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Abstract

We study how large functional networks can grow stably under possible cascading overload

failures and evaluated the maximum stable network size above which even a small-scale

failure would cause a fatal breakdown of the network. Employing a model of cascading fail-

ures induced by temporally fluctuating loads, the maximum stable size nmax has been calcu-

lated as a function of the load reduction parameter r that characterizes how quickly the total

load is reduced during the cascade. If we reduce the total load sufficiently fast (r� rc),

the network can grow infinitely. Otherwise, nmax is finite and increases with r. For a fixed

r(< rc), nmax for a scale-free network is larger than that for an exponential network with the

same average degree. We also discuss how one detects and avoids the crisis of a fatal

breakdown of the network from the relation between the sizes of the initial network and the

largest component after an ordinarily occurring cascading failure.

Introduction

Numerous complex systems in nature and society can be simplified and abstracted by describ-

ing them as networks, in which nodes and edges represent constituent elements and their

interactions, respectively. Extensive studies [1–3] have revealed common statistical features of

real-world complex networks, such as the small-world property [4], the scale-free property [5],

community structures [6], and degree-degree correlations [7]. In order to clarify the origin of

these features and/or properties of various dynamics on such networks, so many network

models have been proposed so far. In most of previous network models, the number of nodes

N, namely the network size, is treated as an a priori given parameter. The network size can

then take any value, and, as is often the case, the limit of infinite N is taken in order to simplify

the analysis. Thus, these models implicitly assumes that networks are stably present no matter

how large networks grow. This assumption is, however, not always valid in real-world systems.

In an ecological network representing a closed ecosystem, for example, too many species desta-

bilize the ecosystem and the number of species (nodes in the ecological network) cannot

increase unboundedly [8, 9]. Also in a trading network, too many firms make the network

fragile because of unstable cartels [10], increase of financial complexity [11, 12], possible large-

scale chain-bankruptcy, and other risks [13]. As in these examples, due to intrinsic instability
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of large-scale networks, some sort of networks have their own limit in sizes only below which

they can be stable [14, 15].

It is important to study limit sizes of connected networks and find a way to control them.

Such information for functional networks is particularly crucial, because unstable functional

networks are directly connected to the instability of our modern society supported by them.

Functions provided by functional networks are guaranteed by global connectivity and normal

operation of each node (or edge). However, the larger a network grows, the lower the probabil-

ity that all the nodes operate normally becomes. When failures are caused by overloads, even a

few failures can spread to the entire network through a cascading process, which leads the fatal

breakdown of the network [16–21]. It is then significant to investigate how large functional

networks can grow, while maintaining its global connectivity, by overcoming cascading over-

load failures. In this paper, we evaluate the upper limit of connected network size above which

the network becomes unstable by cascading overload failures and discuss how the maximum

stable size can be controlled. We examine uncorrelated random networks with Poisson and

power-law degree distributions by employing the model of cascading failures triggered by tem-

porally fluctuating loads [22].

Model and methodology

Model

In this section, we outline the model of cascading failures induced by temporally fluctuating

loads [22]. In functional networks such as power grids, the Internet, or trading networks, some

sort of “flow” (electric current in a power grid, packet flow in the Internet, and money flow in

a trading network) realizes their functions. And flow, at the same time, plays a role of “loads”

in these networks. The load on a node usually fluctuates temporally and the node fails if the

instantaneous value of the load exceeds the node capacity. Since flux fluctuations at a node

exhibit the same scaling behavior with fluctuations of the number of non-interacting random

walkers on the node [23, 24], Kishore et al. modeled fluctuating loads by random walkers mov-

ing on a network and calculated the overload probability that the number of walkers exceeds

the range allowed for a node [25]. The model of cascading failures employed in the present

work utilizes this overload probability.

In a connected and undirected network with M0 edges, the probability hk(w) that w random

walkers (loads) exist on a node of degree k is presented by

hkðwÞ ¼
W0

w

� �

pwk ð1 � pkÞ
W0 � w; ð1Þ

where W0 is the total number of walkers and pk = k/2M0 is the stationary probability to find a

random walker on a node of degree k [26]. This leads a natural definition of the capacity qk as

qk ¼ hwik þmsk; ð2Þ

where m is a real positive parameter characterizing the node tolerance, and hwik and σk
are the average and the standard deviation of hk(w), which are given by hwik = W0pk and

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0pkð1 � pkÞ

p
, respectively. Since the overload probability FW0

ðkÞ is the probability of

w to exceed qk, we have [25]

FW0
ðkÞ ¼

XW0

w¼bqkcþ1

W0

w

� �

pwk ð1 � pkÞ
W0 � w

¼ Ik=2M0
ðbqkc þ 1;W0 � bqkcÞ;

ð3Þ
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where Ip(a, b) is the regularized incomplete beta function [27] and bxc denotes the largest inte-

ger not greater than x.

Using the above overload probability, the cascade process of overload failures is defined as

follows [22]:

(i). Prepare an initial connected, uncorrelated, and undirected network G0 with N nodes

and M0 edges, in which totally W0 random walkers exist, and determine the capacity qk
of each node according to Eq (2). W0 is set as W0 = aM0, where the parameter a is the

load carried by a single edge.

(ii). At each cascade step τ, reassign Wτ walkers to the network Gt at step τ, where the total

load Wτ is given by

Wt ¼
Mt

M0

� �r

W0 : ð4Þ

Here, Mτ is the total number of edges in the network Gt and r is a real positive

parameter.

(iii). For every node in Gt, calculate the overload probability given by

FWt
ðk0; kÞ ¼ Ik=2Mt

ðbqk0
ðW0Þc þ 1;Wt � bqk0

ðW0ÞcÞ; ð5Þ

where k0 and k are the initial degree and the degree of the node at cascade step τ, and

remove nodes from Gt with this probability.

(iv). Repeat (ii) and (iii) until no node is removed in the procedure (iii).

The reduction of the total load in the procedure (ii) corresponds to realistic situations in

which the total load is reduced to some extent during a cascade process to prevent the fatal

breakdown of the network function. When a company goes bankrupt on a trading network,

for example, a large-scale chain bankruptcy would be prevented by the reduction of the total

debt (loads) realized by financial bailout measures. The exponent r characterizes how quickly

the total load decreases with decreasing the network size, which is called the load reduction

parameter.

During the cascade, the network Gt might be disconnected even though the initial network

G0 is connected. In such a case, a walker on a connected component cannot jump to other

components. Therefore, the amount of walkers on each component is conserved in the ran-

dom walk process. The overload probability then becomes dependent on how the total load is

distributed to disconnected components. Thus the overload probability deviates from Eq (5).

This deviation is, however, small and the effect of disconnected components can be approxi-

mately neglected as argued in details in Ref. [22]. The validity of this approximation will be

confirmed in the next section by numerical simulations in which walkers distributed propor-

tionally to the number of edges in each component cannot move to other components.

Size of the largest component

We examine the stability of a network under cascading overload failures described above by

analyzing the size nf of the largest connected component in the network after completed the

cascading process. If nf is very small, the initial network is considered to be unstable. The

quantity nf obviously depends on the initial network size N, and the maximum value nmax of

nf with respect to N provides the upper limit of the size of stable connected networks in a given

cascading condition. The surviving component of size nmax may experience further cascading

failures after a long time, but simultaneously the component can grow during this period. In
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the competition between the growth and decay processes, the component smaller than nmax

can, in substance, stably grow up to nmax. Therefore, the connected network size fluctuates

around this maximum size nmax.

In order to calculate the maximum stable size nf, we construct a master equation for the

probability Pτ(k0, k) that a randomly chosen node has the degree k at cascade step τ and the

initial degree k0. It is convenient to introduce another probability ϕτ(k) of a node adjacent to a

randomly chosen node of degree k to experience an overload failure at cascade step τ. This

probability is independent of k for uncorrelated networks and is given by [22]

�t ¼
X

k0

Xk0

k0¼1

k0Ptðk0; k0Þ
hkit

FWt
ðk0; k

0Þ; ð6Þ

where hkiτ is the average degree of Gt. We then formulate the master equation for Pτ(k0, k) as

Ptðk0; kÞ ¼
X

k0�k

Pt� 1ðk0; k
0Þ

k0

k

� �

�
k0 � k
t� 1
ð1 � �t� 1Þ

k
½1 � FWt� 1

ðk0; k
0Þ�þ dk0FWt� 1

ðk0; k
0Þ

� �

: ð7Þ

In this equation, we do not remove overloaded nodes actually but leave them in the system as

zero-degree nodes, which makes the theoretical treatment easier. The right-hand side of this

equation represents the probability that a degree-k0 node in Gt� 1 becomes a node of degree k at

cascade step τ. The first term describes the situation that the degree-k0 node does not experi-

ence an overload failure and k0 − k nodes adjacent to this node fail. The second term stands for

the case that the degree-k0 node itself fails and becomes a zero-degree node. Solving numeri-

cally Eq (7) with the aid of Eq (6), we can calculate Pτ(k0, k) iteratively starting from

P0ðk0; kÞ ¼ P0ðkÞdkk0
, where P0(k) is the degree distribution function of G0. According to the

procedure (iv), we stop this iterative calculation at step ~t satisfying the condition

X

k;k0

FW~t
ðk0; kÞP~tðk0; kÞ <

1

N
; ð8Þ

which implies that the expectation number of overloaded nodes becomes less than unity.

We can obtain the largest connected component size nf at the final cascade step ~t from the

degree distribution P~tðkÞ of G~t which is given by P~tðkÞ ¼
P

k0�k
P~tðk0; kÞ. Employing the gen-

erating function formalism, nf is calculated by [28]

nf ¼ N 1 �
X

k

P~tðkÞu
k

" #

; ð9Þ

where u is the smallest non-negative solution of

u ¼ G1ðuÞ; ð10Þ

and G1(x) is the generating function of the remaining degree distribution, which is defined by

G1ðxÞ ¼
1

hkit

X

k
ðkþ 1ÞP~tðkþ 1Þxk: ð11Þ

It should be noted that Eq (9) does not mean that nf is proportional to N because

1 �
P

kP~tðkÞuk depends on N.
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Results

First, we calculated nf for the Erdős-Rényi random graph (ERRG) as an initial network G0. In

this case, the binomial degree distribution function for G0 is given by

P0ðkÞ ¼
N � 1

k

� �

pkð1 � pÞN� k� 1
; ð12Þ

where p = hki0/N. In this work, we fix the initial average degree as hki0 = 5.0. Although initial

networks having this average degree are not completely connected with isolated nodes at a

very low rate, this does not affect our conclusion. Fig 1 shows nf as a function of the initial net-

work size N for various values of the load reduction parameter r. For these results, the node tol-

erance parameter m and the load carried by a single edge, a, are chosen as m = 4.0 and a = 2.0.

The lines in Fig 1 represent nf calculated by Eq (9) and the symbols indicate the results

obtained by numerical simulations performing faithfully the cascade process from (i) to (iv)

described in the Model section. In the numerical simulation, the overload probability at cas-

cade step τ is calculated under the condition that random walkers cannot jump to other com-

ponents. Namely, instead of Eq (5), we adopt the overload probability of a node in the α-th

component given by

FWa
t
ðk0; kÞ ¼ Ik=2Ma

t
ðbqk0
ðW0Þc þ 1;Wa

t
� bqk0

ðW0ÞcÞ; ð13Þ

where Ma
t

is the number of edges in the α-th component of Gt and Wa
t
¼ ðMa

t
=MtÞWt. The

remarkable agreement between the symbols and the lines suggests that our approximation by

Eq (5) is quite accurate.

The quantity nf shown in Fig 1 is exactly equal to N as long as N< N� (� 103), regardless of

the value of r. This implies that the network never experiences overload failures until the net-

work grows up to N�. Thus, N� is determined by

N� ¼
1

P
kFW0
ðkÞP0ðkÞ

; ð14Þ

which does not depend on r. When the network grows larger than N�, it starts to decay by ini-

tial failures and subsequent avalanche of failures. The largest component size nf after the cas-

cade then becomes smaller than N, but still increases with N, at least unless N is much larger

than N�. For r� 0.8, when N exceeds a certain value Nc(r), nf rapidly decreases with N. There-

fore, nf becomes maximum at N = Nc. This maximum value of nf is nothing but nmax men-

tioned at the beginning of the Size of the largest component section. Fig 1 clearly shows that

the maximum stable size nmax is an increasing function of r. This is because a large value of r,
namely a rapid decrease of the total load Wτ during the cascade, prevents large-scale cascading

failures in our model.

The r dependence of nmax is closely related to the percolation transition by cascading over-

load failures. As pointed out by Ref. [22], there exists a critical value rc above which the largest

component size diverges in proportion to N in the thermodynamic limit. Thus, nf goes to

infinity as N!1 for r� rc, which implies the absence (divergence) of nmax. On the other

hand, for r< rc, nf is finite and varies with N to be maximized at Nc as mentioned above. As a

consequence, nmax increases with r for r< rc and diverges at r = rc. A finite-size scaling analysis

[29] predicts that nmax for r< rc behaves as nmax / jr � rcj
b� n�

if r is close enough to rc, where

the correlation volume exponent ν� and the order parameter exponent β characterize Nc and

nmax/N as Nc / jr � rcj
� n�

for large enough Nc and nmax/N/ (r − rc)
β for large enough N,

respectively. Such a behavior is demonstrated by the solid line in Fig 2 for the ERRG. The
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result suggests that the load control during a cascade is crucial to realize large functional

networks.

How is the maximum size nmax affected by properties of the initial network G0? To clarify

the influence of the degree inhomogeneity in G0, we first calculate nmax for scale-free (SF)

Fig 1. Relation between the largest component size nf and the initial network size N. (a) Largest component size nf

after completing cascading overload failures as a function of the size N of initial ERRGs, for various values of r. The thick

lines indicate nf calculated by Eq (9) and filled and open circles on thick lines show the results obtained by the numerical

simulation described in the main text. The thin straight line is a guide to the eyes for nf = N. (b) Relative largest component

size nf/N as a function of N. Lines have the same meanings as those in (a). All the results are calculated for hki0 = 5.0,

m = 4.0, and a = 2.0. The inset shows the r dependence of nmax/Nc. Lines in the inset represent results for ERRGs with

different values m and a.

https://doi.org/10.1371/journal.pone.0181247.g001
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networks with the degree distribution given by

P0ðkÞ ¼
0 if k < kmin or k > kmax

c
kg þ dg

if kmin � k � kmax;
ð15Þ

8
><

>:

where d, γ, kmin, kmax and the normalization constant c are real positive constants. The degree

distribution has asymptotically a power-law form, i.e., P(k) * k−γ for k� d. The average

degree hki0 can be controlled by d for a specific value of γ. The results for various scale-free

networks are shown in Fig 2. The maximum stable sizes for the SF networks are obviously

greater than that for the ERRG. This implies that an SF network is more stable than the ERRG

with the same average degree, which is consistent with the previous result showing the robust-

ness of SF networks against cascading overload failures [22]. Next, we calculate nmax for several

combinations of the node tolerance parameter m and the load carried by a single edge a. The

results depicted in Fig 3 clearly indicate that nmax increases with both m and a. It is obvious

that the larger the node tolerance parameter m, the more stable the network consisting of toler-

ant nodes becomes. The monotonous increase of nmax with a is due to the fact that FWt
ðk0; kÞ

given by Eq (5) is a decreasing function of a.

It is interesting to notice that the maximum stable size nmax shown in Fig 1(a) is roughly

proportional to Nc. In fact, the ratio nmax/Nc is about 0.1 to 0.15 independently of r, unless r

Fig 2. Maximum stable size nmax as a function of the load reduction parameter r. Three lines represent

the results for the ERRG (solid line) and SF networks with the degree distributions P0(k) given by Eq (15) with

γ = 7.0 (dashed line), 6.0 (dotted line), 4.0 (dashed-dotted line), and 2.5 (dashed-two dotted line). The

minimum and maximum degrees kmin and kmax in Eq (15) are set as 1 and 80, respectively. All the results are

calculated for hki0 = 5.0, m = 4.0, and a = 2.0.

https://doi.org/10.1371/journal.pone.0181247.g002
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is close to rc. Here we should note that this ratio varies with Nc according to nmax=Nc / N � b=n�

c

if r is close enough to rc. The ratio nmax/Nc is also insensitive to the parameters m and a, as

shown in the inset of Fig 1(b). Furthermore, as shown by Fig 1(b), the ratio nf/N slowly

decreases with N if nf/N≳ nmax/Nc but turns to a rapid decrease when nf/N becomes less than

nmax/Nc(* 0.1). These empirical facts give us significant information about the stability of

the network. If the size of the largest component after cascading overload failures falls close

to 10% to 15% of the size of the network before the cascade, the network is in immediate dan-

ger of a fatal breakdown. In order to accomplish further stable growth of the network, we need

to raise the load reduction parameter r. Of course, the value of nmax/Nc is peculiar to the pres-

ent cascade model. However, it has been found that qualitative properties of our model are

robust against changes in details of the model as long as failures are induced by temporally

fluctuating loads [22]. Therefore, even for a real-world functional network, the ratio nf/N is

supposed to decrease drastically with N when this ratio falls below a certain value. Our results

suggest that we must take measures to prevent a fatal breakdown of a functional network if the

decreasing rate of nf/N with increasing the network size becomes higher than its ordinary

value.

Fig 3. Maximum stable size nmax for the ERRG with hki0 = 5.0 as a function of the load reduction parameter r. Four lines

represent the results for different combinations of the node tolerance parameter m and the load carried by a single edge a.

https://doi.org/10.1371/journal.pone.0181247.g003
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Conclusions

We have studied how large a functional network exposed to cascading overload failures can

grow stably and evaluated the maximum stable size nmax above which the network would face

the crisis of a fatal breakdown. To this end, we employed the model of cascading overload fail-

ures triggered by fluctuating loads [22] which is described by random walkers moving on the

network [25]. In this model, how quickly the total load is reduced during the cascade to pre-

vent the fatal breakdown is quantified by the load reduction parameter r. The maximum stable

size nmax was calculated by using the generating function technique and solving the master

equation for the probability Pτ(k0, k) that a randomly chosen node has the degree k at cascade

step τ and the initial degree k0. Our results show that nmax is an increasing function of r and

diverges at a certain value rc. This implies that the faster the total load is reduced during the

cascade, the larger the network can grow, and we can realize an arbitrarily large network if the

total load is sufficiently quickly reduced (r� rc). It has been also clarified that the degree inho-

mogeneity improves stability of the network. More precisely, for a given r(< rc), nmax for a

scale-free network is larger than that for the Erdős-Rényi random graph with the same average

degree. Furthermore, from the empirical relation between nmax and the network size Nc giving

nmax, we argued how one detects and avoids the crisis of the network breakdown. The present

results suggest that a certain relative size of the largest component after cascading failures

could be a sign for the impending network collapse. For further stable growth of the network,

a more rapid reduction of the total load is required during a cascade of overload failures.

In this paper, we investigated only uncorrelated networks, while most of real-world func-

tional networks have correlations between nearest neighbor degrees. For a correlated network,

the probability ϕτ of a node adjacent to a randomly chosen node of degree k to experience an

overload failure at cascade step τ depends on k. This is in contrast to the case of uncorrelated

networks, where ϕτ given by Eq (6) is independent of k. Thus, the analysis becomes much

more complicated for correlated networks than the present study. However, we suppose that

our conclusion does not change qualitatively though nmax depends on the strength of the

degree correlation. A positive (negative) degree correlation simply makes a network robust

(fragile) against various types of failures [30–34]. Thus, it seems plausible that also for our fail-

ure dynamics the degree correlation merely shifts the value of nmax upward or downward. Nev-

ertheless, the relation between the stability of a functional network and its size must be

strongly affected by the model of cascading failures. We hope that the problem of spontaneous

instability in largely grown networks will be studied more extensively in diverse ways and

models.
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