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Purpose: Previously, sex and apolipoprotein E (APOE) genotype had distinct effects
on the cognitive trajectory across the Alzheimer’s disease (AD) continuum. We
therefore aimed to investigate whether these trajectory curves including β-amyloid (Aβ)
accumulation in the cortex and striatum, and tau accumulation would differ according
to sex and APOE genotype.

Methods: We obtained 534 subjects for 18F-florbetapir (AV45) PET analysis and
163 subjects for 18F-flortaucipir (AV1451) PET analysis from the Alzheimer’s Disease
Neuroimaging Initiative database. For cortical Aβ, striatal Aβ, and tau SUVR, we fitted
penalized splines to model the slopes of SUVR value as a non-linear function of baseline
SUVR value. By integrating the fitted splines, we obtained the predicted SUVR curves
as a function of time.

Results: The time from initial SUVR to the cutoff values were 14.9 years for cortical Aβ,
18.2 years for striatal Aβ, and 22.7 years for tau. Although there was no difference in
cortical Aβ accumulation rate between women and men, striatal Aβ accumulation was
found to be faster in women than in men, and this temporal difference according to sex
was more pronounced in tau accumulation. However, APOE ε4 carriers showed faster
progression than non-carriers regardless of kinds of AD biomarkers’ trajectories.

Conclusion: Our temporal trajectory models illustrate that there is a distinct progression
pattern of AD biomarkers depending on sex and APOE genotype. In this regard, our
models will be able to contribute to designing personalized treatment and prevention
strategies for AD in clinical practice.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia, characterized by the accumulation of amyloid-β (Aβ)
plaques and neurofibrillary tangles formed by high levels of
phosphorylated tau (Sperling et al., 2011). According to the
amyloid cascade hypothesis, the deposition of Aβ plaques leads
to the development of neurofibrillary tangles, cortical atrophy,
and cognitive impairment (Price and Morris, 1999; Jack et al.,
2018). Clarifying temporal trajectories of AD biomarkers would
be crucial to better understand the disease. In this regard,
accumulation of longitudinal positron emission tomography
(PET) scans or cerebrospinal fluid (CSF) data has made it
possible to model temporal changes in Aβ and tau biomarkers
(Mattsson et al., 2012; Hanseeuw et al., 2019). It is a challenging
task to clearly demonstrate the general pattern of pathological
progression over decades, as the durations of follow-ups of
individual subjects are relatively limited. However, modeling of
AD biomarker trajectories remains an important goal, as future
treatments targeting Aβ and tau are expected to be developed.

One way to overcome the limited individual follow-up period
is to group subjects who share similar properties, such as initial
clinical diagnosis (Hadjichrysanthou et al., 2020; Cho et al., 2021)
or the shape of their longitudinal trajectory (Koscik et al., 2020).
Alternatively, an integration-based method (Hahn, 1991) can
be used to obtain the calculated time curves of the biomarkers
(Jack et al., 2013; Villemagne et al., 2013; Baek et al., 2020a).
This method does not require subjects to be grouped, which
makes the process of analysis more straightforward. Using this
method, Jack et al. proposed a temporal trajectory model of Aβ

accumulation using serial amyloid PET scans, showing that Aβ

accumulation exhibits a sigmoidal shape across time (Jack et al.,
2013). In fact, a recent study showed that this model of Aβ and
tau accumulation matches the hypothetical model that shows the
orderly appearance of AD biomarkers (Baek et al., 2020a).

According to recent studies using amyloid PET data, Aβ

accumulation occurs first in the neocortex and then in the
striatum, suggesting a downward spreading pattern consistent
with Thal Aβ pathology staging (Thal et al., 2002; Cho et al., 2018;
Hanseeuw et al., 2018). Furthermore, the striatal Aβ is associated
with worse AD biomarkers and cognitive function (Cho et al.,
2018; Hanseeuw et al., 2018). Therefore, we propose that it would
be worthwhile to investigate Aβ accumulation in the striatum
as well. It is especially important to investigate how the striatal
Aβ trajectory is positioned relative to the cortical Aβ and tau
trajectories, as it may provide us with more insight regarding
AD pathobiology.

In addition, the trajectory of pathological tau accumulation is
studied with tau PET data. The transition from normal aging to
preclinical AD can be characterized by tau tangles that spread
from the medial temporal lobe to limbic areas (Braak stages III
and IV) (Petersen et al., 2006). Especially, increased tau uptakes
in the Braak stages III and IV regions may reflect pathological
tau accumulation. Tau accumulation in Braak stages I and II
may occur before the evidence of Aβ accumulation. Also, tau
accumulation in Braak stages I and II may be found even in
people at a young age or in normal cognitive function or primary

age-related tauopathy (Braak and Del Tredici, 2015; Zhu et al.,
2019). In fact, many studies calculated the cut-off values of tau
positivity using the tau uptakes in the Braak stages III and IV
(Maass et al., 2017).

Several factors may affect the cognitive trajectory. Specifically,
a previous study from our group showed that sex and
apolipoprotein E (APOE) genotype had distinct effects on the
cognitive trajectory across the AD continuum (Cho et al., 2021).
However, in previous studies, APOE ε4 carriers with normal
cognition showed more Aβ uptake in the cerebral cortex than that
by non-carriers (Oveisgharan et al., 2018; Buckley et al., 2019),
but these studies did not show women with normal cognition to
have more Aβ uptake in the cerebral cortex than men. Therefore,
this raised the question as to whether AD biomarkers begin
to show different trajectories, including uptakes of cortical Aβ,
striatal Aβ, and tau, according to sex or APOE ε4 genotype.

In the present study, we aimed to model the temporal
trajectories of pathological tau accumulation as well as Aβ

accumulation in the cortex and striatum. We also investigated
whether these trajectory curves would differ according to sex
and APOE genotype. We hypothesized that women would show
faster progression of AD biomarker accumulation than men
in case of striatal Aβ and tau, but not in case of cortical Aβ.
We also hypothesized that APOEε4 carriers would show faster
progression in accumulation than non-carriers, regardless of the
AD biomarker type.

MATERIALS AND METHODS

Data Acquisition
Data used in the present study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
led by Principal Investigator Michael W. Weiner, MD. ADNI
is the outcome of a public-private partnership started in
2003. Its main goal is to test whether clinical and cognitive
assessment, PET, CSF, serial magnetic resonance imaging (MRI),
and other biological markers can be combined to evaluate
the progression of mild cognitive impairment (MCI) and early
AD dementia (ADD).

Study Participants
The present study included subjects from the ADNI dataset.
Detailed inclusion and exclusion criteria for the ADNI data
are provided on the ADNI website1. Cognitive function of
the participants was evaluated using the Alzheimer’s Disease
Assessment Scale Cognitive subscale 13. For trajectory analysis
of cortical and subcortical Aβ, subjects who underwent 18F-
florbetapir (AV45) PET tests were selected. Similarly, subjects
who underwent 18F-flortaucipir (AV1451) PET were included in
the tau trajectory analysis. Information on APOE genotype was
also investigated.

Among the subjects who underwent corresponding PET
for each biomarker, we included subjects within the AD
continuum from “amyloid-negative, cognitively normal subjects”

1http://www.adni-info.org
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FIGURE 1 | Flowchart of enrolled participants within the study. Abbreviations: ADNI, Alzheimer’s disease neuroimaging initiatives; AD, Alzheimer’s disease; MCI, mild
cognitive impairments; CN, cognitively normal; PET, positron emission tomography.

to “amyloid-positive, demented subjects.” To this end, we
included subjects who showed Aβ positivity at least once,
regardless of cognitive function. In addition, subjects who
remained cognitively normal throughout the follow-up period
were included, regardless of Aβ positivity. Subjects with cognitive
impairment who did not show Aβ positivity within the follow-up
period were excluded (Figure 1).

All participants provided written informed consent and
underwent protocols approved by the institutional review
board of each participating site. The data use and publication
by authors were approved by the ADNI Data Sharing and
Publications Committee.

Image Data Acquisition and
18F-Florbetapir Positron Emission
Tomography Preprocessing
The ADNI PET acquisition protocols are described on
www.adni-info.org. In terms of 18F-flortaucipir PET, we
obtained standardized uptake value ratios (SUVRs) for Braak
stages III and IV from the UCBERKELEYAV1451_PVC table
as part of the ADNIMERGE R package. For the analysis of
amyloid PET scans, we downloaded the 18F-florbetapir PET
and corresponding MRI image files from the LONI website
and processed them. 18F-florbetapir images consisted of
4 × 5 min frames acquired 50–70 min post-injection; these
were realigned, averaged, resliced to a common voxel size
(1.5 mm × 1.5 mm × 1.5 mm), and smoothed to a common
resolution of 8 mm3. All T1 images were preprocessed using
CIVET pipeline. Segmentation was performed by ANIMAL
segmentation in the implemented pipeline (Collins et al.,
1994; Collins et al., 1995). The region-based voxel-wise
correction method was used for partial volume correction
(PVC) and performed using the PETPVC toolbox into total
18F-florbetapir PET images (Thomas et al., 2011; Thomas et al.,
2016). The 18F-florbetapir PET images were co-registered onto
corresponding T1 images, and SUVRs were calculated for partial

volume-corrected PET images. The whole cerebellum was used
as the reference region.

Trajectory Analysis
We used an in-house program implemented in R for trajectory
analysis using a modified method of the previously used method
to determine the temporal trajectory of AD-related biomarkers
(Jack et al., 2013; Villemagne et al., 2013; Baek et al., 2020a).
We calculated the rates of change for each biomarker, using
longitudinally observed values. Instead of obtaining a single rate
value (1SUVR/1t) per subject, we calculated the slope for every
interval, thus obtaining at n-1 rate values for a subject with
n observations (Figure 2). Using this method, we were able
to capture the change in rate within a subject throughout the
follow-up period.

Thereafter, for each biomarker, we fitted a penalized spline
to model the slope of the SUVR as a non-linear function of
the baseline SUVR. Penalized splines can be an efficient tool to
describe complex non-linear relationships because researchers do
not have to determine the amount and placement of the knots.
Instead, penalized splines use a large number of knots and allow
the fit to be controlled by a penalty (Perperoglou et al., 2019).
We used the gam function in the mgcv R package to fit the
penalized splines with the extended Fellner Schall optimization
method (Wood and Fasiolo, 2017), and other parameters were
set to default settings. The default basis for smoothing by the gam
function is the thin plate regression spline, which uses knots as
many as the number of unique values of the data up to 2,000,
placed on every unique value (Wood, 2003).

Using the fitted splines, we obtained predicted SUVR curves
as a function of time by using the ode function in the deSolve
R package to solve the first-order differential equation. For each
variable, the initial SUVR for time = 0 was anchored to the
mean SUVR of amyloid-negative, cognitively normal subjects
who underwent the test. The number of subjects and the mean
(standard deviation) values of the normative groups are shown
in Table 1. The FreeSurfer-based SUVR cortical cutoff of 1.11,
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FIGURE 2 | Example transformation of longitudinal SUVR data into 1SUVR/1t values in a sample subject (RID: 545). Instead of using a single mean slope value (the
pink line and dot), we used all observations separately (dark blue lines and dots), accounting for the change of rate over time. SUVR, standardized uptake value ratio.

calculated based on the same ADNI data (Landau and Jagust,
2015), was found to be 1.043 for the CIVET-based cortical
SUVR by regression analysis. The cortical Aβ cutoff of 1.043
corresponded to a z-score of −2.0, so the cutoff values of striatal
Aβ and tau were set to z-score -2.0. We indicated the abnormal
cutoff (z-score −2.0) values, the mean SUVRs of MCI subjects,
and the mean SUVRs of ADD subjects for each trajectory model.

RESULTS

Study Participants
We included a different number of subjects for each biomarker’s
final analysis because we included all AD continuum subjects
with longitudinal data for the given biomarker. For example,
while a total of 534 subjects were included in the trajectory
analysis of amyloid PET, 163 subjects were available for tau PET
trajectory analysis. Demographic data are summarized in Table 2.

Rate of Change of Biomarkers According
to Baseline SUVRs
The rates of changes in the SUVRs for the biomarkers are
shown in Figure 3. The cortical and striatal Aβ accumulation
rates showed different patterns. While the accumulation rate
of cortical Aβ increased until the SUVR reached 1.26 and
decreased subsequently (Figure 3A), 1SUVR/1t for the striatal

TABLE 1 | Normative values used for z-transformation.

N Mean SD

Amyloid (cortex) 204 0.863 0.091

Amyloid (striatum) 204 1.58 0.159

Tau (Braak 3,4) 177 1.69 0.144

N, number of amyloid-negative, cognitively normal subjects used to derive
normative values; SD, standard deviation.

Aβ remained constant throughout the entire range of SUVRs
(Figure 3B). The worsening rate of tau PET also remained
substantially constant (Figure 3C), although tau accumulation
showed a slightly increasing pattern.

Temporal Trajectories of Alzheimer’s
Disease Related Markers
For each variable, we obtained the curve of the expected SUVRs
as a function of time (Figure 4). The time from initial SUVR
to the cutoff values (z-score −2.0) was the longest for tau PET
(22.7 years) and shortest for cortical Aβ (14.9 years). For the
cortical Aβ, striatal Aβ, and tau trajectories, after reaching the
cutoff, the mean SUVR of MCI subjects and the mean SUVR of
ADD subjects appeared.

For comparison between men and women, trajectory curves
were generated separately, according to sex (Figure 5). There
was no significant difference in the cortical Aβ accumulation rate
between women and men (Figure 5A). However, for striatal Aβ

accumulation, women reached the cutoff values 2.7 years earlier

TABLE 2 | Characteristics of analyzed subjects by test modality and biomarker.

18F-florbetapir
(AV45) PET

18F-flortaucipir
(AV1451) PET

No. 534 163

Diagnosis (%)

CN 297 (55.6) 107 (65.6)

–Dementia 42 (7.9) 18 (11.0)

–MCI 195 (36.5) 38 (23.3)

Age, mean (SD), y 74.0 (6.9) 75.2 (7.5)

Men (%) 282 (52.8) 81 (49.7)

Education, mean (SD), y 16.22 (2.72) 16.39 (2.48)

APOE ε4 carrier (%) 253 (47.4) 82 (50.6)

PET, positron emission tomography; N, number; CN, cognitively normal; MCI, mild
cognitive impairment; SD, standard deviation.
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FIGURE 3 | Rates of change (worsening) as a function of SUVRs in cortical amyloid (A), striatal amyloid (B), and pathological tau (C). AV45, 18F-florbetapir; SUVR,
standardized uptake value ratio; AV1451, 18F-flortaucipir.

FIGURE 4 | Trajectories of AD biomarkers as a function of time in cortical amyloid (A), striatal amyloid (B), and pathological tau (C). AV45, 18F-florbetapir; SUVR,
standardized uptake value ratio; AV1451, 18F-flortaucipir.

FIGURE 5 | Temporal trajectories of AD biomarkers stratified by sex in cortical amyloid (A), striatal amyloid (B), and pathological tau (C). AV45, 18F-florbetapir;
SUVR, standardized uptake value ratio; AV1451, 18F-flortaucipir; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia.
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FIGURE 6 | Temporal trajectories of AD biomarkers stratified by APOE genotype in cortical amyloid (A), striatal amyloid (B), and pathological tau (C). AV45,
18F-florbetapir; SUVR, standardized uptake value ratio; AV1451, 18F-flortaucipir; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia.

than men (Figure 5B). The temporal difference according to sex
was more pronounced for tau accumulation, as women reached
the cutoff 16.0 years earlier than men (Figure 5C). In terms of
APOE ε4 carrier status, carriers showed faster progression for all
biomarkers (Figure 6).

DISCUSSION

In the present study, we developed a model that allows for
the mapping of the temporal trajectories of cortical Aβ, striatal
Aβ, and tau protein deposition according to sex and APOE
genotype from a large sample of ADNI subjects. Our major
findings are as follows: First, Aβ was found to accumulate in
the cortex and then in the striatum, followed by pathological
tau accumulation in the limbic regions, which correspond to the
Braak stages III and IV. Second, while there was no difference in
cortical Aβ accumulation rate between women and men, striatal
Aβ accumulation was found to be faster in women than in
men, and this temporal difference according to sex was more
pronounced in tau accumulation. Finally, APOE ε4 carriers
showed faster accumulation of cortical Aβ, striatal Aβ, and tau
than non-carriers. Taken together, our findings suggest that our
temporal trajectory models can reveal a distinctive progression
pattern of AD biomarkers depending on sex and APOE genotype.
Therefore, our trajectory models can contribute to the design
of personalized treatment and prevention strategies for AD in
clinical practice.

Our finding that Aβ accumulates in the cortex and striatum
sequentially is in line with Thal Aβ pathology staging, with
Aβ deposits found initially in the cortex, and subsequently in
the striatum (Thal et al., 2002), as also shown in a previous
imaging study (Cho et al., 2018). Our other finding regarding the
order of striatal Aβ and tau accumulation is also consistent with
previous pathological studies showing that striatal Aβ plaques
predicted the possible development of higher Braak stages (Braak
and Braak, 1990; Beach et al., 2012). Therefore, our findings

are consistent with the Aβ pathological cascade hypothesis.
Regarding cortical Aβ, the time to reach the abnormal SUVR
cutoff was 14.9 years in the present study, but 6.4 years in the
previous study (Jagust et al., 2021). This discrepancy might be
explained by the differences in the subjects. In the previous study,
subjects with Aβ-negative normal cognition at baseline with
increasing 18F-florbetapir slopes were used as a control group
(Jagust et al., 2021). By contrast, in the present study, subjects
who were consistently Aβ-negative cognitively normal during the
follow-up period were included as a control group. However,
the time to reach the abnormal cortical Aβ SUVR cutoff of the
present study (14.9 years) is closer to that of previous studies
(12-16 years) (Villemagne et al., 2013; Baek et al., 2020a). For
the tau trajectory curve, the Baek et al. (2020a) estimate of the
time interval to reach the z-score 2.0 for tau (30.6 years) was
similar to our findings (22.7 years for the cutoff, z-score −2.0).
Since striatal Aβ plaques are regarded as a predictor of higher
Braak stages (Braak and Braak, 1990; Beach et al., 2012) and worse
cognitive impairment (Beach et al., 2016; Grothe et al., 2017; Cho
et al., 2018), it is important to take the striatal Aβ trajectory
into account during clinical practice. Notably, our trajectory
curve for striatal Aβ also calculated that it took 18.2 years to
reach the abnormal SUVR cutoff. Thus, our study elucidating
the temporal order in the accumulation of cortical Aβ, striatal
Aβ, and pathological tau protein, along with their estimated time
intervals, may support Thal Aβ pathology staging and the Aβ

pathological cascade (Jack et al., 2010).
Several previous studies, including our group, showed that

women had faster cognitive decline than men (Buckley et al.,
2018; Cho et al., 2021), but that there was no such difference in
terms of cortical Aβ accumulation, cross-sectionally (Hanseeuw
et al., 2019) or longitudinally (Buckley et al., 2018). However, we
found that this was different for striatal Aβ and tau accumulation.
In particular, it was found that women took 2.7 years faster
than men to reach the abnormal cut-off value of striatal Aβ

trajectory. For tau accumulation, a previous longitudinal tau-PET
study showed that tau protein accumulation is faster in women
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(Smith et al., 2020). We also found this to be the case in our
study, where the temporal difference between the sexes was more
pronounced in the tau trajectory than in the striatal Aβ trajectory.
Specifically, tau accumulation was found to be 16.0 years faster in
women than in men to reach the abnormal tau cut-off. Thus, our
trajectory model showed that the rate of accumulation between
sexes was different for each AD biomarker. Therefore, this faster
accumulation of striatal Aβ and tau in women may explain the
worse cognitive decline and greater frequency and prevalence of
AD dementia in women.

Our final major finding was that, unlike the differences
between sexes, the differences between APOE ε4 carriers and
non-carriers showed a different pattern. In particular, for the
APOE ε4 carriers, there was a faster decline in all three AD
biomarker trajectories. Our findings are supported by previous
studies showing that APOE ε4 carriers accumulate Aβ faster
than non-carriers (Liu et al., 2013), as shown in amyloid PET
(Ossenkoppele et al., 2015) and CSF studies (Resnick et al.,
2015). Also, APOE ε4 carriers accumulated tau faster than non-
carriers, as previously described (Sepulcre et al., 2018; Baek et al.,
2020b). Since there were differences in AD biomarker trajectories
depending on sex and APOE genotype, our findings will help
to design individualized therapeutic and preventive strategies to
ameliorate AD biomarkers, resulting in cognitive decline.

The ADNI is a well-organized, longitudinal cohort that
serves as an excellent resource for investigating the disease
course of AD with multimodal imaging markers, including
Aβ and tau PET. However, this study had several limitations.
First, the number of subjects who underwent tau PET was
small compared to the number of subjects who underwent
amyloid PET. Second, we defined the time 0 for a specific
biomarker as the point when the SUVR value of that biomarker
was in the mean level of Aβ-negative CN subjects. We were
able to estimate the durations for each biomarker to reach
certain values, but we need to synchronize the time axes
between biomarkers in future studies. Also, further studies with
long-term longitudinal follow-up are needed to validate our
findings. Since statistical comparison was difficult, we explained
the time comparison of each graph descriptively, as in other
trajectories studies (Baek et al., 2020a; Jagust et al., 2021). Third,
we did not investigate the interactive effects of gender and
APOE genotype on the biomarkers’ trajectories because of a
small sized sample. Further studies with a larger sized sample
are needed to evaluate this issue. Nevertheless, our study is
noteworthy in that we demonstrated that trajectory curves of AD
biomarkers differ according to striatal Aβ involvement, sex, and
APOE genotype.

In conclusion, the temporal trajectory in this study reflects the
Thal Aβ pathology staging and the amyloid cascade hypothesis,
showing that pathological tau protein accumulation occurred
only when striatal Aβ accumulation emerged. Furthermore,
trajectory curves differed according to sex andAPOE genotype. In
particular, a similar or higher rate of cortical Aβ accumulation in
men compared to women was reversed with respect to striatal Aβ

and tau accumulation. In clinical practice, the prognoses for AD
patients should be approached differently in relation to striatal
Aβ involvement, sex, and APOE genotype.
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