USDA Census of Agriculture data [69],

while slaughter plant density was generalized from USDA Food Safety and Inspection Service

data [70]. Feed mill data proved more elusive, so parameterization was based primarily on

expert estimates. Temporal aspects of the simulation, such as the frequency with which contact

events occur, were generalized from a search of the primary literature coupled with industry

expert consultations.

Porcine Epidemic Diarrhea virus (PEDv) is a disease that swept through the U.S. hog indus-

try starting in 2013, causing widespread mortality and morbidity among livestock [71]. This

outbreak was used as a case study to calibrate the epidemiological parameters of the model. In

consultation with livestock veterinary professionals, reasonable baseline values for parameters

such as mortality rates for animals of different ages were chosen. A series of parameter varia-

tion experiments were used to hone in on baseline parameter values for infection probabilities

and durations such that the infection within the model spread in a manner similar to the pat-

terns observed in the real-world PEDv outbreak, for which tracking data are available [66].

These values were then exogenized as baseline parameters that remained fixed across all exper-

imental runs (Table 1).

Experimental design

Using the model detailed above, two experiments were performed. The first explored disease

percolation by varying the number of producers in the model. The second explored the rela-

tionship between key network metrics and epidemiological resilience.

The treatments differed according to the distribution of industry roles assigned to producer

agents. Aside from these producer classification assignments, all parameters remained con-

stant across all runs. The treatments are defined as follows (see also Fig 1):

1. High specialization

• Three-phase production system

• Equal numbers of Farrow to Wean, Wean to Feeder, and Feeder to Finish producers

2. Medium specialization

• Two-phase production system

• Equal numbers of Farrow to Feeder and Feeder to Finish producers

3. Low specialization

• One-phase production system

• Farrow to Finish producers only

Experiment one. Experiment one was a parameter variation experiment in which, for

each treatment scenario, the number of producer agents in the model (Np) was varied between

10 and 1,500 in increments of 10. Since the network region area is fixed, varying Np corre-

sponds to a change in the spatial density of producers. For each treatment, the model was

executed 100 times at each of the 150 Np values, for a total of 15,000 model runs for each

Livestock producer specialization and disease resilience
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specialization level, or 45,000 runs overall. In each run, the model was stopped 4,135 model

days after the initial infection; sufficient time for the infection to either die out or become sys-

temic. Each run generated two dependent variable datapoints: (a) the overall duration of the

infection event within the network as a whole, and (b) the proportion of agents that became

infected at least once during the model run.

Experiment two. In experiment two, features of production networks resulting from dif-

ferential producer specialization were quantified and analyzed. Contact network data from

150 model runs for each specialization level—with Np = 100: 100: 1500, and 10 repetitions per

parameterization—were exported from the model and analyzed as unweighted, undirected

graphs. A similar edge list containing only the subset of nodes that had been infected during

each model run was also stored. For both the contact network and the infected component

network, six metrics were calculated using functions from the Python NetworkX library [72],

with values for each metric plotted against Np for each treatment. Table 2 gives Python and

NetworkX code used in the analyses.

Results

Experiment one

As an initial step to examine the model output data, histograms were produced to visualize the

distribution of outbreak sizes (the proportion of agents infected) and overall infection dura-

tions (the time between the initial infection and the last agent recovering from infection, in

model days); with data stratified into three Np ranges (Fig 3). These plots show that the distri-

bution of infection severity—especially in the high-Np runs—is bimodally-distributed. Kolmo-

gorov-Smirnov normality tests using Np as the theoretical distribution confirm that, overall,

the data are not normally-distributed (for proportion infected D = −9.1205, p = 0.000; for

infection duration D = −9.1981, p = 0.000). This finding would appear to mirror the literature

on epidemic size distributions, suggesting that infection events in the model generally remain

within a local cluster, but sometimes explode in scale due to bridging links [2–4, 43–45].

Digging deeper into the behavior of the system within the subset of model runs that resulted

in a long-duration “systemic” infection, we plot histograms including only runs in which the

overall infection duration was� 3000 model days (Fig 4). This analysis indicates that, at suffi-

ciently-high Np values, all three treatments sometimes result in full-duration (4135 model day)

epidemics. Once an infection reaches the systemic level, it is very unlikely to die off naturally

prior to the end of the model run. However, even among the systemic outbreaks, the scale of

spreading exhibits wider variability, with the high-specialization runs more likely to result in

larger epidemics.

Table 2. Python / NetworkX code used in experiment two.

Network Metric Python / NetworkX Code

Average Degree hki sum(G.degree().values()) / len(G.nodes())

Average Shortest Path Length hli nx.average_shortest_path_length(G)

Clustering Coefficient C nx.average_clustering(G)

k-core Order Okc nx.degree(k_core(G), nbunch = k_core(G).nodes()[1])

k-core Size Skc len(nx.k_core(G).nodes())

Number of k-cores Nkc nx.number_connected_components(nx.k_core(G))

Note: Python 2.7 and NetworkX 2.0 were used for all analyses. The prefix “nx.�” indicates a NetworkX function. “G”

represents the NetworkX graph object to be analyzed.

https://doi.org/10.1371/journal.pone.0194013.t002
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Scatter plots of the raw data (Fig 5) reveal a nonlinearity, with Np values below some value

never igniting a globalized epidemic. This critical value appears to vary by specialization level.

Kruskal-Wallis equality-of-populations rank tests (used due to the non-normal data distribu-

tions) indicate that the data associated with each treatment differ significantly in terms of both

infection duration and proportion infected (Table 3). Based on a cursory visual analysis, for

the multi-phase systems, the critical region occurs at approximately 500� Np� 1000, separat-

ing the unimodal phase (in which all infections are small and short) from the bimodal phase

(in which infections are either small and short or large and long, but never in between). For

the single-phase systems, the critical region would appear to occur around 600� Np� 1400.

Only within the critical regions do we ever observe mid-length or mid-scale outbreaks.

To investigate the apparent percolation dynamics in the raw data, we plot the mean and

95% confidence interval for both dependent variables—as well as two alternative indicators of

infection severity—over the full Np range (Fig 6). These data, especially the metrics that focus

on large-scale and long-term infection events (bottom row), provide further evidence of a per-

colation threshold. We also note that variability increases dramatically as Np surpasses the crit-

ical region, with higher variability in the high-specialization data.

To further analyze the scaling behavior of the dependent variables, we apply LOESS

smoothing to the raw model output data. The Np value at which the LOESS-smoothed curve

has the highest slope indicates the point at which outbreak severity scales most abruptly with

Np, or the approximate percolation threshold. Fig 7 displays the results of this procedure, with

the lower plots showing the slope of the LOESS curves as a function of Np. The Np values

Fig 3. Histograms showing distribution of dependent variables. Infection duration data appear in the left column and proportion of infected agents in the right

column, with color indicating producer specialization level. Low density runs were those with 0< Np� 500, mid-density 500< Np� 1000, and high-density 1000<

Np� 1500. Data were split into 40 bins.

https://doi.org/10.1371/journal.pone.0194013.g003
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corresponding to the maximum slopes (indicated in the figures) would appear to correspond

to the critical Np ranges observed visually in Figs 5 and 6 for all treatments. On both epidemic

severity metrics, the three-phase treatment exhibits the lowest percolation threshold, as well as

the highest slope at this point, indicating that the high-specialization networks are vulnerable

to epidemic percolation at lower densities, and also exhibit a more-abrupt phase-change.

Although the difference between the two- and three-phase systems is marginal, we can con-

clude that there is a marked differentiation between the behavior of single- versus multi-phase

systems at criticality.

Experiment two

Contact network metrics. Experiment one found that the greatest differences in percola-

tion risk occur when stepping from single-phase to multi-phase systems. Here we investigate

whether key network metrics may provide clues that explain this result from a network-theo-

retic perspective (Table 4 and Fig 8). The most striking feature in these data is that, in the sin-

gle-phase networks, several of the network metrics simply do not scale with Np as they do in

the multi-phase scenarios. Network maps plotted from sample model runs (Fig 9) illustrate the

fundamental structural difference underlying this result: in the single-phase systems, each pro-

ducer is connected only to a single feed mill and a single slaughter plant. In light of this, it is

clear why the average clustering coefficient hCi—defined as the ratio of “closed triangles” to

“total triangles”—will by definition be equal to zero for all single-phase runs. For the same

Fig 4. Right-censored histograms showing distribution of dependent variables. These plots are parallel to those in Fig 3, yet include only datapoints in which the

infection duration was� 3000 model days. Data were split into 11 bins.

https://doi.org/10.1371/journal.pone.0194013.g004
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reason, average degree hki = 3, k-core size Skc� Np, and k-core order Okc = 2 also hold

universally.

For the multi-phase networks, the explanation for the higher hki is trivial: an entire interac-

tion context is added, so there must be more edges. The more important realization is that the

addition of the producer–producer interaction context can add bridging edges, resulting in

elevated hCi values. Places where these bridges connect portions of the network that would

otherwise have remained isolated represent clear risk points for disease outbreaks to become

systemic.

But, can any of these metrics reliably predict epidemiological risk? For the multi-phase net-

works, many of the metrics seem to scale roughly linearly with Np, with hki, hOkci, and hSkci
being positively correlated; and hli and hCi being negatively correlated. Unfortunately, the lack

of any significant nonlinearity suggests that the percolation point cannot be reliably predicted

a priori by tracking these network metrics as a network grows. Developing metrics that are

Fig 5. Scatter plots showing full model-output dataset for both dependent variables. Proportion of agents infected (cumulative) appears in

the top row, and network-level infection duration in the bottom. Each point represents one of the 45,000 model runs (15,000 for each level of

specialization).

https://doi.org/10.1371/journal.pone.0194013.g005

Table 3. Kruskal-Wallis equality-of-populations rank test statistics.

Dependent Variable Rank Sums χ2 d.f. p

1 Phase 2 Phase 3 Phase

Proportion infected 2.99e+08 3.47e+08 3.67e+08 962.912 2 0.0001

Infection duration 3.09e+08 3.44e+08 3.59e+08 517.021 2 0.0001

https://doi.org/10.1371/journal.pone.0194013.t003
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effective predictors of disease spread risk in complex networks remains an area for future

study.

Infected component network metrics. Examining metrics calculated on infected-compo-

nent subgraphs (Table 5) provides insights into the network structures that underlie percola-

tion, and how these structures differ between the single- and multi-phase networks. Overall,

we note that only 226 of the 450 model runs conducted in experiment two resulted in an infec-

tion network, with the infection in the remaining 224 runs failing to spread beyond the ini-

tially-infected node. This mirrors the bimodal epidemic size distribution discussed above and

Fig 6. Percolation threshold visualizations. Lines plot average values for the 100 runs at each of 150Np levels, with corresponding color fields indicating 95% CI. Top

left plot shows infection duration. Top right shows mean proportion infected (cumulative). Bottom left shows the fraction of runs resulting in a systemic network-level

infection lasting the full duration of the model run (4135 model days). Bottom right shows the fraction of runs in which 95% or more of the agents became infected.

https://doi.org/10.1371/journal.pone.0194013.g006
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shown in Figs 3 and 4. As a result of this lower N,Np values were divided into five bins for visu-

alization (Fig 10).

Data analyses reveal several differences between the overall contact networks and the

infected component networks. Whereas hCi in the contact network drops as Np rises, hCii
remains relatively flat, suggesting that subgraphs with relatively-higher clustering than the rest

of a network may be especially vulnerable to disease. Secondly, in the multi-phase systems, a

nonlinearity would appear to exist in hkii with respect to Np around the critical percolation

regions. As a network grows larger, it becomes less likely that any two randomly-selected

nodes will be linked, since only so many contacts can occur in a given timeframe. Therefore,

Fig 7. Finding percolation points numerically. Upper plots show raw model output data with LOESS-smoothed curves (span length = 0.45 ×N). Lower plots show

the slope of each LOESS curve, with maximum-slope points annotated. Green represents 1-phase, blue 2-phase, and red 3-phase treatments.

https://doi.org/10.1371/journal.pone.0194013.g007
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Table 4. Key contact network metrics for each producer specialization level, stratified across three producer density categories.

Network Metric 0 < Np� 500 500 < Np� 1000 1000 < Np� 1500

Mean 95% CI Mean 95% CI Mean 95% CI

Average Degree hki 1 Phase 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

2 Phase 7.14 6.42 7.86 15.58 14.52 16.64 24.84 22.90 26.78

3 Phase 6.70 5.90 7.50 16.62 15.67 17.57 26.88 24.98 28.78

Average Shortest Path Length hli 1 Phase 3.70 3.60 3.82 3.66 3.56 3.77 3.54 3.44 3.64

2 Phase 3.82 3.72 3.92 3.58 3.52 3.64 3.57 3.51 3.62

3 Phase 4.16 4.17 4.45 3.85 3.81 3.89 3.80 3.75 3.85

Clustering Coefficient C 1 Phase 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 Phase 0.20 0.19 0.21 0.13 0.12 0.14 0.09 0.08 0.10

3 Phase 0.19 0.18 0.20 0.13 0.12 0.13 0.09 0.08 0.09

k-core Order Okc 1 Phase 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

2 Phase 8.34 7.39 9.29 17.42 15.80 19.04 26.88 23.90 29.86

3 Phase 8.58 7.47 9.69 19.88 18.09 21.67 29.78 26.71 32.85

k-core Size Skc 1 Phase 308.40 266.63 350.17 812.76 772.16 853.36 1312.86 1272.20 1353.52

2 Phase 66.12 52.13 80.11 242.42 200.33 284.51 547.80 481.56 614.04

3 Phase 67.04 50.74 83.34 209.88 175.72 244.04 443.50 375.73 511.27

Number of k-cores Nkc 1 Phase 1.02 0.98 1.06 1.00 1.00 1.00 1.00 1.00 1.00

2 Phase 1.12 1.03 1.21 1.04 0.98 1.10 1.00 1.00 1.00

3 Phase 1.10 1.00 1.20 1.00 1.00 1.00 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0194013.t004

Fig 8. Correlating Np with contact network metrics. Key contact network metrics, calculated for each treatment. Lines plot averages for each Np value; color fields

show 95% CI. Green represents 1-phase, blue 2-phase, and red 3-phase treatments.

https://doi.org/10.1371/journal.pone.0194013.g008
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heavily-connected nodes will tend to be the ones whose edges happen to impinge upon an

infected trading partner. hOikci and hSikci also appear to exhibit a similar non-linearity. Interest-

ingly, for the multi-phase networks, hOikci would seem to more heavily reflect the percolation

threshold, whereas for the single-phase networks, in which it was always the case that

1 < hOikci < 2, it is hSikci that balloons upon reaching the threshold.

Fig 9. Visualizations of sample networks generated by the model under each level of producer specialization. Np = 500 for each network.

Nodes were positioned using a spring layout, and sized according to total number of contact events. Blue nodes are producers; yellow are feed mills,

and red are slaughter plants.

https://doi.org/10.1371/journal.pone.0194013.g009

Table 5. Key infected component network metrics for each producer specialization level, stratified across three producer density categories.

Network Metric 0 < Np� 500 500 < Np� 1000 1000 < Np� 1500

Mean 95% CI Mean 95% CI Mean 95% CI

Average Degree hkii 1 Phase 1.05 0.95 1.14 1.26 0.99 1.53 1.76 1.33 2.19

2 Phase 1.25 1.08 1.42 3.95 1.70 6.21 10.64 7.10 14.18

3 Phase 1.25 0.96 1.54 5.33 3.09 7.58 13.41 9.10 17.72

Average Shortest Path Length hlii 1 Phase 1.20 1.06 1.35 1.72 1.35 2.09 2.20 1.66 2.73

2 Phase 1.63 1.34 1.91 2.35 1.81 2.88 2.70 2.24 3.15

3 Phase 1.69 1.34 2.04 2.40 1.86 2.95 2.68 2.22 3.13

Clustering Coefficient Ci 1 Phase 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 Phase 0.06 -0.02 0.13 0.09 0.03 0.15 0.07 0.04 0.09

3 Phase 0.02 -0.01 0.05 0.07 0.04 0.11 0.05 0.03 0.08

k-core Order Oikc 1 Phase 1.18 0.96 1.40 1.48 1.09 1.87 1.67 1.25 2.08

2 Phase 1.54 1.31 1.76 5.76 2.19 9.33 14.21 9.06 19.37

3 Phase 1.54 1.11 1.97 7.37 3.81 10.93 14.44 9.07 19.80

k-core Size Sikc 1 Phase 2.64 2.21 3.06 39.61 -11.78 91.00 342.62 112.69 572.55

2 Phase 4.64 3.03 6.26 47.67 11.24 84.09 105.96 44.94 166.99

3 Phase 4.54 2.65 6.43 50.48 21.21 79.76 158.72 90.45 226.99

Number of k-cores Ni
kc 1 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.04 0.96 1.11

3 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.03 0.97 1.09

Note: Reported values are averages for runs falling into each producer density category.

https://doi.org/10.1371/journal.pone.0194013.t005
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Discussion

Our experimental results strongly suggest that, at least in the context of the model presented

here, the risk of catastrophic infectious disease outbreaks may be inhibited by (a) sparser net-

works, and, perhaps more critically, (b) networks in which fewer contexts for interaction facili-

tate greater compartmentalization of inter-agent contact patterns, leading to both shorter and

smaller outbreaks, as well as less uncertainty about whether a given outbreak will become sys-

temic. These findings corroborate previous theoretical research into the network features that

can promote large-scale epidemics [43, 44], as well as empirical studies that point to similar

infection spread patterns having occurred in real-world outbreaks [2–4].

Despite the phase transitions in our data not being particularly “sharp,” there is clear evi-

dence of a nonlinearity in the scaling of epidemic severity with producer density in the hog

production systems generated by our model. Quantifying the producer densities at which add-

ing additional producers to the system is most-strongly correlated with an increased risk of

catastrophic disease spread reveals a clear differentiation between the epidemiological resil-

ience of low- versus high-specialization treatments.

As in many dynamical systems, we find that the critical region around the percolation

threshold acts as a border between a unimodal system state in which disease outbreaks virtu-

ally always die out quickly, and a bimodal state in which large-scale, systemic outbreaks are

possible. It is only within the critical region that medium-severity outbreaks are observed. This

finding is important because it entails that, if the size and/or duration of disease events in a

Fig 10. Correlating Np with infected component network metrics. Key infected component network metrics, calculated for each treatment. Bars plot averages for

five Np ranges; whiskers show 95% CI. Green represents 1-phase, blue 2-phase, and red 3-phase treatments.

https://doi.org/10.1371/journal.pone.0194013.g010
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growing livestock production network has begun to show wider variability, this could be an

indication that further increasing the regional production density may not simply increase the

risk linearly, but instead accelerate the system toward a regime characterized by the possibility

for catastrophic epidemic events.

A limitation of the model concerns human behavioral adaptation in the face of epidemio-

logical threats. Whereas the model used here assumes that agents’ behavioral heuristics remain

static, previous research has pointed to the potential for behavioral adaptation—for example

limiting contact as a disease becomes more prevalent—to significantly affect the course of an

outbreak [73]. The extent to which such adaptive behavior may differentially-impact the dis-

ease resilience of livestock production networks with varying levels of producer specialization

or spatial density remains an area for future research.

A limitation of experiment two rests in our selection of network metrics, and our choice to

binarize and symmetrize the networks for analysis. While binarization and symmetrization

have been employed historically in network analysis—and while there is some evidence to sug-

gest that this approach is valuable for the evaluation of spreading dynamics [65]—future stud-

ies will compare the efficacy these metrics to their weighted and/or directed counterparts as

indicators of epidemiological vulnerability. It would also be useful to analyze vulnerability not

only from the whole-graph perspective, but from the level of individual nodes.

Another area for future study is to investigate percolation dynamics within mixed systems

of single- and multi-phase producers. This would lend further insight to optimize risk miti-

gation strategies in real-world networks, which generally contain multiple overlapping pro-

duction systems. For example, it would be valuable to understand the extent to which the

introduction of just a few multi-phase producers into a region dominated by farrow to finish

farms may impact percolation risk.

Conclusion

Those concerned with preventing the spread of catastrophic diseases in the U.S. hog industry

most-commonly promote the adoption of discrete biosecurity and biocontainment interven-

tions at the premises level; strategies which may well be efficacious in many situations. How-

ever, epidemics are ultimately spread through complex networks of interacting actors, and—as

we have shown—the structure of a given network can have a dramatic impact on the epidemi-

ological resilience of the system. As hog production grows denser and more spatially-consoli-

dated, it will become increasingly vital to consider how operational decisions made at the farm

level impinge upon the patterns of trade and contact that may become transmission vectors in

the next outbreak.

While single-phase systems may be falling out of favor for reasons of production efficiency,

our results suggest that industry practitioners, managers, and regulators would be wise to con-

sider the biosecurity advantages associated with farrow to finish farms when developing best

management practices to mitigate epidemiological risk. All else being equal, systems domi-

nated by single-phase producers should theoretically be able to withstand significantly higher

farm densities without a corresponding increase in the risk of large-scale disease percolation.

This is because adding a producer–producer interaction context can form bridges between

otherwise-isolated parts of a network, turning what could have been a short-term, localized

outbreak into an ongoing, systemic one. In hog-dense regions such as Iowa, Illinois, and

North Carolina—where disease is a constant threat—a turn back toward single-phase produc-

tion may offer a means to increase system-wide disease resilience, even while maintaining high

regional hog production capacity.
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