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Purpose: Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow 
reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, 
its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME.
Methods: A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac 
tissues of the two groups were sequenced and mitochondrial functions were assessed.
Results: Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes 
(DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated 
and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial 
electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked 
reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was 
much higher in CME mice than in controls. Protein–protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that 
eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas 
Aldh18a1 and Hspa5 were up-regulated.
Conclusion: Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, 
and mitochondria-related DEGs may be potential therapeutic targets for CME.
Keywords: CME, rat model, RNA-Sequence, DEGs, OXPHOS, energy metabolism

Introduction
Coronary microembolization (CME) is a clinical event caused by the rupture of an atherosclerotic plaque in patients with 
acute coronary syndrome (ACS) and serves as a risk factor for patients undergoing percutaneous coronary intervention 
(PCI).1,2 CME can lead to the no-reflow (NR) phenomenon and subsequent adverse cardiac events after PCI, which 
increases the occurrence of acute myocardial infarction (AMI).3 Moreover, the local inflammatory response, or notable 
arrhythmias induced by CME can directly promote myocardial dysfunction, which leads to harmful consequences.4,5 

However, to date, the molecular mechanism and effective treatment for CME remain largely elusive.
During PCI, the incidence of CME varies from 0% to 70%, based on the methods of evaluation.6 Considering the 

high incidence and its important role in cardiac mortality, there is an urgent need to investigate the molecular mechanism. 
Thus, the development of an ideal animal model is critical to explore its potential pathophysiology.

Recently, many studies have confirmed that mitochondrial damage is an important contributor to the progression of 
the NR phenomenon.7,8 More importantly, mitochondrion-maintained microcirculation functions via the regulation of the 
post-ischemic injury signaling pathway, removing the aged and damaged mitochondria via mitophagy, and control of 
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endothelial cells (ECs) survival or death.9,10 Mitochondrial impairments, such as reductions in mitochondrial metabolism 
activity and membrane integrity loss are strongly related to exacerbated cardiovascular events.11

Previously, we investigated the mechanisms of the cardio-protective effects of Shexiang Tongxin Dropping Pill 
(STDP), together with Prostaglandin E1 (PGE1) on a CME rat model generated by injecting sodium laurate.12,13 We 
found that mice treated with STDP or PGE1 showed markedly reductions in coronary microthrombi; moreover, STDP 
and PGE1 significantly rescued the activities of antioxidant-related proteins and reversed the impaired mitochondrial 
functions, inhibited mitochondrial permeability transition pore (mPTP) opening, decreased phosphorylation of AKT- 
Ser473 and increased phosphorylation of GSK3β-Ser9.12,13 However, the sodium laurate-induced CME animal model has 
several limitations; for example, compared with other approaches, animals receiving sodium laurate may manifest 
relatively severe AMI and inflammation,14 and sodium laurate may enter the blood circulation and subsequently damage 
platelets or vascular integrity, thus, causing multiple-organ dysfunction.15

In this study, we first generated a rat model by injecting microspheres into the left ventricle. We performed RNA- 
Sequence analysis of cardiac tissues from the CME and Sham groups (control). We also used KEGG and GO analyses to 
identify differentially expressed genes (DEGs) between the two groups. The protein–protein interaction (PPI) network of 
CME was established to screen for hub genes. In addition, we isolated mitochondria from cardiac tissues and verified the 
role of mitochondrial dysfunction in CME.

Materials and Methods
Animals
Twenty healthy SPF-level Sprague Dawley (SD) mice of both sexes (14–16 weeks old, 350–400g) were obtained from 
the Zhejiang Center of Laboratory Animals, Hangzhou Medical College [SCXK(Zhe)2019–0002]. Briefly, all mice were 
housed in a standard animal maintenance facility under a 12-h light–dark cycle in a room maintained at temperature 
conditions (23±2°C) and 50% relative humidity with free access to water and food. All experimental procedures were 
conducted according to the National Institute of Health Guild for the Care and Use of Laboratory Animals and were 
approved by the Experimental Animal Welfare Ethics Committee of the Zhejiang Academy of Medical Sciences 
(Approval No. ZJCLA-IACUC-20020093).

Establishment of a Mouse Model of CME
Animals were randomly divided into two experimental groups: the CME group (n=10) and sham-operated group (control, 
n=10). To generate CME model, healthy SD mice were fully anesthetized with 2% inhalation isoflurane (Baxter International 
Inc., IL, USA) in oxygen and injected with microspheres with a diameter of 42-μm (Biosphere Medical Inc., Rockland, MA) 
into the left coronary artery, according to a previous study.16 While another group of animals was administrated saline (0.1-mL 
intraperitoneal) instead of microspheres. All rats were euthanized by cervical vertebral dislocation 24-h after the operation.

Measurements of Cardiac Functions
Transthoracic echocardiography was performed using Vevo770 ultrasound systems (VisualSonics, Canada) as previously 
described.17 Left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left ventricular 
end-systolic diameter (LVESD), and fractional shortening (FS) were measured according to a previous study.17 

Moreover, the concentrations of plasma atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were 
analyzed by using commercial ELISA kits (Fine Biotech, Wuhan, China). The heart weight/body weight (HW/BW) 
ratio was determined as soon as the mice were sacrificed.

Histological Analyses
The heart tissues from three rats in each group were fixed overnight with 4% paraformaldehyde, embedded in paraffin and cut 
into 5-μm-thick sections. The sections were subsequently stained with hematoxylin and eosin (HE), as described previously.18
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Transmission Electron Microscopy (TEM) Analysis
Cardiac tissues from three CME mice and three control mice were fixed in glutaraldehyde at 4 °C overnight and then 
stained with aqueous uranyl acetate for 2-h. All the specimens were pre-infiltrated with propylene oxide, fixed, and 
embedded in epoxy resin for 48-h. Mouse heart tissues were placed onto copper grids, stained with uranyl acetate, and 
observed using an HT-7800 TEM (Hitachi, Tokyo) at Zhejiang Center of Laboratory Animals, Hangzhou Medical 
College, according to a previous study.19

RNA-Sequence
Total RNA from three cardiac left-ventricle tissues from each group was extracted using the TRIzol method (Life 
Technologies, Carlsbad, CA, USA) and stored at −80°C until further use. RNA quality and quantity were assessed using 
a NanoDrop spectrophotometer (DeNovix DS-11, DE, USA). A specimen RNA Integrity Number (RIN) >7.0 was 
selected for further experimental analysis. The Illumina TruSeq RNA protocol was used to prepare the library, and RNA- 
Sequence was analyzed on an Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA). To obtain high-quality 
clean reads, low-quality reads or reads containing poly-N were excluded. Gene expression levels were determined using 
reads per kilobase per million mapped reads (FPKM).

DEGs and Principal Component Analyses (PCA)
Genes with an adjusted p-value <0.05 and |log2(FC)| >1.0 were regarded as DEGs. DEGs in both CME and control 
groups were analyzed by DEseq, based on the method as previously reported.20 We used GO to perform enrichment 
analysis on gene sets via the online GOATOOLS (https://github.com/tanghaibao/GOatools).21 It considered 3 aspects of 
how DEGs can be described: “biological process”; “cellular component”; and “molecular function”. KEGG, a large 
knowledge base for analyzing gene function, was performed using KOBAS 3.0.22,23

In addition, gene set enrichment analysis (GSEA), a bioinformatics tool for determining whether a group of DEGs 
showed statistical significance between biological samples, and GSEA software (v4.1.0) were used to evaluate the key 
pathways and core genes during the progression of CME.24

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most of the variation in 
the data set,25 it constructs a set of uncorrelated variables, which correspond to eigenvectors of the sample covariance 
matrix, according to the method as previously described.26

Construction of PPI Network
The PPI network of DEGs was established by using online STRING database (https://string-db.org/cgi/input.pl) and the 
hub genes were analyzed by Cytoscape (v3.9.1, https://cytoscape.org).27 When generation of PPI network, we chose the 
setting option as “Homo sapiens”, if a confidence score ≥0.90, it was regarded to be highly trusted.

Quantitative PCR (qPCR) Validation
Total mRNA from the heart tissues of three CME and three control mice was isolated using TRIzol Reagent, as 
mentioned previously. Subsequently, the PrimeScriptTM RT Master Mix (Takara Bio, Shiga, Japan) was used to generate 
cDNA using an mRNA template. The qPCR assay was run to analyze the expression levels of ten hub genes between the 
CME and control groups using SYBR Premix Ex Taq (Takara Bio, Shiga) on a CFX96 Touch System (Bio-Rad 
Laboratories, USA) based on the 2−ΔΔCt method.28 The primer sequences of ten target genes are displayed in Table 1. 
All experiments were performed in triplicate.

Analysis of ATP Levels
ATP levels were determined in the heart tissues from the CME and control groups. Experiments were performed using 
a Luminescence Assay Kit (BioVision Inc. Milpitas) according to the methods provided by manufacturer.29 All 
experiments were performed in triplicate.
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Mice Cardiac Mitochondria Isolation
Mouse cardiac mitochondria from the two groups were collected on ice by centrifugation at 4 °C, as previously 
described.30,31 Protein concentrations were assayed using the BCA method (Thermo Fisher Scientific).

Determining the Levels of Mitochondrial Membrane Potential (MMP) and Reactive 
Oxygen Species (ROS)
The JC-1 fluorescence (Sigma-Aldrich, Merck KGaA) was used to determine the MMP levels in CME and control rats, 
as previously described.32 The microscope reader recorded the green fluorescence of J-monomers (529nm) and red 
fluorescence of J-aggregates (590nm).33 While the ROS levels were measured by using 2’-7’-Dichlorodihydrofluorescein 
diacetate (DCFH-DA), as suggested previously.34

Statistical Analysis
Statistical analyses were conducted using SPSS v19.0 and GraphPad Prism v8.0.2. A t-test was used to calculate the 
means of the two groups and detect significance between unpaired samples. Statistically significance was set at 
p-value <0.05.

Results
Establishment of a Microspheres-Induced CME Rat Model
All the rats in the control group survived without any clinical abnormalities. In CME group, four mice survived after the 
operation; unfortunately, six mice showed poor performance after the injection of microspheres and died several hours 
after the operation. Subsequently, we randomly selected three rats from each group for subsequent experiments. As 
shown in Table 2, echocardiography result indicated that cardiac functions were impaired as characterized by significant 
decreases in LVEF and FS in the CME group as compared with controls (p<0.05 for all). In addition, LVESD, LVEDD, 
BNP and ANP were increased in CME as compared with control group (p<0.05 for all). However, no significant 
difference was observed in HW/BW and HR between two groups. Furthermore, HE staining showed obvious micro
infarcts around the microspheres in CME mice compared to those in normal rats (Figure 1).

As shown in Figure 2, compared to the control group, TEM of the microvasculature revealed a remarkable 
impairment of microvascular ECs in CME. For example, the cytoplasm was severely edematous, the organelle structure 
disappeared and the capillary (cap) wrinkled. However, there was a large-scale disappearance of the basement membrane 

Table 1 Primer Sequences for qPCR

Gene name Forward sequence (5’→3’) Reverse sequence (5’→3’)

Aldh18a1 ACCTGGATTTCCACGACGAG GACGGCATCGTTTGTGTTGAC

Cmpk2 TGGGCAATTATCTCGTGGCTT GCTATGCCAGTACCTGTCTACAA

Isg15 AGTGATGCTAGTGGTACAGAACT CAGTCTGCGTCAGAAAGACCT

Acsl1 TCTTGGTGTACTACTACGACGAT CGAGAACCTAAACAAGGACCATT

Etfb GACTGTAACCAGACAGGTCAGA CCCGTCAATTTCCCGTTCCA

Hspa5 ACTTGGGGACCACCTATTCCT GTTGCCCTGATCGTTGGCTA

Ndufa8 GCAGGCAAAGTTTGACCAGTG GGCAAAGGACGATCTGTTTTCA

Adhfe1 TGACAGACAAGAACCTCTCCC CATCAAACGCTCCCTTTTTGG

Gabarapl1 AGGACCACCCCTTCGAGTATC GCACAAGGTACTTCCTCTTATCC

Acot13 GCAACCTTAGTGGACAGCATCTC CAAGTGTCTTTCCTTGCTTCAGAA

Gapdh CGTGCCGCCTGGAGAAACC TGGAAGAGTGGGAGTTGCTGTTG
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(BM), which was noticeably thinned. Tight junctions (TJ) were rarely observed, the dense zone was shorter, and 
intercellular space was locally widened.

As shown in Figure 3, the CME group exhibited moderate degeneration of cardiomyocytes and a relatively severe 
cellular structure. Furthermore, the organelles showed pronounced swelling, the myofibril filaments were slightly loose 
and disordered, and the sarcomeres were symmetrically distributed. Importantly, the mitochondria (M) were significantly 
larger, with moderate swelling, and the membrane was broken. Moreover, the number of sarcoplasmic reticulum (SPR) 
was significantly reduced, dilated, and vacuoles were changed. Notably, lysosomes (Ly) were present in small amounts 
and the Z-line (Z) arrangement was disordered, reduced and locally discontinuous. The H-band (H) was arranged locally 
and disappeared over a large area. These results strongly indicate that microsphere-induced CME causes significant 
impairment of cardiomyocyte and microvascular functions.

Identification of Common DEGs Between CME and Control Groups
We compared CME and normal heart tissues using RNA-Sequence analysis. Data were filtered using |log2FC| >1 and 
adjusted to p <0.05. Consequently, 3822 DEGs (CME vs control) were unambiguously identified. A comparison between 
the two groups suggested that 1919 genes (50.2%) were up-regulated and 1903 genes (49.8%) were down-regulated 
(Figure 4A and B). The PCA plot is displayed in Figure 4C.

Table 2 Comparison of Heart Functions in Rats from 
CME and Control Groups

Characteristics Control Group CME group

HW/BW (mg/g) 3.01±0.14 3.20±0.22

HR (min−1) 390±41 400±32

LVESD (mm) 4.09±0.53 4.72±0.78*

LVEDD (mm) 7.23±0.55 7.89±0.37*

LVEF (%) 82.8±5.3 70.6±3.15*

FS (%) 40.5±1.6 23.6±2.6*

BNP (pg/mL) 136±18 255±22*

ANP (pg/mL) 120±10.3 289±17*

Note: *p<0.05.

CME group Control group

Figure 1 HE staining of myocardial tissues from CME and control groups, arrows indicate the microspheres.
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CME group Control group

Figure 3 The images of ultrastructural changes in mice cardiomyocyte from CME and control groups observed under TEM.

CME group Control group

Figure 2 The representative images of ultrastructural changes in mice microvascular from CME and control groups observed under TEM.
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Gene Set Analysis
Next, we conducted GO and KEGG enrichment analyses to investigate the potential functions and molecular pathways of the 
3822 DEGs. Notably, GO enrichment analysis suggested that these DEGs could be assigned to 20 biological processes, of 
which the top five of them were mitochondrial respiratory-chain complex I assembly, tricarboxylic acid cycle, mitochondrial 
electron transport, cytochrome c to oxygen, mitochondrial electron transport, NADH to ubiquinone, and the negative 
regulation of viral genome replication. In addition, 20 cellular components were significantly enriched, mainly involving 
the mitochondria, mitochondrial inner membrane, cytoplasm, cytosol, and mitochondrial respiratory-chain complex 
I. Moreover, significant enrichment was observed in 20 processes related to molecular functions, mainly involving protein 
binding, identical protein binding, nucleotide binding, oxidoreductase activity and actin filament binding (Figure 5).

Additionally, 20 KEGG pathways were significantly enriched (Figure 6A). Notably, the top five results included 
pathways involved in diabetic cardiomyopathy, oxidative phosphorylation, Parkinson’s disease, thermogenesis, chemical 
carcinogenesis-reactive oxygen species and non-alcoholic fatty liver disease. According to GO function and KEGG 
pathway enrichment analyses, mitochondria-related DEGs and oxidative phosphorylation (OXPHOS) signaling pathways 
were found to be closely related to CME and might play active roles in CME progression. GSEA enrichment analysis 
also confirmed that a marked decrease in OXPHOS signaling resulting in energy metabolism failure was positively 
associated with CME, which is consistent with the results of GO and KEGG analyses (Figure 6B).

We further used “heatmap” R package for bidirectional cluster analysis of mitochondria-related DEGs in CME and 
control groups, the expression levels of 101 DEGs were elaborately and displayed in Figure 7, among which 36 DEGs 
were up-regulated and 65 DEGs were down-regulated.

A  B  C

Figure 4 (A). Number of upregulated and downregulated genes in CME rats. (B). Volcano plot of ten mitochondrial-related DEGs, blue dots indicate the downregulated 
genes, red dots suggest the upregulated genes. (C). A PCA plot for six samples enrolled in RNA-Seq analyses.

A B C

Figure 5 Identification of DEGs in CME, GO enrichment analysis of 101 mitochondria-related DEGs are shown in three functional groups: (A). Biological processes of 
DEGs; (B). Cellular component of DEGs; (C). Molecular function of DEGs.
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PPI Analysis
The 101 mitochondria-related nuclear DEGs identified were used to build the PPI network, and the results are shown in 
Figure 8. Hub genes from the PPI network were screened using the CytoHubba plugin. Based on the maximal clique 
centrality (MCC) scores, the top ten highest scores for hub genes were as follows: Aldh18a1, Cmpk2, Isg15, Acsl1, Etfb, 
Hspa5, Ndufa8, Adhfe1, Gabarapl1 and Acot13.

qPCR Analysis
The mRNA expression levels of ten key DEGs involved in mitochondrial energy metabolism were further verified by 
qPCR. As shown in Figure 9, qPCR revealed that the mRNA levels of Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, 
Gabarapl1 and Acot13 in CME were much lower than in the controls (p<0.05). However, the transcriptional levels of 
Aldh18a1 and Hspa5 were significantly higher in the CME rats than in the control rats (all p<0.001).

Reduced Mitochondrial Energy Production in CME
Because mitochondria are the main source of ATP generation in cardiomyocytes, defects in OXPHOS function could 
subsequently lead to impairment of mitochondrial ATP production. As shown in Figure 10, a drastic decrease in MMP 

A B

Figure 6 Enrichment analysis of different DEGs in control and CME group. (A). KEGG pathway enrichment analysis; (B). GSEA functional enrichment analysis of OXPHOS 
signaling pathway.

Figure 7 Heatmap of 101 mitochondria-related DEGs in two groups. c: control group, m: CME group.
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and ATP levels in CME rats was observed (p=0.001 and 0.0029, respectively), and a marked increase in ROS production 
in CME rats was observed compared with control rats (p=0.001).

Discussion
Cardiovascular disease remains a major health problem for both clinicians and scientists. Specifically, CME could worsen 
cardiac function and lead to severe myocardial fibrosis.35 It is an important risk factor for poor long-term prognosis 
among individuals carrying AMI that reduces the coronary circulation.36 However, it should be noted that mild or 
moderate CME did not have any clinical symptoms, and only severe CME could lead to NR or even cardiac arrest.37 

Thus, establishing an animal model of CME is critical for understanding its pathophysiology.
Currently, the standard method of generating a CME animal model is the intracoronary injection of microspheres.38–40 

The greatest advantage of using microspheres (diameter: 40-µm) is that the number of injected spheres can be 
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standardized to coronary inflow. In addition, mice that received microspheres expressed microinfarcts similar to those 
reported in AMI patients’ hearts, which was consistent with our study, such as evaluated levels of cardiac and 
mitochondrial dysfunction, remarkable impairment of microvascular ECs, and microinfarction, which was similar to 
the variable clinical phenotypes of CME.

Mitochondria provide most of the cellular energy to the heart, generating ATP via the electron transport chain. The 
mitochondrial genome lacks the protection of histones, mitochondrial DNA (mtDNA) is more vulnerable to the 
accumulation of ROS-induced damage than nuclear DNA.41 On one hand, dysfunction of OXPHOS systems destroys 
energy metabolism in ECs. This physiological process caused a large amount of ROS production, increased oxidative 
stress, and activated inflammatory responses that were involved in CME.42 Indeed, our study showed significant 
decreases in MMP and ATP in the CME group, whereas a marked increase in ROS production was observed in CME 
mice when compared with normal rats (p<0.05). Defects in OXPHOS complexes may result in ATP shortage, leading to 
mitochondrial dysfunction.

We observed that CME mice differentially regulated 3822 genes in the RNA-Sequence datasets. Among these, 101 
were mitochondria-related. GO and KEGG pathway enrichment analyses indicated that most of these DEGs were 
involved in OXPHOS-related pathways. In particular, mitochondrial respiratory-chain complex I assembly, mitochondrial 

*p<0.05

**p<0.001

Figure 9 Results of qPCR for the mRNA levels of Aldh18a1, Cmpk2, Isg15, Acsl1, Etfb, Hspa5, Ndufa8, Adhfe1, Gabarapl1 and Acot13 in CME and control groups.

A                                                                   B                                                      C

Figure 10 Analysis of mitochondrial functions in CME and control groups. (A). MMP analysis; (B). determining the ATP level; (C). ROS analysis.
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electron transport, and the inner membrane were strongly related to CME. Furthermore, PPI network analysis revealed 
that Aldh18a1, Cmpk2, Isg15, Acsl1, Etfb, Hspa5, Ndufa8, Adhfe1, Gabarapl1, and Acot13 are hub genes.

The mouse aldehyde dehydrogenase 18A1 (Aldh18a1) was a bifunctional ATP- and NADPH-dependent mitochon
drial enzyme, the encoded protein catalyzed the delta-1-pyrroline-5-carboxylate synthase (P5CS), an important step in 
the biosynthesis of proline, ornithine and arginine.43 Mutations in Aldh18a1 were correlated with loss or decrease of 
P5CS function including proline and the ornithine-derived polyamine, putrescine.44 Knockdown of Aldh18a1 signifi
cantly affected the production of both NADP+ and NADPH.45 In addition, the Cmpk2, also named UMP-CMP kinase 2, 
was an enzyme located at mitochondria46 which played a significant role in pyrimidine metabolism and regulated IFN-α 
mediated ROS generation.47 Recent experimental studies revealed that the Cmpk2 linked to LPS-induced mitochondrial 
biogenesis in bone marrow-derived macrophages (BMDMs) by supplying deoxyribonucleotides.48 Interestingly, deletion 
of Cmpk2 impaired mitochondrial-associated metabolic pathways and functions caused mitochondrial deficiency and 
brain calcification.49

The interferon-stimulated gene 15 (Isg15) was highly expressed upon type I interferons treatment to defense against 
microbial infections.50 This gene can regulate ubiquitin-like post-translational modification called ISGylation.51 

Importantly, Isg15 and ISGylation were necessary for maintenance of mitochondrial-associated energy metabolism.52 

Previous study suggested that Isg15 governed OXPHOS function during the process of virus infection.53 Yoshizumi 
et al54 reported that mitochondrial normal function was critical for retinoic acid-inducible gene-I-like receptor (RLR)- 
modulated antiviral signaling, and OXPHOS deficiency rats were more prone to be infected by virus. Juncker et al 
suggested that Isg15 attenuated congression of impaired mitochondria into mito-aggresomes in Ataxia Telangiectasia 
(A-T) cells,55 by contrast, Isg 15 deletion recovered the mitochondrial health in A-T cells. Therefore, Isg 15 may be an 
important modulator of OXPHOS.

The long-chain acyl-CoA synthetase 1 (Acsl1) was a subtype of the ACSL family that was involved in lipid 
metabolism.56 This protein coding gene, however, was located at mitochondrial via the interaction with CTP1b, and 
was implicated to be involved in mitochondrial fatty acids (FAs) oxidation.57 Defects in Acsl1 gene in cardiac tissues 
may lead to an alternation in fuel availability from FA to glucose, subsequently altering the heart functions, impairing 
OXPHOS functions and promoting the activation of mammalian target of rapamycin complex 1 (mTORC1).58,59 

Furthermore, the electron transfer flavoprotein (ETF) was a nuclear encoded gene which can be imported into 
mitochondrial and acted as a hub taking up electrons into the OXPHOS system.60 Mutations in Etfb gene caused the 
impairment of FA oxidation and mitochondrial-mediated amino acid metabolism.61,62

Hspa5, also referred to as BiP or Grp78, belongs to the HSP70 family. It was a mitochondrial-associated endoplasmic 
reticulum (ER) membrane (MAMs) related protein63 that involved in regulation of mitochondrial calcium homeostasis, 
mitophagy and inflammation.64,65 ER-stress promoted Grp78 localization to mitochondria, which can be further binded to 
RAF1. In fact, this biological process was important to maintain the mPTP and protected the ER-stress induced 
apoptosis.66 Furthermore, the NADH dehydrogenase (ubiquinone) FA8 (Ndufa8) encoded a subunit of OXPHOS 
Complex I, which was important for proper assembly of this complex.67 Pathogenic mutations in Ndufa8 gene caused 
development delay, microcephaly and epilepsy owing to Complex I deficiency.68–70

The alcohol dehydrogenase, iron-containing protein 1 (Adhfe1) was a mitochondrial enzyme, which was responsible 
for catalyzing the gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglu
tarate (2-KG) to D-2-hydroxyglutarate (D-2-HG).71 Adhfe1 also played an important role in FAs and iron 
metabolism.72,73 The GABA type A receptor associated protein like 1 (Gabarapl1), also referred to as GEC1, was an 
autophagy-related ubiquitin-like protein family which was involved in autophagosome formation and initiation.74 

Furthermore, the acyl-CoA thioesterase 13 (Acot13), had been suggested to reside on the outer mitochondrial 
membrane,75 which played a critical role in hydrolyzing fatty acyl-CoAs to form free FFAs and CoA.76 In particular, 
this gene was highly expressed in oxidative tissues, such as liver, heart or kidney.77 Deletion of Acot13 protected mice 
against high fat diet-induced hepatic steatosis,78 emphasizing the significant roles of Acot13 in mitochondrial FA 
oxidation.

Our results indicated that Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in 
CME, whereas Aldh18a1 and Hspa5 were up-regulated as theoretically expected. Because during the progression of 
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CME, dysfunctions of mitochondrial activities accumulated and impaired the mitochondrial regulated signaling 
pathways,79 therefore, genes affecting the mitochondrial OXPHOS functions such as Cmpk2, Isg15, Acsl1, Etfb, 
Ndufa8, Adhfe1, Gabarapl1 and Acot13 were significantly down-regulated in CME as compared with controls. By 
contrast, the abnormality of mitochondrial energy metabolism pathway was closely related to CME occurrence; thus, 
genes located in energy metabolism pathway were significantly overexpressed in CME group. The Aldh18a1 gene, which 
encoded the P5CS, a key enzyme that linked to glutamate metabolism to proline biosynthesis.80 In addition, the Hspa5 
(Grp78) was present at the mitochondria-associated ER membrane, which was a central hub for all mitochondrial 
metabolic regulation,81 thus their expression levels were significantly enhanced in CME group.

In conclusion, using a mice model of CME and transcriptomics analyses technology, we provided the first DEGs 
characterization of cardiac tissues of CME mice. Bioinformatics analysis revealed a total of 3822 significant DEGs using 
RNA-Sequence technology (CME vs control). Since the alterations in mitochondrial OXPHOS functions and energy 
metabolism pathways were the important hallmarks of CME, we finally identified 101 mitochondria-related DEGs that 
were closely related to CME, of which, ten hub genes (Aldh18a1, Cmpk2, Isg15, Acsl1, Etfb, Hspa5, Ndufa8, Adhfe1, 
Gabarapl1, and Acot13) played important roles in CME progression. Future studies were warranted to verify if strategies 
targeting these DEGs and signaling pathways might confer novel therapeutic options for CME or not.
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