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Histone deacetylases (HDACs) are a group of enzymes that control histone deacetylation
and bear potential to direct expression of large gene sets. We determined the effect of
HDAC inhibitors (HDACi) on human monocytes and macrophages, with respect to their
polarization, activation, and their capabilities of inducing endotoxin tolerance. To address
the role for HDACs in macrophage polarization, we treated monocytes with HDAC3i,
HDAC6i or pan-HDACi prior to polarization into M1 or M2 macrophages using IFNg or IL-4
respectively. To study the HDAC inhibition effect on cytokine expression, macrophages
were treated with HDACi prior to LPS-stimulation. TNFa, IL-6, and p40 were measured
with ELISA, whereas modifications of Histone 3 and STAT1 were assessed using western
blot. To address the role for HDAC3 in repeated LPS challenge induction, HDAC3i or
HDAC3 siRNA was added to monocytes prior to incubation with IFNg, which were then
repeatedly challenged with LPS and analyzed by means of protein analyses and
transcriptional profiling. Pan-HDACi and HDAC3i reduced cytokine secretion in
monocytes and M1 macrophages, whereas HDAC6i yielded no such effect. Notably,
neither pan-HDACi nor HDAC3i reduced cytokine secretion in M2 macrophages. In
contrast to previous reports in mouse macrophages, HDAC3i did not affect macrophage
polarization in human cells. Likewise, HDAC3 was not required for IFNg signaling or IFNb
secretion. Cytokine and gene expression analyses confirmed that IFNg-treated
macrophages consistently develop a cytokine response after LPS repeated challenge,
but pretreatment with HDAC3i or HDAC3 siRNA reinstates a state of tolerance reflected
by general suppression of tolerizable genes, possibly through decreasing TLRs
expression, and particularly TLR4/CD14. The development of endotoxin tolerance in
macrophages is important to reduce exacerbated immune response and limit tissue
org October 2020 | Volume 11 | Article 5507691
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damage. We conclude that HDAC3 is an attractive protein target to mediate macrophage
reactivity and tolerance induction in inflammatory macrophages.
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INTRODUCTION

Histone acetylation controls chromatin remodeling, which in
turn is thought to regulate gene transcription. Where histone
acetyltransferases (HAT) add acetyl groups to lysine residues,
thereby enabling transcription factor binding and subsequent
gene expression, histone deacetylases (HDACs) remove histone
residues leading to chromatin compaction, which generally
results in gene repression (1, 2). Such epigenetic mechanisms
involving HDACs have gained interest in immunology, as they
were found to mediate innate immune-cell memory processes, as
well as development of immune training and tolerance towards
endotoxins (3–5). Notably, some reports found that the
inhibition of HDACs by means of HDAC inhibitors (HDACi)
ameliorated experimental colitis in mice (6, 7). Similar
observations have since been made for human cells as well,
where the non-selective broad-spectrum HDAC inhibitor
Givinostat was found to confer anti-inflammatory properties in
human pro-inflammatory macrophages (8, 9). However, clinical
trials with pan-HDACi revealed multiple adverse events such as
diarrhea, nausea and vomiting (10, 11). To reduce such side
effects, HDAC-subtype-specific inhibitors with increased
sensitivity and specificity have been developed.

In humans, the HDAC family consists of 18 members divided
into class I HDACs (HDACs 1–3 and 8), class IIa HDACs
(HDACs 4, 5, 7 and 9), class IIb HDACs (HDACs 6 and 10),
class III sirtuins (Sirt1–7) and class IV HDACs (HDAC11) (12,
13). Although the members of each class show high structural
similarity, genetic deletion of individual HDACs revealed that
each HDAC has specific and unique roles with respect to substrate
selectivity (14). Within the context of diseases, HDACs are
reportedly important epigenetic regulators of the immune
system (15). In rheumatoid arthritis for instance, the inhibition
of class I/II or class III HDACs ameliorated clinical symptoms by
blocking the production of IL-6 and TNFa (16). Similarly,
deficiency of HDAC9 enhanced regulatory T cell numbers and
ameliorated models of systemic lupus erythematosus and colitis
(17). HDAC3 specifically was found to play a crucial role in
orchestrating the inflammatory response of murine myeloid cells,
such as dendritic cells (18–20) and macrophages (6, 21), by
initiating transcription of inflammatory genes (12, 22) while at
the same time limiting anti-inflammatory genes in vivo (23). In
atherogenic macrophages, HDAC3 inhibition coaxedmacrophage
metabolism towards enhanced aerobic glycolysis, thereby
protecting against apoptosis (24). Furthermore, myeloid cells
obtained from Hdac3 knockout mice stimulated anti-
inflammatory wound healing, which was attributed to the loss
of LPS-induced transforming growth factor b (TGFb) (25).

Given these outcomes, several studies have hypothesized a
potential role for HDAC3 in developing tolerance towards
org 2
endotoxins, such as lipopolysaccharides (LPS) (5, 26, 27). The
potential to develop LPS tolerance represents a state where
immune cells mount a less pro-inflammatory response towards
LPS upon subsequent treatments with it. Expectedly, LPS
tolerance appears to be restricted to anti-inflammatory
macrophages (M2) (28, 29) rather than interferon (IFN) g-primed
inflammatory macrophages (M1) in mouse and humans (30–34).
Transcriptomic studies on mouse-derived bone marrow
macrophages revealed that many of the TLR4-induced genes from
both the MyD88-dependent and independent pathways were
downregulated in LPS-tolerized macrophages and that the
promoters of these downregulated genes often coincided with
distinct histone modifications (26–28). Most studies however, were
restricted to mouse cells and have not been translated to human.

In the current study, we investigated the effect of HDAC3i on
differentiation and activation of IFNg-primed human peripheral
blood-derived monocytes and macrophages. To this end, we
utilized an inhibitor targeting HDAC3 (HDAC3i; ITF3100) as
well as the nonselective pan-HDACi (Givinostat; ITF2357) (12).
As ITF3100 has residual activity towards HDAC6 (35), an
inhibitor targeting HDAC6 (HDAC6i; ITF3107), was used a
control. In contrast to studies on mice, we observe that
macrophage differentiation and polarization is independent of
HDAC3. Rather, we show that HDAC3 mediates pro-
inflammatory cytokine production, potentially through its
activity on transcription factors, thereby restricting induction of
tolerance in inflammatory macrophages. Our data underscore the
potential of HDAC3 to direct cytokine production and
inflammation in human immune mediated inflammatory disease.
METHODS

Reagents
Pan-HDAC inhibitor (Givinostat; ITF2357), HDACi with activity
toward HDAC3 (and to a lesser extent, HDAC6) (HDAC3i;
ITF3100) and HDAC6 alone (HDAC6i; ITF3107) were provided
by Italpharmaco and used at concentrations described previously
(12, 24). Anti-CD163-PE (BD Biosciences), anti-CD200R-Alexa
Fluor 647 (Serotec), anti-CD80-PE (BD Biosciences), anti-CD284
(TLR4)-PE (BioLegend) and anti-CD14-PECy7 (Becton
Dickinson) antibodies were used for flow cytometric analyses
and anti-Histone H3 (Abcam), anti-Histone H3K18-Ac (Cell
Signaling), anti-STAT1, anti-STAT1-p and anti-beta-actin (Santa
Cruz) antibodies were used for western blot analysis.

Monocyte Isolation and Cell Culture
Peripheral blood mononuclear cells (PBMCs) were obtained from
whole blood of healthy donors (Sanquin Institute, Amsterdam,
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The Netherlands) by Ficoll density gradient (Invitrogen). The
human biological samples were sourced ethically, and their
research use was in accordance with the terms of informed
consent under an IRB/EC approved protocol. Written informed
consent was obtained from donors, as approved by the UK East of
England—Cambridgeshire and Hertfordshire Research Ethics
Committee and Amsterdam UMC Institutional Review Board
under project number B07.002-X. CD14+ monocytes were
positively selected from PBMCs using CD14 Microbeads
according to the manufacturer’s instructions (Miltenyi Biotec).

To study the effect of HDACi on cytokine expression in
monocytes and macrophages, CD14+ monocytes were used in
subsequent analyses or polarized immediately after isolation
towards M1 (classically activated) macrophages using 50 ng/mL
IFNg (R&D systems/Peprotech), or M2 (alternatively activated)
macrophages using 40 ng/mL interleukin (IL) 4 (R&D systems/
Peprotech) in culture media for 72 h. Freshly isolated CD14+

monocytes and M1- or M2-polarized macrophages were pre-
treated with an increasing concentration (12, 37, 111, 333, and
1,000 nM) of HDAC3i (HDAC3 half maximal inhibitory
concentration (IC50) = 144 nM; HDAC6 IC50 = 48 nM),
HDAC6i (HDAC3 IC50 = 286 nM, HDAC6 IC50 = 2 nM), pan-
HDACi (16, 36) or DMSO control for 30 min prior to stimulation
with 100 ng/mL lipopolysaccharide (LPS) (Sigma) for 24 h.

To assess the effect of HDACi on monocyte polarization to
the different macrophage phenotypes, freshly isolated CD14+

were incubated with either DMSO or 500 nM HDACi for 30 min
prior to polarization to M0, M1 and M2 macrophages.

To investigate the endotoxin repeated challenge in M1 and M2
macrophages, M1 and M2 macrophages were initially treated with
medium only or with 10 ng/mL LPS for 24 h, washed with PBS, and
then challenged by treating the macrophages with medium only or
with 100 ng/mL LPS for 3 h (to assess gene expression) to 4 h (to
assess protein expression). Macrophages that were treated first with
24 h medium then challenged with medium are designated as M/M
(medium/medium), macrophages stimulated with one dose of LPS
after 24 h medium pretreatment are designated as M/L (medium/
LPS), macrophages stimulated with LPS for 24 h and challenged
with LPS are designated as L/L (LPS/LPS).

To study whether HDAC3 plays a role in regaining LPS tolerance
in M1 macrophages, CD14+ monocytes were pretreated with either
DMSO or HDAC3i for 30 min or with non-targeting scrambled
siRNA orHDAC3 siRNA for 48 h, after which they were polarized to
M1 macrophages overnight with 50 ng/mL IFNg and then M/M,
M/L and L/L conditions were applied as described above.

Isocove’s Modified Dulbecco’s Medium (IMDM; Lonza)
supplemented with 10% fetal bovine serum (FBS) (Lonza),
2 mM l-glutamine (Lonza), 100 U/ml penicillin (Lonza) and
100 U/ml streptomycin (Lonza) was used as culture media. 2x106

cells were used for each condition in all experiments.

siRNA-Mediated HDAC3 Knockdown
The CD14+ monocytes were transfected with siGENOME
human smartpool HDAC3 siRNA or non-targeting scrambled
siRNA for 48h with DharmaFECT™ transfection reagents
according to manufacturer’s protocol (Dharmacon).
Frontiers in Immunology | www.frontiersin.org 3
Cytokine Expression Analysis
Secreted cytokine levels of IFNb, tumor necrosis factor (TNF)a,
IL-6, P40 and IL-10 were quantified in collected supernatant
using the DuoSet® ELISA Development Systems according the
manufacturer’s protocol (R&D systems™).

Isolation of Total RNA and Quantitative
Reverse Transcriptase PCR
Total RNA was extracted using RNeasy Mini Kit (Qiagen) in
accordance with the manufacturer’s instructions. Total RNA was
transcribed into complementary DNA by qScript cDNA SuperMix
(Quanta Biosciences) according to manufacturer’s instructions.
Quantitative reverse transcriptase polymerase chain reaction
(qPCR) was performed using a LightCycler® FastStart DNA
MasterPLUS SYBR Green I (Roche) on LightCycler 480 (Roche,
Applied Science). Transcript expression levels were analyzed using
LinRegPCR (37) and normalized to the geometric mean of three
reference genes: GAPDH, 36B4 andHPRT. Primer sequences used
are listed in Supplemental Table 1.

Western Blot Analysis
Cells were harvested and lysed in 50 mL ice-cold lysis buffer
containing 150 mM NaCl, 0.5% Triton X-100, 5 mM
Ethylenediaminetetraacetic acid (EDTA) and 0.1% SDS. Samples
were mixed with sample buffer, denatured, and separated by SDS-
PAGE before blotting onto polyvinyldifluoride membranes
(Millipore). Membranes were blocked with non-fat dry milk (5%
solution) and incubated overnight with the primary antibody.
Membranes were then washed and incubated with HRP-
conjugated secondary antibodies before visualizing the proteins
using western blot substrate (Roche).

Nuclear and Cytoplasmic Fraction
Separation
Cells were collected, transferred to a pre-chilled collection tube, and
washed twice with cold PBS. Cells were resuspended in 500 mL
hypotonic buffer (Tris 20 mM pH 7.4, NaCl 10 mM,MgCl2 3 mM),
incubated for 15 min on ice, and 25 mL 10% NP40 was added and
the solution was vortexed. The solution was then centrifuged for
10 min, and the supernatant was kept for analyses of the cytosolic
fraction. The pellet was resuspended in 50 mL of cell extraction
buffer (Tris 100 mM, NaCl 100 mM, Triton X100 1%, 1 mM
EDTA, 10% glycerol, 1 mM egtazic acid (EGTA), 0.1% SDS, 0.5%
deoxycholate, 20 mM Na4P2O7) and kept on ice for 30 min with
10 min vortex intervals. This fraction was then centrifuged for
30 min at 14,000xg and the supernatant was used for nuclear
fraction analyses.

Flow Cytometry
Cells were harvested and subsequently stained using the
antibodies and dyes for the antigens of interest (CD200R,
CD163 and CD80) before flow cytometric analysis using the
LSRFortessa and FACSCalibur (both BD Biosciences). FlowJo
(BD LSRFortessa™ cell analyzer) was used for data analysis.
October 2020 | Volume 11 | Article 550769
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RNA-Sequencing
Total RNA was isolated from macrophages using the RNAeasy
mini kit (Qiagen) and transcribed into cDNA by qScript cDNA
SuperMix (Quanta Biosciences) according to manufacturer’s
instructions. Subsequently, cDNA was sequenced in a 50 bp
single-ended fashion on the Illumina HiSeq4000 to a depth of
35 million reads at the Amsterdam UMC Core Facility Genomics.
Quality control of the reads was done with FastQC (v0.11.8) (38)
and summarization through MultiQC (v1.0) (39). Raw reads were
aligned to the human genome (GRCh38) using STAR (v2.7.0) (40)
and annotated using the Ensembl v95 annotation (41). Post-
alignment processing was performed through SAMtools (v1.9)
(42), after which reads were counted using the featureCounts
application (43) in the Subread package (v1.6.3) (44). Differential
expression (DE) analysis was performed using DESeq2 (v1.22.2)
(45) in the R statistical environment (v3.46.0) (46). The
statistical model used in this analysis was expressed as: ∼Donor +
Treatment + Tolerized + Treatment: Tolerized. Our research
question specifically pertained the interaction between tolerization
and HDAC3i treatment. Subsequent visualizations were done using
ggplot2 (v3.2.0) (47). Enrichment analyses were performed using
fgsea (v1.10.0) (48) and visualized using the GSEA plot function
provided by Rodrıǵuez-Córdoba (49).

Public Data Analyses
The list of tolerizable and non-tolerizable genes was downloaded
from the supplementary files published alongside Foster et al. (26)
whereupon enrichment analyses were performed as described above.
The transcription factors were obtained from the supplementary files
published alongside Lambert et al. (50) and used to filter the
differentially expressed genes for differentially expressed
transcription factors. HDAC3 chromatin immunoprecipitation
sequencing (ChIP-seq) peaks were obtained from untreated mice
bone marrow derived macrophages (BMDMs) as stored in
GSM2845618 and GSM2845619 from the dataset GSE106701 (51,
52). The ChIP-seq peak scores were log2 transformed and the mean
was taken across samples. Gene symbols were translated between
human and mice using the ortholog annotations available in
biomaRt (v2.44.1) (53).

Statistical Analyses of the FACS, qPCR,
and ELISA Data
Data are shown as mean ± standard error of the mean (SEM)
unless indicated differently. Statistical analysis was performed with
GraphPad Prism v5.0a (GraphPad Software Inc.). For multi-
experimental group analysis, data were subjected to one-way
ANOVA or Student’s t-test followed by post-hoc test (Dunnett)
for group differences. The two-tailed level of significance was set at
p ≤ 0.05 (*), 0.01 (**) or 0.001 (***) for group differences.
RESULTS

HDAC Activity Is Not Essential in
Macrophage Polarization
To understand endogenous HDAC expression, we quantified the
basal levels of HDACs in polarized macrophages. To this end,
Frontiers in Immunology | www.frontiersin.org 4
human primary CD14+monocytes were polarized intoM1 andM2
macrophages using IFNg and IL-4, respectively, or left untreated in
medium (M0 macrophages). We verified the polarization by
measuring the gene expression of CD163, CD64, and CD200R,
that mark M0, M1, and M2 phenotypes, respectively (54–58)
(Supplemental Figure 1A). In addition, we investigated the
cytokines typically secreted by M1 (TNFa and IL-6), or M2 (IL-
10) macrophages (Supplemental Figure 1B). Comparison of the
HDACs between the macrophage subsets suggested that HDAC
expression did not significantly differ (Supplemental Figure 2). As
previous reports demonstrated that the loss of HDAC3 augmented
M2 polarization in mouse macrophages (23), we focused on
HDAC3 to investigate whether a similar mechanism would be in
place for human macrophages. To this end, we treated primary
human CD14+ monocytes with Control (DMSO) or with 500 nM
of pan-HDACi, HDAC3i, or HDAC6i (36) prior to polarization to
M0, M1 and M2 macrophages as described above. We then
investigated the effect of HDACi on the polarization markers by
flow cytometry. We specifically studied the macrophage subset
markers CD163, CD200R and CD80 to distinguish macrophage
polarization. Pre-treating CD14+ monocytes with HDAC3i,
HDAC6i or pan-HDACi did not significantly alter the
polarization markers of macrophages derived from those
monocytes. However, non-statistically significant downregulation
in CD80+ cell frequency and CD80 protein surface expression in
HDAC3i and pan-HDACi treated cells was observed (Figures 1A,
B). This data suggests that HDACs may be redundant in the
polarization of human M1 or M2 macrophages.

We next addressed whether HDAC3 affected M1 activity
through intervening with the polarization process and IFNg
signaling (Figure 1C). First, we validated that HDAC3i
effectively enhanced acetylation at histone H3 at the
concentration used both in the presence and absence of IFNg.
Treatment of the M1 macrophages with HDAC3i displayed no
interference in IFNg-induced STAT1 phosphorylation, nor did it
affect STAT1 translocation into the nucleus (Figure 1C).
Together, our results demonstrate that HDAC3i does not
modify human macrophage polarization or the potential of
IFNg to prime cells, as suggested for mouse cells (25).
HDAC3 Inhibition Suppresses LPS Induced
Cytokine Secretion in Monocytes and M1
Macrophages but Not in M2 Macrophages
We next investigated whether the inhibition of HDACs reduced
the release of inflammatory cytokines in freshly isolated CD14+

monocytes as well as in M1 and M2 polarized macrophages. In
LPS-stimulated monocytes and M1 macrophages, pretreatment
with pan-HDACi and HDAC3i, but not HDAC6i, led to a dose-
dependent decrease of TNFa, p40 and IL-6 cytokine secretion
(Figure 2). The effects of HDAC inhibition on cytokine secretion
were observed to a lesser extent in M2 macrophages (Figure 2).
Overall, secretion of TNFa and p40 was not altered in M2
macrophages treated with pan-HDACi, HDAC3i or HDAC6i.
These results demonstrate a prominent role for HDAC3 in LPS
stimulated human monocytes and inflammatory M1
macrophages in the expression of inflammatory cytokines.
October 2020 | Volume 11 | Article 550769
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HDAC3 Blocks the Induction of LPS-
Tolerance in Inflammatory Activated
M1 Macrophages
Having observed that HDAC inhibition decreased cytokine
expression in M1 macrophages, we next addressed the role of
HDAC3 in repeated LPS challenge protocol. M1 andM2 polarized
macrophages were stimulated with a low concentration of LPS (10
ng/mL) overnight to induce LPS tolerance state, after which they
were washed and re-stimulated with a higher concentration of LPS
(100 ng/mL) (28, 59). As expected, we observed reduction of IL-6
protein expression in L/L M2 macrophages (Figure 3A), but not
in L/L M1 macrophages (Figure 3B). Notably however, treatment
Frontiers in Immunology | www.frontiersin.org 5
of monocytes with HDAC3i prior to M1 polarization allowed for
these cells to become tolerant, albeit not to the same extent as
observed for L/L M2 macrophages (Figure 3C). To validate the
previous observations, we performed siRNA-mediated knock-
down to reduce HDAC3 expression prior to polarization into
M1 macrophages, achieving approximately 80% reduction in
HDAC3 expression (Supplemental Figure 4A). HDAC3 knock-
down yielded a comparable protein (Figures 3C, D) and mRNA
expression reduction (Figures 3E, F) of IL6, confirming our
previous observations.

To investigate this further, we tested whether HDAC3i
reinstated tolerance by reducing IFNb secretion as was observed
A

B

C

FIGURE 1 | The effect of HDACi on macrophage polarization and IFNg-induced STAT1 phosphorylation. Primary human CD14+ monocytes were treated with DMSO
or 500 nM HDACi for 30 min prior to M0, M1 or M2 macrophages polarization, using media only, 50 ng/mL IFNg or 40 ng/mL IL-4, respectively. Protein expression
of macrophage markers CD163, CD200R and CD80 was assessed by FACS. (A) Data presented as percentage of CD163+, CD200R+ and CD80+ cells from total
cells or (B) by mean fluorescence intensity (MFI) of CD163, CD200R and CD80 proteins (n=3). (C) Primary human CD14+ monocytes were polarized to M1
macrophages with 50 ng/mL IFNg after which they were left untreated or treated with 500 nM HDAC3i for 0, 30 or 60 min, followed by a subsequent treatment with
50 ng/mL IFNg for 24h. Total protein was assessed by Western blot for acetylated Histone H3 (“Ac-H3”) and non-acetylated Histone H3 (“H3”), phosphorylated
STAT1 (“P-STAT1”) and non-phosphorylated STAT1 (“STAT1”) (left). Actin-a (“Actin”) was used as loading control. Protein levels were assessed for phosphorylated
STAT1, and Histone H3 in the cytoplasmic (“C”) and nuclear (“N”) fractions (right). GAPDH was used as loading control.
October 2020 | Volume 11 | Article 550769
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in IFNg-primed mouse macrophages (22, 27). However, when we
measured the secretion of IFNb in M1 macrophages derived from
monocytes pretreated with HDAC3i, an elevated rather than a
reduced IFNb level was observed (Supplemental Figure 3A).
Furthermore, the potential of IFNb to activate STAT1
phosphorylation was unaffected by any of the HDACis tested
(Supplemental Figures 3B, C). Taken together, HDAC3i
overcomes the potential of IFNg to block tolerance induction,
via a mechanism independent of enhanced IFNg or IFNb
production nor signaling.
HDAC3 Inhibition Causes Upregulation
of Gene Expression in LPS-Naïve M1
Macrophages
To address the pathways by which HDAC3i overcomes resistance
to tolerance induction in M1 macrophages, we profiled the
transcriptome through RNA-sequencing. Freshly isolated CD14+

monocytes were treated with HDAC3i or DMSO as a control prior
Frontiers in Immunology | www.frontiersin.org 6
to polarization to M1 macrophages using IFNg and then treated as
naïve control without any LPS stimulation (M/M), LPS repeated
challenge (L/L) or only treated once with LPS (M/L) after which the
transcriptome was profiled at the same time-point for all groups.
Principal component (PC) analysis revealed that the first principal
component (PC1) separated the M/M, M/L and L/L macrophages
treated with DMSO (Figure 4A). Surprisingly, the treatment of
HDAC3i had a profound effect onM/Mmacrophages (Figure 4A).
Little separation was observed for M/L macrophages between
HDAC3i- and DMSO-treated, whilst HDAC3i largely affected
gene expression in L/L macrophages (Figure 4A). To better
understand the effect of HDAC3i treatment on the
transcriptome, we compared HDAC3i- with DMSO-treated
macrophages across the different tolerization states (Figure 4B).
When investigating the associated pathways, we found that many
of the hallmark pathways that were upregulated in HDAC3i-
treated M/M macrophages, were downregulated in M/L and L/L
groups (Figure 4B). Our results demonstrate that while HDAC3i
upregulates multiple inflammatory pathways in M/M
FIGURE 2 | Cytokine production over increasing HDACi dosage in LPS-stimulated macrophages. Freshly isolated primary human CD14+ monocytes and polarized
M1 and M2 macrophages were treated with control DMSO or an increasing concentration of HDACi (12, 37, 111, 333 and 1000 nM) for 30 min. The cells were then
stimulated with 100 ng/mL LPS for 24h. Protein levels of pro-inflammatory cytokines TNFa and IL-6, as well as p40 in the supernatant were measured by ELISA.
The y-axis indicates the fold change in cytokine protein expression relative to DMSO control. From left to right: Monocytes, M1 macrophages and M2 macrophages.
*P < 0.05; **P < 0.01 (n=3).
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macrophages, such inflammatory processes are subsequently
downregulated in the presence of LPS.
Pretreatment With HDAC3i Partially
Recovers Tolerance to LPS in M1
Macrophages
We next compared the differences in gene expression between
HDAC3i and DMSO treatment upon repeated challenge with
LPS by means of an interaction analysis. We observed the
difference of differences to be statistically significant for 5,621
genes, where a majority (3,451) were downregulated in HDAC3i-
treated L/L versus M/L macrophages relative to DMSO-treated
Frontiers in Immunology | www.frontiersin.org 7
L/L versus M/L macrophages (Supplemental Table 2).
Enrichment analysis on gene sets defined as tolerizable and
non-tolerizable by Foster et al. for macrophages in mice (26)
indicated that the majority of the tolerizable genes were
downregulated in the HDAC3i pretreated macrophages,
whereas the non-tolerizable genes were seemingly less affected
(Figure 5A). Among the tolerizable genes we observed that the
TLR pathway in particular displayed an interesting pattern of
expression. Whereas genes encoding proteins downstream of the
TLRs, such as IL6, RANTES (CCL5), IL1b, MIP-1a and MIP-1b
were downregulated, CD14 as well as the TLR genes themselves
were upregulated (Figure 5B). Comparing HDAC3i- with
DMSO-treated macrophages indicated that most TLRs, and in
A B

D

E F

C

FIGURE 3 | HDAC3i and HDAC3 siRNA restored the impaired LPS-tolerance in M1 macrophages. Primary human CD14+ monocytes were polarized to M1 or M2
macrophages with IFNg or IL-4 for overnight, respectively, and then were tolerized (“L/L”) with 10 ng/mL LPS or were left non-tolerized (“M/L”) for 24 h after which
they were exposed to 100 ng/mL LPS for 4 h. As a control, LPS-naïve sample was included as well (“M/M”). (A) Protein level of IL-6 in the supernatant was
measured by ELISA in M2 (n=9) or in (B) M1 macrophages (n=9). (C) Primary human CD14+ monocytes were pretreated with DMSO control or 500 nM HDAC3i
30 min prior to polarization with IFNg. The cells were then “L/L” or “M/L”. IL-6 protein level was measured by ELISA (n=4). (D) Primary human CD14+ monocytes
were pretreated with scrambled siRNA control or HDAC3 siRNA 48h prior to polarization with IFNg. The cells were then “L/L” or “M/L”. IL-6 protein level was
measured by ELISA (n=4). (E) Relative gene expression of IL6 in DMSO- or HDAC3i-pretreated “M/L” and “L/L” macrophages (prepared as described above) (n=3).
(F) Relative gene expression of IL6 in scrambled siRNA- or HDAC3 siRNA-pretreated NT and T macrophages (prepared as described above) (n=3). *P < 0.05; **P <
0.01; ***P < 0.001; n.s.: not significant.
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particular TLR4, were upregulated for M/M and L/L
macrophages (Figures 5B, C). Pretreatment with HDAC3i or
HDAC3 siRNA enhanced TLR4 gene expression in M/M and L/L
macrophages (Figure 5C and Supplemental Figure 4B). We
therefore investigated protein expression of TLR4 alongside
CD14 by flow cytometry. In contrast to mRNA, cell-surface
expression of TLR4 and CD14 were found to be downregulated
in HDAC3i pretreated cells (Figure 5D). Together, our data
therefore shows that HDAC3i contributes to LPS-tolerance
through downregulation of gene sets referred to as “tolerizable”
including those belonging to the TLR pathway.
HDAC3 Inhibition Potentially Abrogates
HDAC3 From Binding Tolerizable
Transcription Factors
To understand whether HDAC3i affected global transcription,
we specifically investigated how transcription factors were
Frontiers in Immunology | www.frontiersin.org 8
affected by HDAC3i in both the L/L and M/L macrophages.
Interrogating the DEGs for 1639 curated human transcription
factors (TFs) (50) indicated that 388 TFs were significantly
differentially expressed (Figure 6A and Supplemental Table
3). Notably, the majority of the TFs (302 versus 86) were
significantly more downregulated in the L/L macrophages
relative to the M/L macrophages (Figure 6B). Overlapping the
differentially expressed TFs with the tolerizable genes (26)
indicated that HDAC3i resulted in an initial upregulation of
ETV3 , STAT5A , and NFKB1 in both M/M and M/L
macrophages, but a significant downregulation in the L/L
macrophages, which in the case of STAT5A and NFKB1
resulted in a lower expression relative to M/M macrophages.
Taken together, our results suggest that the ameliorative effect of
HDAC3 inhibition only occurs after the secondary
LPS stimulation.

To understand whether HDAC3 directly affects transcription
of TFs, we analyzed ChIP-sequencing data on HDAC3 binding
A

B

FIGURE 4 | Monocytes pretreatment with HDAC3i induced transcriptional changes of M1 macrophages. Primary human CD14+ monocytes were treated with
500 nM of HDAC3i or DMSO prior to polarization with IFNg overnight yielding M1 macrophages. The macrophages were then washed and exposed to 3 conditions:
non-treated with LPS naïve (“M/M”), non-tolerized (“M/L”) or tolerized (“L/L”). RNA was isolated from the macrophages 3 h after last LPS stimulation (n=3). (A)
Visualization of the first (“PC1”) and second (“PC2”) principal components calculated from the RNA-sequencing data annotated with the percentage explained
variance. (B) Hallmark enrichment analysis when comparing HDAC3i with DMSO-treated cells for the different tolerization states. The direction and color of the arrow
indicates the direction and size of the enrichment score, the size of the arrow represents is proportional to the –log10(p-value), and non-transparent arrows
represents significantly affected pathways.
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A
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D

C

FIGURE 5 | Comparison of the tolerized versus non-tolerized M1 macrophages derived from HDAC3i-pretreated CD14+ monocytes with the tolerized versus non-
tolerized M1 macrophages derived from HDAC3i-pretreated CD14+ monocytes. An interaction analysis was performed to identify genes that displayed differential
expression when comparing tolerized with non-tolerized for M1 macrophages derived from DMSO- or HDAC3i-treated primary human CD14+ monocytes (n=3).
(A) Gene set enrichment analysis performed on the tolerizable and non-tolerizable gene sets as defined by Foster et al. in mice. (B) The KEGG Toll like receptor
signaling pathway with colors representing the effect size obtained from interaction analysis. (C) Heatmap and gene set enrichment analysis of TLRs in “M/M”,
“M/L” and “L/L” macrophages. (D) FACS analysis of TLR4 and CD14 in “N” and “NT” M1 macrophages derived from DMSO-treated or HDAC3i-treated primary
human CD14+ monocytes. Data is presented as percentage or mean of florescence intensity (n=2).
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in mouse M-CSF differentiated bone marrow derived
macrophages (BMDMs) obtained from GSE106701 (51, 52).
Combining the reported peaks from samples GSM2845618 and
GSM2845619 with the differential expression analysis on TFs
indicated that mouse orthologs of the differentially expressed TF
genes HIVEP2, ELK3, IRF7, NFKB1, ARID5B, REL, KLF7, ETV3
and MXD1 were bound by HDAC3, with one peak associated to
the intergenic region of HIVEP2 belonging to the top 2.5%
strongest peaks (Figure 6C and Supplemental Table 4). Taken
together, many differentially expressed TFs appear subject to
HDAC3 activity, and could therefore explain the functional
effects of HDAC3i. However, further analyses of HDAC3 DNA
interaction did not reveal direct promotor binding of these
Frontiers in Immunology | www.frontiersin.org 10
affected TF (Supplemental Figure 5) (51, 52), suggesting that
HDAC3i likely affects TF gene expression indirectly.
DISCUSSION

This study suggests that HDAC3 is required for the organization
of the inflammatory gene program and supporting mechanisms
to evade tolerance induction in such a way that we are capable of
partially recapitulating tolerance towards LPS in M1
macrophages by treatment with HDAC3i. We showed that
HDAC3i resulted in the reduced expression of LPS-induced
pro-inflammatory cytokines after a second exposure to LPS in
A B

C

FIGURE 6 | HDAC3i-treatment effect on transcription factors. Gene expression of human tolerizable TFs across the non-tolerized and tolerized states was
interrogated and compared with HADC3 binding in mice macrophages. (A) Gene expression of tolerizable human TFs, obtained from Foster et al., 2007 and
Lambert et al., 2018, respectively, were presented as a volcano plot with the log2 fold-change on the x-axis and the –log10(p-value) on the y-axis. (B) The expression
in log2(counts) on the y-axis of the significantly differentially expressed TFs (ARID5B, CEBPD, ELK3, ETV3, FOXP4, HIVEP2, IRF7, JUNB, KLF7, MXD1, NFKB1,
PLAGL1, REL, SP140, STAT3, STAT5A, TAL1 and ZBTB32) for M/M, M/L and L/L macrophages, pretreated either with DMSO or HDAC3i. (C) Overlap of the
differentially expressed tolerizable TFs with the HDAC3-bound TFs in mouse BMDMs as obtained from GSE106701 samples GSM2845618 and GSM2845619. The
x-axis represents the log2(fold change), while the y-axis represents the mean log2(MACS peak score). Histogram on the right represents the mean log2(MACS peak
score) distribution (y-axis) for all the HDAC3-binding regions reported by Czimmerer et al. x-axis represents number of peaks (Npeaks). The red, blue and purple
dashed horizontal lines represent the mean, first and second standard deviations, respectively.
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human monocytes and M1 macrophages, but not in M2
macrophages, implying that the M1 macrophages have
developed some degree of tolerance towards LPS.

Through RNA-sequencing, we found that HDAC3i-pretreated
macrophages without any LPS exposure upregulate most of the
Hallmark gene sets, inflammatory pathways included. We are
unsure why this is the case. While searching for transcription
factors bound by HDAC3, we observed in the data published by
Czimmerer et al. that HDAC3 bound upstream of the IkBa-
encoding genes Nfkbiz and Nfkbia in mice, both of which were
also upregulated in HDAC3i pre-treated macrophages
(Supplemental Figures 6A, B) (51, 52). As IkBa protein
prevents NFkB nuclear translocation and gene expression in
both in human and mice, we speculate that this mechanism
explains how HDAC3 negatively regulates NFkB activity and
that HDAC3i reduces expression of NFkB dependent pro-
inflammatory genes as measured in this study. Despite this
initial pro-inflammatory phenotype, HDAC3i ameliorates the
pro-inflammatory phenotype after a second tolerization
exposure to LPS, which in the down-regulation of most
Hallmark gene sets. Further investigation into LPS revealed that
tolerizable genes, as defined by Foster et al. were notably more
downregulated in the HDAC3i pretreated M1 macrophages
compared to the DMSO-pretreated M1 macrophages. By
carefully investigating the LPS-induced TLR signaling pathway,
we observed that most of the downstream genes were
downregulated. Akin to the observations made by Porta et al.,
we observed that HDAC3i resulted in the downregulation of genes
located in both the MyD88-dependent and MyD88-independent
pathways (59). However, not all genes belonging to the TLR
signaling pathway are downregulated (26, 27, 60). In fact, we
observed that in a tolerant state relative to the non-tolerant state,
many TLR encoding genes were more upregulated with HDAC3i
pretreatment, albeit protein levels were decreased. An explanation
for this may be that HDAC3 regulates inflammatory gene
expression indirectly through processes that mediate mRNA
stability (16). Alternatively, we hypothesize that HDAC3i
stimulates endocytosis of TLR4 and CD14 (59) given that
HDAC3i significantly enhances the expression of genes involved
in facilitating the TLR4 endocytosis in tolerized versus non-
tolerized macrophages, such as CTNND1 or P120 (61), GMFG
(60), and affecting some genes that have a role in CD14
endocytosis such as TRPM7 (61) (Supplemental Table 2).

Despite our observations, there are multiple considerations.
First, the HDAC3i compound used, ITF3100, also displays a weak
affinity to HDAC6 (12, 24). However, at the concentrations we
used, ITF3100 was found to be selective for HDAC3 (12, 24).
Moreover, equimolar use of a specific HDAC6i did not affect
cytokine expression. Furthermore, silencing HDAC3i through
siRNA resulted in the same reduction in pro-inflammatory
cytokine expression as was seen when macrophages were
pretreated with HDAC3i. Second, we have not been able to
show the direct mechanism by which HDAC3 interferes with
tolerance induction. HDAC3 is known to form a super complex
with the NFkB subunit p50 NCor (NCoR-p50) complex in
tolerized cells (22). Previous studies in mice revealed that a
Frontiers in Immunology | www.frontiersin.org 11
double knockout for the NFkB subunit p50 gene resulted in
peritoneal macrophages that were unable to induce tolerance
(59, 60). HDAC3-mediated deacetylation of p50 by HDAC3 is
thought to be critical in tolerance induction and blocking
transcription of tolerizable genes (27). IFNg overcomes the
repressive activity of p50 through Bcl3 (28), resulting in the
absence of tolerance in M1 macrophages. It was suggested that
IFNg represses p50 and maintains IFNb levels such that
tolerizable genes remain active even after repeated exposures to
LPS in mice. Indeed, p50-/- mice macrophages were found to
display high levels of IFNb (38). However, we show that the
secretion of IFNb in HDAC3i treated cells was elevated rather
than reduced. Moreover, the potential of IFNb to activate STAT1
through phosphorylation remains unaffected under HDAC3i,
making the involvement of altered IFNb production in the
induction of tolerance less likely in human cells. However,
further mechanistic studies are necessary that investigate the
chromatin structure of STAT1-binding in the presence and
absence of HDAC3i.

Third, the exact protocols of inducing LPS tolerance in
macrophages remains a point of discussion (62). While most
studies appear to agree on an initial low concentration of LPS,
followed by second stimulation with a higher concentration of
LPS, the exact time between both stimulations differs. Where we
opted for 24 h stimulation with LPS (26, 63–66), some studies
have opted using a 16 h for the initial LPS treatment time (67),
whereas others used a 48 hour initial LPS-treatment to ensure
that the residual activity of LPS-induced genes is minimal (64).

Overall, our data suggest that HDAC3 acts as an epigenetic
brake on the induction of LPS tolerance. This observation
implicates HDAC3 as a potentially important anti-cytokine target
in inflammatory macrophages, the dysregulation of which has been
implicated in inflammatory disease, such as inflammatory bowel
disease (68) and rheumatoid arthritis (12). For instance, IFNgmay
antagonize anergy in mucosal macrophages (69), a process
potentially abrogated by HDAC3i. Our findings may therefore be
important in establishing HDAC3 as therapeutic target to reduce
macrophage cytokine production in the inflamed tissues and
inflammatory insults in immune disorders.
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