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Abstract

Cranial radiation is important for treating both primary brain tumors and brain metastases. 

A potential delayed side effect of cranial radiation is neurocognitive function decline. Early 

detection of CNS injury might prevent further neuronal damage. Extracellular vesicles (EVs) 

have emerged as a potential diagnostic tool because of their unique membranous characteristics 

and cargos. We investigated whether EVs can be an early indicator of CNS injury by giving 

C57BJ/6 mice 10 Gy cranial IR. EVs were isolated from sera to quantify: 1) number of EVs 

using nanoparticle tracking analysis (NTA); 2) Glial fibrillary acidic protein (GFAP), an astrocyte 

marker; and 3) protein-bound 4-hydroxy-2-nonenal (HNE) adducts, an oxidative damage marker. 

Brain tissues were prepared for immunohistochemistry staining and protein immunoblotting. The 

results demonstrate: 1) increased GFAP levels (p < 0.05) in EVs, but not brain tissue, in the IR 

group; and 2) increased HNE-bound protein adduction levels (p < 0.05). The results support using 

EVs as an early indicator of cancer therapy-induced neuronal injury.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, United 
States. daret.stclair@uky.edu (D.K. St. Clair).
1Co-first authors.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.brainres.2022.147840.

HHS Public Access
Author manuscript
Brain Res. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Brain Res. 2022 May 01; 1782: 147840. doi:10.1016/j.brainres.2022.147840.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

Radiation; Extracellular vesicles; Oxidative stress; Lipid peroxidation

1. Introduction

Radiation therapy (RT) is a well-established and commonly used treatment for cancer 

patients because it effectively causes cancer cell death by targeting specific areas and 

minimizes undesired side effects in non-target tissues (Hall, 1973). However, despite 

treatment advances, damage to normal cells can cause serious, negative consequences; 

particularly, patients receiving cranial radiation can result in cognitive impairment (CI) 

as damage to healthy neurons is caused by cranial radiation, which negatively impacts 

patient quality- of- life. Therapy-induced CI causes alterations in learning, memory, 

behavior, and mood (Vitali et al., 2017). Neuronal damage is detected by neuroimaging 

techniques and neuropsychological evaluations (Cheung et al., 2016; Brinkman et al., 2018). 

Neuroimaging techniques, such as computed tomography, positron emission tomography, 

magnetic resonance imaging, and functional MRIs, detect structural and functional integrity 

of the brain, do not detect cellular level damage. Once neurobehavioral consequences 

resulting from cancer therapy have been detected, the efficacy of interventions declines 

(Cheung et al., 2016). As cognition remains altered long after the cessation of RT, the 

development of early indicators of neuronal damage would provide intervention capability.

The unique characteristics of extracellular vesicles (EVs) make them useful clinical tools: 

they are circulating, membrane-bound organelles released by nearly every cell in the body 

and contain molecular cargo that are protected from enzymatic degradation by a lipid bilayer 

(van Niel et al., 2018; EL Andaloussi et al., 2013). While the roles of EVs in normal 

and pathophysiological diseases have been extensively studied, the clinical use of EVs 

has only recently been appreciated (van Niel et al., 2018; Shah et al., 2018; Melo et al., 

2014; Shao et al., 2012). We have demonstrated their potential as an earlier detector of 

cardiomyocyte damage following doxorubicin (DOX) treatment than the current standard 

method of measuring troponin levels (Vader et al., 2016; Yarana et al., 2018).

Ionizing radiation (IR) generates ROS, leading to increased oxidative damage (Hall, 1973). 

Under normal physiological conditions, reduction–oxidation (redox) regulation is tightly 

controlled by coordinating endogenous antioxidant systems (Baulch et al., 2016). The 

hydroxyl radical (•OH) can attack polyunsaturated fatty acids and initiate lipid peroxidation, 

making it an especially damaging free radical that IR generates (Dalleau et al., 2013). 

4-hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation and can 

covalently adduct to histidine, cysteine, or lysine residues of proteins through a Michael 

addition reaction or can form Schiff bases with the N-termini of peptide chains and 

the ε-amino groups of lysine residues of proteins (Dalleau et al., 2013; Butterfield and 

Halliwell, 2019). HNE adduction can cause protein misfolding and modify protein activity 

(Subramaniam et al., 1997).

Studies have demonstrated damage to the brain microenvironment caused by 10 Gy cranial 

radiation (Tomé et al., 2015; Baulch et al., 2016). Tomé et al., reported spatial memory 
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deficits in mice receiving whole brain radiation. Decreased neuronal cell proliferation and 

neurogenesis were observed in mice euthanized 48 h after receiving radiation, where these 

observations were further augmented in mice euthanized 8 days after radiation, establishing 

that consequences from cranial radiation are more difficult to detect immediately following 

the radiation compared to later (Tomé et al., 2015). We used the same animal model to 

determine the potential use of EVs as an early indicator of neuronal injury induced by 

cranial radiation. We analyzed oxidative stress and neuronal cell markers within EVs and 

compared them to brain tissue, identifying HNE-adducted proteins and glial fibrillary acidic 

proteins (GFAP) as EVs’ cargos that increased early following cranial radiation. This study 

provides insights into biochemical markers of astrocyte activation and oxidative damage 

following cranial radiation and reveals the potential use of EVs as an early indicator of brain 

injury.

2. Results

2.1. Cranial radiation causes significant weight loss and increased levels of serum 
proteins

To monitor general radiation effects, we determined body weight, serum protein 

concentration, and serum HNE levels of male C57BJ/6 mice, which were given 10 Gy 

cranial radiation, the dose reported to cause cognitive impairment in mice and replicates 

effects seen in human patients who receive whole brain radiation treatment (Tomé et al., 

2015; Baulch et al., 2016). Decrease in body weight of mice after radiation was statistically 

significant (p < 0.05) (Fig. 1A). Increase in serum protein concentration in the IR group was 

statistically significant compared to sham group (p < 0.05, Fig. 1B). No differences were 

observed in the amount of HNE- adducted proteins in the serum of the IR mice compared to 

the sham group (p = 0.95, Fig. 1C).

2.2. Radiation caused no significant differences in GFAP or HNE in brain tissue

Mice brains were removed and separated sagitally. The brain half that was to be 

homogenized was first separated into the hippocampus and cortex for quantification of 

GFAP. The two groups showed no significant difference in the amount of GFAP in brain 

tissue lysate (Fig. 2A). Each tissue slice of the hippocampus, which plays a role in new 

memory formation, was used for quantification, which considered brain tissue heterogeneity. 

The two groups showed no significant statistical difference in IHC staining of HNE (Fig. 

2B). IHC measurement of GFAP in brain tissue was not significantly different (Fig. 2C).

2.3. Radiation- induced differences in astrocyte marker and oxidative stress are 
detectable in EVs

EVs isolated from mouse sera were evaluated for protein concentration differences (Fig. 

3A) and for the number of EVs particles released by the two groups, utilizing nanoparticle 

tracking analysis (NTA) (Fig. 3B); the two groups showed no significant differences in 

EVs protein concentration or in the number of EVs particles observed. However, when 

the comparison of vesicle counts between the IR versus sham groups was adjusted for 

vesicle size, there was a significant difference between the two groups (p < 0.05); 

specifically, the difference between groups is evident and dependent according to vesicle 
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size (Supplementary Fig. A) which is corroborated by seeing a significant interaction 

term (p < 0.01) between group and vesicle size in the analysis model. To evaluate the 

amount of oxidatively modified proteins in the EVs, the EVs were lysed and measured for 

HNE adductions by HNE immunoblotting. Unlike both mice brain tissue and serum, HNE 

adducted proteins showed a statistically significant increase in the EVs isolated from the 

radiation-treated mice compared to the control (Fig. 3C, p < 0.05). A significant increase 

was consistently detected in the amount of GFAP in EVs from the IR mice compared to the 

sham group (Fig. 3D, p < 0.01).

3. Discussion

Cancer therapy-induced cognitive impairment is a serious side effect seen in cancer 

survivors. Neuroimaging and neuropsychological evaluations, the standard methods 

currently used to detect brain alterations associated with neurocognition decline, are limited 

and do not detect neuronal damage early enough for intervention to occur that would 

mitigate consequences (Cheung et al., 2016; Brinkman et al., 2018). In this study, we 

assessed whether markers of brain injury could be detected earlier in serum EVs than in 

brain tissue, utilizing radiation exposure as a model. Our results demonstrate that within 48 

h following radiation treatment, radiation-induced brain injury, indicated by elevated levels 

of HNE-adducted proteins and radiation-induced an increase in GFAP, are detectable in 

EVs. Other potential markers of neuronal damage (NSE) and neuronal genesis (BDNF) were 

quantified in both homogenized brain tissue and EV lysates, but resulted in no statistical 

significance between the two groups (Supplementary Fig. B–E). This work suggests EVs are 

an early indicator of alterations to the brain microenvironment following cranial radiation. 

The results are consistent with our previous studies showing the levels of HNE-adducted 

proteins in mitochondrial lysates of animals treated with doxorubicin are increased nearly 

two-fold (Yarana et al., 2018). Importantly, this method provided earlier detection than the 

standard method of measuring cardiac troponin levels does (Dalleau et al., 2013). Therefore, 

our findings support a potential role of EVs as an early indicator of damage to the brain 

following toxic insults to the brain.

While we did not detect significant changes in biochemical markers in brain lysates 

or immunohistochemical analysis of brain tissues, we observed a trend of increase in 

those markers (Fig. 2). These observations are also consistent with previous studies that 

demonstrate how changes in neuronal generation and microglia activation were minor at 

48 h after radiation treatment (Tomé et al., 2015). One potential mechanism leading to 

this observed difference between the increase in GFAP measured in the EVs and GFAP 

in the brain tissue could be a compensatory mechanism to dispose of oxidatively modified 

proteins due to the cranial radiation. It has been shown that EVs are being used to remove 

oxidatively modified proteins from the brain (Zhang, 2018). Thus, it is possible that the 

observed increase in GFAP in EVs but not in the brain tissue between the two groups is due, 

in part, to increased removal of oxidatively modified proteins by EVs.

The presence of HNE-adducted proteins in EV lysates also implicates a mechanism of tissue 

injury because HNE is a highly reactive end product of lipid peroxidation. The consequences 

of oxidative stress, and notably HNE, on the progression of neurodegenerative disorders 
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have been extensively reviewed (Lovell and Markesbery, 2007; Sultana et al., 2010; Perluigi 

et al., 2012; Di Domenico et al., 2017). The role of oxidative stress, indicated by the level of 

HNE, on declining neurocognition substantiates that EVs containing HNE-adducted proteins 

are valuable indicators of tissue damage.

GFAP, a marker of reactive astrocytes, which is activated by injury to the brain and has 

been shown to be increased in a variety of CNS disorders and neurodegenerative diseases, 

such as Alzheimer’s disease (Chatterjee et al., 2021; Middeldorp and Hol, 2011), was also 

significantly increased. Finding GFAP increased in EVs but not in brain tissue further 

corroborates the benefit of using EVs as an early and more sensitive indicator than tissue 

histology of potential progression of neuro-degeneration. The increase of GFAP and HNE 

observed in the EVs, but not detectable in either mice brain tissue or serum, may be a result 

of the EVs protecting their molecular content from proteolytic degradation prior to EVs 

release or while in circulation. Because HNE is highly reactive, exposure to other cellular 

components in circulation may provide more challenges to quantifying HNE-adducted 

proteins in serum compared to EVs, where HNE-adducted proteins remain stable.

We and others have previously demonstrated the role of oxidative stress and inflammation in 

neurodegenerative diseases and cancer therapy-induced cognitive impairment (Keeney et al., 

2018). Possibly, the observed increase in HNE-adducted proteins in EVs could potentially 

contribute to inflammation. Inflammatory cytokines such as TNF-α have been shown to 

induce reactive astrocytes, which could cause the increased expression of GFAP observed 

in this study (Hyvarinen, 2019; Tangpong, 2006; Tangpong et al., 2007; Chen et al., 2007; 

Aluise, 2011; Sompol et al., 2008). However, extensive cause/effect relationship studies will 

be needed to support this proposed link.

In summary, the present study demonstrates the benefit of using EVs as an early marker of 

brain damage following treatment with a dose of cranial radiation that has been documented 

to cause long-term neuro-anatomical alterations. Our results highlight the significance of 

changes in the markers of oxidative stress and glial cell activation observed in EVs prior 

to structural changes in brain tissue. Importantly, these tests can be performed using 

small amounts of available mice serum, suggesting the study is applicable to situations 

where only small amounts of blood are available. A limitation of the study is GFAP is 

not only present in brain cells but is also expressed in other tissues, particularly, cancer 

tissues. However, since the animals used did not have any cancer, this limitation does not 

detract from the observation that EV cargos are an early indicator of alterations to the 

brain microenvironment and are potential indicators of cancer therapy-induced cognitive 

impairment.

4. Experimental procedure

4.1. Animals and treatment

Male C57BL/6J mice 10–12 weeks old and 25–28 g body weight were housed at the 

University of Kentucky (UK), following the American Veterinary Medical Association 

Guidelines for the Care and Use of Laboratory Animals; UK’s Institutional Animal Care 

and Use Committee approved their use. Ketamine at 100 mg/ml (Henry Schein, Inc.) with 
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Xylazine at 20 mg/ml (Akorn, Inc.) diluted in saline were used as anesthesia prior to cranial 

radiation treatment. Irradiated mice received one dose of 10 Gray cranial radiation using the 

X-ray irradiator, X-RAD 225XL, Precision X-ray (PXi), Inc. (225 kVp peak voltage, 0.3 

mm Cu filtration, and 0.92 mm Cu beam quality). The irradiator was calibrated with in-air 

method following American Association of Physicist in Medicine TG-61 protocol (Ma et al., 

2001) with an ADCL calibrated A1SL ion chamber (Standard Imaging Inc.) (Chen et al., 

2021). Radiation field was set at 1.41 by 1.2 cm with field light guidance to cover the mice 

brain. Source to skin distance of mice on panel was 40 cm. The 10 Gy dose was prescribed 

at 5 mm depth. A Monte Carlo simulation assessed the effect of attenuation and backscatter 

from the mice and panel. Irradiation varies from 390 to 398 sec as the dose rate fluctuates, 

but dose delivered stays constant (<0.1%). Control mice were also anesthetized. Mice were 

returned to the UK Animal Care Facility following radiation and body weight was measured 

at 24 h and 48 h. A total of 22 sham mice and 23 IR mice were treated. Blood samples were 

collected via left ventricle puncture and mice brains were isolated and separated via sagittal 

dissection.

4.2. Blood samples and isolation of EVs

Isolated blood was allowed to clot at room temperature for 30 min and then was centrifuged 

at 1,300 g for 15 min to separate the serum, which was then separated into aliquots and 

stored at −80 °C. EVs were isolated from serum using SmartSEC™ HT EV Isolation 

System for Serum & Plasma (System Biosciences), which isolates EVs into two different 

fractions (fractions 1 and 2) using size exclusion chromatography. From the total number 

of mice used during radiation, a total of 15 sham mice and 16 IR mice were selected for 

EV isolation. Fraction 2 was used for protein immunoblotting with Jess Protein Simple 

technology (San Jose, CA, USA) and nanoparticle tracking analysis (NTA); fraction 1 was 

used for HNE protein adduction measurement. BCA assay from ThermoFisher measured 

protein concentration.

4.3. Nanoparticle tracking analysis

EVs particle size distribution was determined by NanoSight NS300 (Malvern Panalytical, 

UK). Fraction 2 of SmartSEC HT isolated EVs were diluted with PBS to achieve particle 

range of 20–100 particles per frame on an instrument. Specimens were analyzed at 25 °C 

at camera level 15 and detection threshold level at 4. Five 60-second videos were recorded 

for each specimen. Each video was analyzed with NTA 3.2 software (Malvern, UK) and data 

were recorded and analyzed.

4.4. HNE adducted protein measurement

4-hydroxy-2-nonenal protein adductions in mouse serum and EVs isolated from the serum 

were measured using standardized immunoblots from the Redox Metabolism Shared 

Resource Facility of the UK Markey Cancer Center. The facility utilizes the previously 

documented slot-blot method to quantify the number of HNE protein adducts (Aluise et al., 

2009). EVs from fraction 1 were lysed with radio-immunoprecipitation assay buffer and 

protein concentration was measured by BCA assay kit (ThermoFisher). Bands from HNE 

immunoblotting were documented with Adobe Photoshop and quantified using Scion Image. 

Band intensities for HNE protein adducts were normalized utilizing sample standards across 
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multiple blots to compare detected intensities. Samples from 14 mice in each group were 

used for serum and EV HNE- adducted proteins.

4.5. Protein immunoblotting

EVs or homogenized brain tissue samples were lysed with RIPA buffer and separated 

by capillary electrophoresis using Jess by Protein Simple © technology (San Jose, CA, 

USA). The primary GFAP antibody was purchased from Aviva Systems (OAEB01041, 1:20 

dilution). The anti-goat secondary antibody used was supplied by Protein Simple. Compass 

Software analyzed the data. Protein normalization plates were used for EVs samples, and 

total area under the curve for each peak detected by the responding protein antibody was 

normalized by the total protein area.

4.6. Immunohistochemistry

Half of the brain was fixed in 4% paraformaldehyde in PBS for 48 h and then in 30% 

sucrose for staining by the Biospecimen Procurement and Translational Pathology Shared 

Resource Facility of the Markey Cancer Center. Immunohistochemistry (IHC) staining 

for GFAP was performed using the Ventana Discovery Ultra Autostainer. The antigen 

retrieval was set at “cc1 standard” and incubated with the primary antibody (1:2000, Abcam, 

ab7260) at 37 °C for 1 h prior to detection by Ventana OmniMap HRP and Ventana DAB, 

according to manufacturer’s recommendations. Ventana Discovery Ultra Autostainer also 

performed HNE IHC staining, at a “cc2 mild” setting and a horse serum blocking step. The 

primary antibody for HNE (1:100, Abcam, ab46545) was incubated at room temperature 

for 1 h prior to detection by Ventana OmniMap HRP and Ventana DAB, according 

to manufacturer’s recommendations. Following IHC staining, slides were uploaded onto 

Aperio eSlide Manager and then quantified with HALO software (version 3.2) by Indica 

Labs. The area quantification algorithm v2.1.7 was used to detect positive staining of the 

markers indicated; quantity of positive staining in the sham and IR groups was assessed. 5 

representative mice from both sham and IR groups were utilized for IHC staining.

4.7. Statistical analysis

Descriptive statistics, including means and standard deviation, that were calculated for each 

group are represented in bar graphs. Pairwise comparisons of sham vs. IR were performed 

using two-sample t-test for several quantitative endpoints, including EVs protein levels, EVs 

particle size, AUC of several proteins, HNE, IHC levels. Body weight measurements were 

repeatedly summarized and compared using linear mixed models to account for repeated 

measurements of mice. A nonlinear mixed model was employed to determine the association 

of vesicle count migration as a function of vesicle diameter, treatment group (IR vs. sham) 

and interaction between these two factors. The vesicle count was modeled as a negative 

binomial distribution allowing for random effects of intercept across mouse blood samples 

and separate covariance specifications for each treatment group. Validity of assumptions and 

equality of variance of parametric tests and models were tested; data were log transformed 

as necessary. Statistical analyses were performed using SAS version 9.4.
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Fig. 1. 
Different changes in mice weight and protein concentration were observed in the sham 

and IR group. (A) Significant change was observed in the mice that received the cranial 

radiation compared to the sham group (p < 0.05). (B) Serum protein levels were elevated in 

the IR group (red dots) compared to the sham group (green dots) as measured by the BCA 

assay. (C) The levels of HNE adducted proteins were measured and the differences were not 

significant in the two groups.

Sukati et al. Page 11

Brain Res. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
IHC staining of brain tissue and brain tissue lysates revealed no observable changes. Probing 

for GFAP in the brain tissue lysate (A) also revealed no significant differences. Additionally, 

quantification of IHC staining of HNE (B) and GFAP (C) in the brain tissue resulted in no 

significant differences.
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Fig. 3. 
Elevated levels of HNE and astrocyte activation were observed in the EVs obtained from 

the IR mice. The protein concentration (A) and the number of EVs particles (B) appeared to 

be elevated in the IR mice compared to the sham group, though neither reached statistical 

significance (p = 0.059 and p = 0.282, respectively). However, EVs lysates isolated from the 

IR mice had an increase in HNE adducted proteins (C, p < 0.05) and GFAP (D, p < 0.05) 

compared to the sham group.
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