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Mitochondria are at the intersection of aging and fertility, with research efforts centered
largely on the role that these specialized organelles play in the relatively rapid decline in
oocyte quality that occurs as females approach reproductive senescence. In addition
to various roles in oocyte maturation, fertilization, and embryogenesis, mitochondria
are critical to granulosa cell function. Herein, we provide a review of the literature
pertaining to the role of mitochondria in granulosa cell function, with emphasis on how
mitochondrial aging in granulosa cells may impact reproduction in female mammals.
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INTRODUCTION

Mitochondria are bacterial in origin with an ancestral genome descended from
Alphaproteobacteria, which incorporated into the cytoplasm following endosymbiosis over
1.45 billion years ago (Gray, 2012). Subsequently, the internalized bacterial genome evolved into
the mitochondrial genome, and the ubiquitous organelle is now a critical participant in eukaryotic
cellular function. Mitochondria harbor their own genetic material (mtDNA), distinct from the
nuclear genome (nDNA), which in mammals is nearly exclusively inherited through the maternal
germline, with rare instances of heteroplasmy as a result of paternal inheritance reported (Mitchell,
1961; Huttemann et al., 2008; Perry et al., 2011; Luo et al., 2018; Annis et al., 2019). The circular
genome of the mitochondrion is small—in humans only approximately 16 kb—and encodes
for 37 genes, including 13 proteins associated with the subunits of the electron transport chain
(ETC), as well as 2 ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). The remaining
gene products associated with mitochondria, including those used for ETC function, are nuclear
encoded. Thus, 99% of the mitochondrial proteome emanates from the nucleus, highlighting
the degree in which mitochondrial: nuclear communication through antegrade and retrograde
signaling work in concert. Notably, while mitochondria are well characterized for their role
in cellular bioenergetics, these organelles are highly specialized based on tissue- and cell-type,
and perform additional functions based on specific cellular demands. These include critical
roles in apoptosis, thermogenesis, heme biosynthesis, detoxification, calcium signaling and ion
flux, and steroidogenesis, among others (Baughman et al., 2011; Friedman and Nunnari, 2014;
Woods, 2017).

In female mammals, mitochondrial function has been studied in detail in the granulosa and
theca cells of the developing follicle, as well as in the oocyte and developing embryo. During follicle
development, mitochondria within the oocyte undergo substantial numerical expansion through
mitochondrial biogenesis, while mechanisms for mitochondrial autophagy (e.g., mitophagy) are
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latent until the 4–8 cell stage of embryogenesis (Tsukamoto
et al., 2008; Boudoures et al., 2017). At the time of ovulation,
mitochondrial biogenesis ceases and does not resume until the
blastocyst stage, around the time of implantation. Thus, during
each cell division mitochondrial content and mtDNA copy
number are reduced on a per-cell basis, and must maintain a
critical threshold number (e.g., 40,000–50,000 copies of mtDNA)
for successful development to the blastocyst and subsequent
implantation (Wai et al., 2010). It has been estimated in oocytes
that on a per-mitochondrion basis each organelle harbors 1–2
copies of mtDNA (Piko and Matsumoto, 1976), although this
has yet to be empirically determined. Though slightly higher,
our analysis of single oocyte mitochondria collected from both
young (6-weeks old) and aged (12-months old) female mice
by single-molecule PCR (smPCR) is in accordance with this
estimation (2.27 ± 0.53 in young samples, 3.27 ± 1.13 in
aged samples; N.S) (Figure 1). However, we have observed
that smPCR of oocyte mtDNA produces negative results more
frequently than mitochondria of other cell types (data not
shown). Since we do not know the biological significance of this
(if any), mitochondrial samples that were determined to have
zero mtDNA copies in this experiment have been excluded from
analysis, potentially leading to artificial elevation of the values
reported in Figure 1.

Importantly, the endocrine function of the ovary is dependent
upon the ovarian follicle, which synchronizes with the
hypothalamic-pituitary-gonadal (HPG) axis (reviewed in
Truman et al., 2017). Localized primarily within the ovarian
cortex, ovarian follicles are considered the functional units of the
ovary and are comprised of an oocyte surrounded by granulosa
cells or, at the resting primordial phase, pre-granulosa cells, and
enclosed within an extracellular matrix (ECM)-rich basement
membrane. Research in rodent models has demonstrated that the
pre-granulosa cells enclosed within primordial follicles are largely
non-proliferative, although mitotically active pre-granulosa cells
can be observed within primordial follicles of the medulla
(Hirshfield and DeSanti, 1995). As follicles mature, granulosa
cells transition from a squamous single layer to a cuboidal
and multilaminar proliferative phenotype, and a theca layer is
recruited. Together, the somatic cells of the follicle respond to
circulating gonadotropins (i.e., FSHR and LHR) to generate
the sex steroids (i.e., estrogens, progestins, and androgens),
which is a mitochondrial-dependent process. At ovulation, the
granulosa cells immediately surrounding the oocyte, termed
cumulus granulosa cells, remain with the ovulated egg, while the
mural granulosa cells along with the theca cells are retained in
the ovary and functionally differentiate into the corpus luteum
(Smith et al., 1994). Thus, a growing follicle consists of four cell
types—an oocyte, mural granulosa cells, cumulus granulosa cells,
and the cells comprising the theca interna and theca externa.
Although both the theca and granulosa cells participate in
endocrine function, granulosa cells specifically work in concert
with the oocyte through bi-directional communication working
via paracrine factors as well as gap junction signaling, which
ultimately results in the growth and maturation of fertilization-
competent eggs (Eppig et al., 2002; Gittens et al., 2005; Kidder
and Vanderhyden, 2010; Wigglesworth et al., 2013).

Coincident with advancing maternal age, the number of
follicles within the ovary wanes, and concurrently the quantity
and quality of fertilization-competent eggs declines. The decline
in oocyte quality is, at least in part, attributed to impaired
mitochondrial function (reviewed in Woods et al., 2018). While
many endpoints have been used to demarcate egg quality
in the context of maternal aging, mitochondrial derangement
and abnormal chromosomal segregation are repeatedly and
persistently cited as instigators of developmental incompetence
and embryonic failure (Henderson and Edwards, 1968; Hook,
1981; Hassold and Chiu, 1985; Battaglia et al., 1996; Tarin et al.,
2001; Eichenlaub-Ritter et al., 2004; Hunt and Hassold, 2008; Pan
et al., 2008; Selesniemi et al., 2011; Faraci et al., 2018; Woods et al.,
2018). Highlighting the impact of mitochondrial function on the
reproductive potential of oocytes with age, interventions aimed at
modulating pathways associated with mitochondrial homeostasis
result in several benefits, including improved spindle assembly,
chromosomal segregation, and fertility outcomes (Tarin et al.,
2002; Bentov et al., 2011; Selesniemi et al., 2011; Woods and Tilly,
2015; Liu et al., 2018; Bertoldo et al., 2020).

In addition to the well-characterized role of mitochondrial
dysfunction with age on oocytes, the mitochondria of granulosa
cells also reflect age-associated abnormalities. Complications in
mitochondrial processes and function include a decrease in
mitochondrial DNA (mtDNA) copy number, modifications
in ultrastructure, increase in the frequency of mtDNA deletions
and mutations, altered mitochondrial membrane potential
(1ψm) and metabolic function, and a reduced capacity for
steroid hormone biosynthesis, among others (Tatone et al., 2011;
Liu et al., 2017; MacDonald et al., 2017; Sreerangaraja Urs
et al., 2020). Accordingly, it has been postulated that granulosa
cell mitochondria undergo changes with age that can impart
negatively upon oocyte quality and function. Similarly, it has
been proposed that granulosa cell metabolites and quantifiable
mitochondrial features can serve as molecular biomarkers for
oocyte competence (Tatone et al., 2011; Boucret et al., 2015;
Ogino et al., 2016; Desquiret-Dumas et al., 2017; Liu et al., 2017;
MacDonald et al., 2017; Sreerangaraja Urs et al., 2020). Herein,
we review the role of mitochondria in granulosa cells, with a focus
on how mitochondrial function and dynamics within granulosa,
cumulus, and luteal cells is altered with advancing maternal age.

MITOCHONDRIA AS EFFECTORS OF
GRANULOSA CELL FUNCTION

Of the six classes of steroid hormones, three are synthesized
in the ovary (Miller, 2013). In the two-cell model for
steroidogenesis progestins and androgens are synthesized in
the theca cells, and further converted to estrogens in the
adjacent granulosa cells, with granulosa cells also producing
progestins (Jamnongjit and Hammes, 2006). The process of
steroidogenesis is dependent upon steroidogenic cell-specific
mitochondria which harbor specialized enzymes required for
steroid hormone biosynthesis. The role of granulosa and
theca cells, as well as mitochondria, in steroid hormone
production has been well studied and summarized elsewhere
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(Jamnongjit and Hammes, 2006; Miller, 2013; Yazawa et al.,
2019). Specifically, in granulosa cells, mitochondria are critical
for two processes integral to steroid hormone production;
cholesterol import into mitochondria, and the enzymatic
conversion of cholesterol into steroid hormones. The transfer of
cholesterol from the cytoplasm into mitochondria is initialized
following gonadotropin stimulation, and is facilitated by Steroid
Acute Regulatory Protein (StAR), which interacts with a
protein assembly including the 18 KDa translocator protein
(TSPO) and the voltage-dependent anion channel (VDAC-
1) on the outer mitochondrial membrane (OMM) to direct
cholesterol to the inner mitochondrial membrane (IMM),
where it is converted to pregnenolone and then progesterone,
carried out by the mitochondrial enzymes CYP11a1 and
3-beta-hydroxysteroid dehydrogenase (HSD3β1), respectively
(Kiriakidou et al., 1996; Miller, 2013). Not surprisingly, alteration
of StAR and HSD3β1 protein levels have been linked to
infertility (Feuerstein et al., 2007; Hamel et al., 2008; Wathlet
et al., 2012; Sreerangaraja Urs et al., 2020). Furthermore, it is
the transport of cholesterol into the IMM that is considered
the rate-limiting step in steroidogenesis (Stocco, 2001), with
functional mitochondria maintaining 1ψm critical to this
process (Artemenko et al., 2001; Allen et al., 2006; Miller, 2013,
2017; Sreerangaraja Urs et al., 2020).

Intact 1ψm has been demonstrated to be requisite for
steroidogenesis in Leydig cells (Allen et al., 2006), and been
further associated with steroidogenic capacity of granulosa cells
in bovine models (Ostuni et al., 2018). The pivotal role of
mitochondria in modulation of steroidogenesis in granulosa cells
has also been linked to fertility outcomes in women. In a recent
study evaluating whether mitochondrial function is correlated
with IVF outcomes, mitochondrial properties were evaluated
in patient cohorts [e.g., endometriosis, ovarian endometrioma,
endometriosis without ovarian endometrioma, and polycystic
ovary syndrome (PCOS)], as compared to those undergoing IVF
for male-factor infertility (Sreerangaraja Urs et al., 2020). Using
flow cytometry for the quantitative evaluation of markers for
mitochondrial function and quality in cumulus cells, including
1ψm and mitochondrial mass, the authors determined that
mitochondrial dysfunction is associated with a decrease in
estradiol (E2), and is further linked to a global decline in fertility,
including oocyte maturation and fertilization rates. Specifically,
increased 1ψm in cumulus cells was positively correlated with
E2 content, whereas reduced mitochondrial mass was associated
with infertility. These findings are consistent with previous work
demonstrating marked reductions in 1ψm in granulosa cells
from women with PCOS, and, to a lesser extent, endometriosis
(Karuputhula et al., 2013).

The reduction of steroid hormone biosynthesis with age is
largely attributed to a decline in the number of ovarian follicles,
and thereby a reduction in functional steroid-producing cells. It
is no surprise then, that hallmarks associated with reproductive
aging and senescence in women are those that are measurable
based on a decline in granulosa cell activity, such as a decrease in
circulating levels of anti-Müllerian hormone (AMH; produced by
immature granulosa cells), reduced levels of estrogen (produced
by mature granulosa cells), and elevated circulating levels of FSH

(due to a lack of inhibin production by granulosa cells). These
well-established clinical determinants of reproductive function
have long-solidified the significant role of granulosa cells as
indicators of the aging of the female reproductive tract. As a
number of mitochondrial deficits are known to occur with age, it
is possible that vast changes in mitochondrial properties may lead
to age-associated granulosa cell dysfunction, including abnormal
steroidogenesis. For example, in female patients undergoing
IVF, 1ψm is significantly reduced in patients ≥38 years of
age (Liu et al., 2017), although an earlier study showed no
difference with age (Muhammad et al., 2009). This discrepancy
could potentially be attributed to the differences in methodology
employed with the later study using a combination of quantitative
endpoints, such as flow-cytometry and quantitative microscopy,
and the earlier study relying on a qualitative assessment based
on fluorescence imaging. Nonetheless, additional alterations at
the level of the mitochondria discussed below may also impact
the ability of aged granulosa cells to synthesize steroid hormones.
Further work directly linking mitochondrial abnormalities
specifically with altered steroidogenesis is needed.

BI-DIRECTIONAL COMMUNICATION,
ROLE FOR GAP JUNCTIONS IN
FOLLICULAR METABOLISM

Follicle growth and development is dependent upon bi-
directional communication between the oocyte and the
surrounding granulosa cells, which occurs through paracrine
and juxtracrine signaling, the latter of which is maintained
via gap junctions (Eppig, 1979; Lopez-Schier and St Johnston,
2001; Gittens et al., 2005; Su et al., 2008; Saadeldin et al.,
2015). Gap junctions are oligomeric structures comprised of
connexins which enable direct intercellular communication.
First described by Anderson and Albertini (1976), gap junctions
between the granulosa cells and developing oocytes were
visualized by lanthanum tracer and freeze-fracture electron
microscopy (EM). Gap junction-mediated communication
between adjacent granulosa cells is modulated by connexin-43
(Cx43) gap junctions, whereas gap junctions between the
granulosa cells and the oocyte are homotypic for connexin-
37 (Cx37), with Cx37 gap junctions creating a syncytial
network between the two cell types (Kidder and Mhawi, 2002;
Best et al., 2015). The oocyte has a low capacity for glucose
metabolism, due in part to low phosphofructokinase activity
(Cetica et al., 2002; Dumesic et al., 2015), while granulosa
cells are largely glycolytic and supply pyruvate, along with
amino acids and cholesterol, to the oocyte through Cx37 gap
junctions (Anderson and Albertini, 1976; Gilula et al., 1978;
Bornslaeger and Schultz, 1985). The mitochondria within the
oocyte then convert the granulosa cell-derived pyruvate to
acetyl CoA, which then enters the tricarboxylic acid (TCA)
cycle and ETC to synthesize ATP (Sutton-McDowall et al.,
2010). In a regulatory loop, the oocyte secretes paracrine factors,
including Bone Morphogenetic Protein 15 (BMP15), Growth and
Differentiation Factor 9 (GDF9), and Fibroblast Growth Factor
8 (FGF8), which coordinate to promote glycolysis in granulosa
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FIGURE 1 | Single-molecule PCR (smPCR) analysis of oocyte mitochondria
collected from 6-week-old (young) and 12-month-old (aged) C57BL/6 mice
for the determination of mtDNA copy number on a per-organelle basis. The
average mtDNA copy number of the young mouse oocyte mitochondria was
2.27 (SEM = 0.53; n = 22), and of aged mice was 3.27 (SEM = 1.13, n = 27).

cells (Sugiura et al., 2007). In addition to resource sharing and
maintenance of the oocyte–granulosa regulatory loop, diffusion
of cGMP through Cx37 gap junctions of blocks the resumption
of meiosis in immature follicles (Pincus and Enzmann, 1935;
Downs and Eppig, 1987; Tornell et al., 1991; Carabatsos et al.,
2000; Norris et al., 2009). Furthermore, it has recently been
demonstrated using porcine cumulus-oocyte-complexes (COCs)
that cumulus cells can utilize Cx37 gap junctions to deliver ATP
to oocytes (Kansaku et al., 2017).

Gap junction communication between the oocyte and
granulosa cells is made possible through transzonal projections
(TZPs), which originate as filopodia from granulosa cells and
process into the zona pellucida surrounding the oocyte (El-
Hayek et al., 2018). An electron micrograph of the granulosa
cell-oocyte interface where TZPs are found has been included
for reference (Figure 2). TZPs are not restricted to the
granulosa cells immediately surrounding the oocyte, as imaging
demonstrates that granulosa cells in distal layers extend long,
actin-rich filaments to the oocyte (El-Hayek et al., 2018).
Strikingly, recent analysis of Cx43 and Cx37 gap junctions
on high pressure-frozen ovarian tissue using three-dimensional
EM and immunogold detection has revealed gap junction
internalization via connexosomes (Norris, 2021; Norris and
Terasaki, 2021). Moreover, within Cx43 connexosomes mature
organelles, including mitochondria and endosomes are visibly

FIGURE 2 | Electron micrograph of an ovarian follicle at the oocyte-granulosa
cell interface, with the oocyte identified using a black asterisk, and two
granulosa cells identified with white arrows. Scale bar represents 2 µm.

observable, indicating cell-to-cell movement of organelles within
the granulosa cell layer (Norris, 2021). Mitochondria can also
be observed in deeply invaginated TZPs with Cx37-labeled
gap junctions protruding into oocytes, implying the potential
for mitochondrial transfer between granulosa cells and oocytes
(Norris and Terasaki, 2021). Regulation of TZP formation by
granulosa cells is facilitated by GDF9, one of the most well-
characterized paracrine factors generated by oocytes. GDF9,
signaling through the SMAD signaling pathway, upregulates the
TZP-associated genes fascin homolog 1 (Fscn1), an actin bundling
protein and myosin X (Myo10), an actin-based motor protein,
both known to induce formation of filopodia (Bohil et al., 2006;
Hashimoto et al., 2011; El-Hayek et al., 2018; Baena and Terasaki,
2019). With age, oocyte GDF9 expression declines (Li et al., 2014;
Park et al., 2020; Gong et al., 2021) along with the expression
of Fscn1 and Myo10, and the numbers of TZPs are reduced
by approximately 40%, resulting in a marked decrease in gap
junctional communication between the oocyte and the granulosa
cells (El-Hayek et al., 2018).

Recent work demonstrates a role for the OMM GTPase,
mitofusin1 (MFN1) in regulation of follicle development and
maintenance of the follicle reserve, which occurs, at least in part,
though maintaining Cx43 and Cx37 gap junctions (Zhang et al.,
2019). In mice null for Mfn (Mfn−/−), mRNA expression of
both Cx37 and Cx43 were significantly decreased in oocytes and
granulosa cells. A combination of both fluorescence microscopy
and EM revealed a significant reduction in gap junctions and
transzonal projections (TZPs), which, along with a reduction in
expression of E-cadherin and N-cadherin, significantly impaired
communication between the granulosa cells and the oocyte,
inhibiting growth past the primary stage of development.
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FIGURE 3 | Schematic overview of key mitochondrial characteristics that are negatively impacted by aging. These include mtDNA, mitochondrial ultrastructure and
integrity, metabolism, and mitochondrial dynamics.

Notably, Mfn−/− mice showed an accumulation of ceramide, a
membrane sphingolipid which accumulates on the OMM and
is known to induce germ cell apoptosis, within oocytes (Perez
et al., 2005). In aged mice, ceramide is trafficked through Cx37
gap junctions and plays a role in age-associated increased germ
cell death through BCL2 Associated X, Apoptosis Regulator
(Bax)-mediated apoptosis (Perez et al., 2005), a proapoptotic
member of the B-cell lymphoma (Bcl-2) family of pro- and anti-
apoptotic factors associated with mitochondrial apoptosis (Tilly
et al., 1997). Importantly, treatment with myriocin to inhibit de
novo ceramide synthesis in Mfn−/− mice improved the growth of
secondary follicles and formation of antral follicles, leading to a
partial rescue of the reproductive phenotype (Zhang et al., 2019),
indicating that in addition to mitochondrial-specific effects on
gap junction communication, metabolic by-products associated
with altered mitochondrial function may be important targets to
improve oocyte quality.

As the oocyte is considered the orchestrator of oocyte–
granulosa cell communication, guiding the granulosa cells to
produce factors to fulfill its needs throughout growth and
folliculogenesis, it is perplexing why oocyte originating signals to
sustain TZPs would decline. Perhaps this is to mitigate damage
from the aging somatic environment, as aging granulosa cells
may also have an impact on the decline in oocyte quality.
Previous studies have collectively demonstrated that removal of
the granulosa cell layer in aged female mice can have a positive
impact on oocyte health and function. For example, Perez
and Tilly demonstrated that removal of the granulosa/cumulus
cell layer from eggs significantly reduced rates of apoptosis,
essentially resulting in oocytes with a “youthful” phenotype
(Perez and Tilly, 1997). How oocytes might be negatively

influenced by the surrounding soma may involve circulating
factors, the influence of an aging ovarian environment, as well
as granulosa cells themselves.

THE IMPACT OF AGE ON GRANULOSA
CELL MITOCHONDRIA

Many of the hallmarks associated with aging mitochondria in
the soma impact granulosa cells in women of advance maternal
age or in animal models for ovarian aging. These include
abnormalities in mitochondrial ultrastructure and integrity,
metabolism, dynamics, and mtDNA mutations and deletions
(Figure 3). Such features appear to be a function of age, and
are not dependent upon follicle development, as abnormal
mitochondrial ultrastructure can be found in even the resting
follicles of aged women. An analysis of ovarian tissue obtained
from women of advanced maternal age tellingly revealed a
high frequency of ruptured mitochondrial membranes in the
granulosa cells when compared to a younger cohort, indicative
of increased mitochondrial destruction with age (de Bruin et al.,
2004). As follicles grow and the granulosa cells expand, these
abnormal mitochondrial features are exacerbated. An analysis
of luteinizing granulosa cells obtained from follicular aspirates
revealed destruction of mitochondrial membrane integrity,
lack of cristae density, and vacuolization of the cristae and
mitochondrial matrix with age (Tatone et al., 2006), while those
obtained from a younger patient cohort had mitochondrial
cristae with a tubular phenotype, which is notably associated
with high steroidogenic activity (Rotmensch et al., 1986;
Tatone et al., 2006).
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The accrual of atypical mitochondrial ultrastructure in aged
granulosa cells as they progress through follicle development
may also be attributed to increasing reactive oxygen species
(ROS), detectable in follicular fluid samples. With age, key
genes associated with the neutralization of ROS, including
superoxide dismutase 1 (SOD1), SOD2, and catalase, are reduced,
indicative of impaired ROS scavenging activity. This has
important implications, as SOD1 and 2 expression is elevated in
response to oxidative stress and inflammation, both of which are
associated with the ovulatory response (Espey, 1980), with anti-
inflammatory medications reported to inhibit ovulation (Espey
et al., 1982). Moreover, ovulation itself has been shown to
be dependent upon LH-induced ROS production, with H2O2
capable of mimicking LH-induced cumulus expansion, and
ablation of ROS blocking genes critical for ovulation (Shkolnik
et al., 2011). It has been noted that the expression pattern
of SOD1 is identical to that of HSD3β1 (Sugino, 2005), and
that dehydrogenation of pregnenolone to form progesterone
may be dependent upon SOD1 (Agrawal and Laloraya, 1977).
In Sod1-deficient female mice, levels of progesterone fall far
below those of WT mice, even following superovulation (Noda
et al., 2012). Furthermore, superoxide significantly impairs 1ψm
in the absence of SOD1, resulting in severe mitochondrial
damage (Aquilano et al., 2006), and is consistent with the
reduced 1ψm observed in women of advanced maternal age
(Liu et al., 2017). Therefore, the declining levels of ROS
scavengers with age may have profound impacts on granulosa
cell function, from accelerated damage due to ROS to reduced
steroidogenic capacity.

Additionally, the link between accumulating ROS and mtDNA
damage, deletions, and mutations as they occur with age is well
known (Loeb et al., 2005). It has been posited that mtDNA
content of cumulus cells may be a non-invasive prognostic
for embryo quality (Diez-Juan et al., 2015; Fragouli et al.,
2015; Desquiret-Dumas et al., 2017), although this has been
experimentally questioned (Victor et al., 2017). More recent
evidence based on quantitative PCR to evaluate the ratio of
mtDNA:nDNA indicates that mtDNA content of cumulus cells is
negatively correlated with age, and further supports the finding
that mtDNA content of cumulus cells may be considered as a
biomarker for IVF outcomes (Yang et al., 2021). In addition to
a decline in mtDNA copy number with age, the propensity for

granulosa cells to acquire mutations and deletions with age has
been examined. In a study evaluating the so called “common
deletion” which is a 4,977 bp deletion of mitochondrial DNA
(1mtDNA4977), with an early study concluded that the frequency
of 1mtDNA4977 in granulosa increases with age (Seifer et al.,
2002). However, more recent work with a larger patient cohort
suggests that age does not appear to be a factor in the frequency
of this deletion in mural granulosa or cumulus cells (Au et al.,
2005; Chan et al., 2006). The latter conclusion has been further
supported, with recent evidence also indicating that while there
does not appear to be a correlation between 1mtDNA4977 and
age, 1mtDNA4977 is associated with granulosa cell apoptosis
(Au et al., 2005). Advances in sequencing platforms, such as
Long-molecule UMI-driven Consensus Sequencing (LUCS), will
enable more detailed analysis of the mitochondrial mutations and
damage that might occur with age (Annis et al., 2020).

CONCLUSION

Granulosa cells are critical for ovarian function, including steroid
hormone biosynthesis and as cooperative partners for oocyte
growth and maturation. Therefore, it is not surprising that there
has been an interest in evaluating the mitochondria of granulosa
and cumulus cells as biomarkers for ovarian function, including
oocyte and embryo quality. Intriguingly, recent evidence suggests
cell-free mtDNA is released into the follicular fluid, presumably
by granulosa or cumulus cells, and that this may potentially
be used as a non-invasive biomarker for oocyte quality (Huo
et al., 2020). Additional work on mitochondrial properties,
dynamics, and function will likely reveal new and important
details on the biological significance of these findings. Moreover,
as technological advances in DNA sequencing and metabolomics
continue to improve, further evaluation of how granulosa cells
may act as effectors, positive and negative, of oocyte function
can be addressed.
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