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For routine pathology diagnosis and imaging-based biomedical research, Whole-slide image (WSI) analyses have been
largely limited to a 2D tissue image space. For a more definitive tissue representation to support fine-resolution spatial
and integrative analyses, it is critical to extend such tissue-based investigations to a 3D tissue space with spatially
aligned serial tissue WSIs in different stains, such as Hematoxylin and Eosin (H&E) and Immunohistochemistry
(IHC) biomarkers. However, such WSI registration is technically challenged by the overwhelming image scale, the
complex histology structure change, and the significant difference in tissue appearances in different stains. The goal
of this study is to register serial sections from multi-stain histopathology whole-slide image blocks. We propose a
novel translation-based deep learning registration network CGNReg that spatially aligns serial WSIs stained in H&E
and by IHC biomarkers without prior deformation information for the model training. First, synthetic IHC images
are produced fromH&E slides through a robust image synthesis algorithm.Next, the synthetic and the real IHC images
are registered through a Fully Convolutional Network with multi-scaled deformable vector fields and a joint loss opti-
mization. We perform the registration at the full image resolution, retaining the tissue details in the results. Evaluated
with a dataset of 76 breast cancer patients with 1 H&E and 2 IHC serial WSIs for each patient, CGNReg presents prom-
ising performance as compared with multiple state-of-the-art systems in our evaluation. Our results suggest that
CGNReg can produce promising registration results with serial WSIs in different stains, enabling integrative 3D
tissue-based biomedical investigations.
Introduction

Histopathology whole-slide images (WSIs) of tissue sections provide
high resolution tissue details critical for disease diagnosis and study. Such
high resolution WSIs have been largely analyzed in a two-dimensional
(2D) tissue imaging space by far.1–4 As each 2DWSI can only capture infor-
mation from the tissue cutting plane, it is inevitably subject to information
loss and sampling bias problems. Therefore, it is critical to extend such anal-
yses to a three-dimensional (3D) tissue space, especially for those studies re-
quiring a definitive tissue characterization.5 In the meanwhile, such 3D
tissue-based methods are urged by the rapidly increasing analysis and clin-
ical demand on spatial integration of multi-stained serial WSIs. In particu-
lar, there is a strong demand to integrate Hematoxylin and Eosin (H&E)
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WSIs capturing histology tissue phenotype information with serial Immu-
nohistochemistry (IHC) WSIs visualizing the underlying disease molecular
underpinnings for a comprehensive understanding of tumor micro-
environment.

In the era of precision medicine, biomedical and cancer studies have
been strongly supported by high-resolution, and multi-stained tissue-
based microscopic pathology image analytics, as it provides a new av-
enue to describe cellular, molecular and tissue-level interactions in an
integrative manner.7,8 This emerging research field extracts key mor-
phological, spatial, and molecular information from high-resolution
pathology images to enable a more precise understanding of biomarker
interactions, a prerequisite for optimized clinical decisions and
targeted therapy development.
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Due to convenience, cost, and preparation technique availability, im-
munohistochemistry (IHC) has been a widely used to visualize disease-re-
lated molecular biomarkers without loss of spatial tissue reference in
most pathologic review processes. For a comprehensive characterization
and understanding of tissue phenotypic and molecular signatures, adjacent
tissue slides in different stains are required to be jointly studied. Thus, there
is a crucial need to spatially map molecular signatures from IHC to the ad-
jacent H&E tissue slides within the same histology space, enabling multi-
modal microscopy integrative analysis for better clinical prognostic and
prediction power.9,10 In breast cancer, for example, Ki67 biomarker from
IHC is widely used as a predictor for the recurrence-free survival rate and
pathological complete response to the neoadjuvant chemotherapy.11,12 In
current clinical practice, the intensity of proliferative Ki67 positive bio-
markers is measured in tumor regions that can be readily recognized by
H&E slides. This leads to the need to combine biomarker information
from IHC with tumor information from serial H&E slides. Another com-
monly IHC biomarker Phosphohistone H3 (PHH3) is used to measure the
mitotic activity informative for the breast tumor grading by theNottingham
Grading System13 and neoadjuvant chemotherapy response prediction in
breast cancer.14 As the mitosis is a sub-phase of the entire proliferation
cycle,14,15 an integrated use of mitosis and proliferation information can
more precisely characterize the tumor proliferation momentum. The devel-
opment of such new prognostic biomarkers thus requires to investigate
tumor tissues, proliferation, and mitosis biomarkers in a single tissue
space that can better represent proliferation and the mitotic activity inten-
sity in tumors. Such phenotype–genotype integrative analyses for new pre-
dictive biomarkers for clinical decision-making make it an urgent call to
develop registration tools that support spatial alignment of pathology
images of serial tissue sections in different stains.

However, WSI registration is technically challenging. Existing methods
only achieve a limited success due to the overwhelmingly large image scale,
complex histology structure change across adjacent slides, and significant
tissue appearance difference in different staining.16 Although a successful
3D histology image reconstruction method has been developed, it requires
ground-truth images (i.e. block-face images) and image stacks of relatively
limited size (e.g. 1008 × 756) for each slide.6

Recently, the ANHIR challenge was organized to systematically com-
pare the performances of image registration algorithms for microscopy his-
tology images.16Mostmethods described in the ANHIR challenge are based
on a rigid registration followed by a non-rigid registration. Rigid registra-
tion is determined by RANSAC from feature points, whereas non-rigid reg-
istration is performed by local affine transformation, demons algorithms, or
interpolations. For example, a 2-stage image registration method is pro-
posed where the registration is formulated as an optimization problem
with an objective function defined by Normalized Gradient Fields
(NGF)-based distance measure.17 In another study, a fine-tuning method
is proposed based on integrated landmark evaluation by texture and spatial
proximity measures.18 In a study on multi-stained histology image registra-
tion, a method is developed by the feature-based affine registration, rotation
alignment followed by non-rigid alignment with Demons algorithm.19

Moreover, a modified SIFT method is applied to image registration with
color interpolation.20 WSIReg is another method for WSI registration based
on elastix.21 However, all thesemethods require featurematching that highly
depends on feature engineering and parameter tuning.

With the emergence of deep learning methods, it is possible to leverage
the image-to-image translation for spatial alignment of images in different
appearances.22–24 Translation-based approaches use Generative Adversar-
ial Network (GAN) to translate images from one modality (e.g. H&E) to an-
other (e.g. IHC), simplifying the image registration task. Although much
simplified, such an analysis still presents 2 significant challenges. First,
H&E and IHC WSIs are unpaired data as each pathology tissue slide is
stained only once in most clinical practice. Second, it is time-consuming
and financially costly to have accurate landmark pair annotations from se-
rial WSIs for registration. Recently, CycleGANwith the cycle consistent loss
has been developed to learn an image-to-image mapping between two do-
mains from unpaired data.25 The cycle consistency loss for the adversarial
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training process forces the generator to find an accurate mapping between
2 different domains with unpaired data. By this approach, synthetic slice-
wise computed tomography data has been produced from magnetic reso-
nance images.26 In another study on thoracic and abdominal organs, a
mono-modal image registration with CycleGAN presents a comparable per-
formance to the multi-modal deformable registration with paired image
data.22 Furthermore, a deformation field is used for MRI-CT registration
in a dual-stream fashion with CycleGAN.27 In this work, the MIND-based
loss term added to CycleGAN loss describes the local image structure. As
such a loss term is computedwith grayscale images, and such amethod can-
not be applied to multi-stained pathology image data directly. In another
study, a CycleGAN-based image generation method generates IHC
histology images from H&E images without any annotation28 where the
class-related information is added as an additional input patch channel.
Therefore, this method is not directly applicable to our study with multi-
stained pathology image data.

In this paper, we present a new translation-based deep learning registra-
tion approach (CGNReg) for serial WSIs in different stains. It consists of an
image translation and an image registration module. The image translation
module produces synthetic IHC slides (i.e. synIHC images) from real H&E
slides through a robust image synthesis algorithm. With Fully
Convolutional Network (FCN) model29 as a building block, the synIHC
and the real IHC image pairs are registered through a multi-scale-based
FCN registration model. The major contributions of this paper are summa-
rized in multiple folds:

– We develop amodified CycleGANmethod to generate synthetic IHC pa-
thology images (i.e. synIHC) fromunpaired serial H&E pathology slides.
To enhance the image stain translation ability, we propose to adopt a
perceptual loss in the CycleGAN loss function, resulting in a better
image mapping from H&E to synthetic IHC images. Such an image
translation enables a better registration between synIHC and real IHC
images.

– We extend the original FCNmodel to amulti-scaled architecture for reg-
istration. Our proposedmulti-scale FCN uses a coarse-to-finemulti-scale
deformable image registration strategy that combines the Displacement
Vector Fields (DVFs) at multiple resolutions for better image alignment.

– CGNReg is an unsupervised registration approach and can be efficiently
trained without ground-truth image deformation information.

– Instead of resizing images to a lower resolution,16 we recover the WSI
registration results with patch-based image registration results at the
highest image resolution. Therefore, high resolution tissue details
from WSIs are retained.

Methods

We develop a deep learning-based model CGNReg to register serial IHC
toH&E histopathology images formolecular biomarker and pathology hall-
mark integration. It is an end-to-end deep learning process in 2 stages. First,
we develop an image translation module with a modified CycleGAN to
translate real H&E references to synthetic IHC image patches (i.e. synIHC).
Next, we develop a multi-scale FCN in the image registration module to es-
timate the spatial mapping from the real IHC to the synthetically produced
synIHC image patches. Then, the real IHC image is transformed to the ref-
erence H&E image space via Spatial Transformation Network (STN).30 Fi-
nally, individual registered image patches are spatially assembled to
recover registered WSI blocks. We present the overall schema of CGNReg
in Fig. 1.

Unpaired image translation

Although serial slides in different stains look similar at the global tissue
level (Supplemental Figure S1), they are unpaired at the pixel level.
Although CycleGAN can be applied to unpaired data,25,28,31 we propose a
modified CycleGAN for an enhanced H&E-IHC image translation. Illus-
trated in Fig. 2, the modified CycleGAN consists of an encoder and a



Fig. 1. The overall schema of the developed CGNRegmethod. (A) H&E images serve as reference images and they are translated to synthetic IHC image patches (i.e. synIHC).
(B) Our image registrationmodule estimates the spatial mapping from the real IHC patches to the synthetically produced synIHC image patches, and transforms the real IHC
image patch to the reference H&E image space. (C) Individual registered image patches are spatially assembled to recover registered WSI blocks.
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decoder. Both have the same network structure that includes a generator
and a discriminator. The generator translates an image between stain do-
mains and the discriminator assesses the generated image quality. The
modified CycleGAN model consists of 2 generators GHE and GIHC. In the
Fig. 2. The overall schema of the modified CycleGAN with the forward and backward tr
(red solid line). (A.1–A.2) The generator GHE translates a real IHC to a synthetic H&E (sy
IHC (synIHC) image. (B) The backward translation information flow (black dashed line
Next, the generator GHE translates the synIHC to a synHE image. (C) The discrimina
between the translated (i.e. synHE) and real H&E image. (C.3–C.4) The discriminator
dashed lines indicate the source of information for individual loss term computa
reconstruction loss associated with H&E or IHC images.

3

forward translation process, the generatorGHE translates a real IHC to a syn-
thetic H&E image (i.e. synHE), while GIHC translates a synHE to a synthetic
IHC image (i.e. synIHC) denoted by the red arrows. Similarly, the reverse
translation goes from H&E to synIHC and then from synIHC to synHE
anslation information flow. (A) The forward generator translation information flow
nHE) image. (A.3–A.4) Next, the generator GIHC translates the synHE to a synthetic
). (B.1–B.2) The generator GIHC translates a real H&E to a synIHC image. (B.3–B.4)
tor information flow (green line). (C.1–C.2) The discriminator DHE distinguishes
DIHC distinguishes between the translated (i.e. synIHC) and real IHC image. Blue
tion, including the adversarial loss, the cycle-consistent loss, and the feature



M. Roy et al. Journal of Pathology Informatics 14 (2023) 100311
(i.e. the black arrows). Each generator module consists of 2-dimensional
fully convolutional networks with 9 residual blocks and 2 fractionally
strided convolution layers.34,32 Additionally, the model has 2 discrimina-
tors DHE and DIHC for distinguishing between translated (i.e. synHE) and
real H&E images, and between translated (i.e. synIHC) and real IHC images,
respectively. Each discriminator has a fully convolutional architecture to
predict if overlapping image patches of size 70 × 70 by pixels are real or
synthetic.33 The leaky ReLU activation function with a factor 0.2 is used.
All data are normalized with the instance normalization.

The CycleGAN training loss includes the adversarial loss (i.e. LDHE
and

LDIHC
) from two discriminators and the cycle-consistent loss (Lcyc).25 Al-

though the cycle-consistent loss is designed to prohibit the generators
from generating images not related to the inputs, this loss by itself is not suf-
ficient to enforce either feature or structural similarity between translated
and real images. To address this problem, we adopt the VGG-16 based per-
ceptual loss function as an additional constraint in the CycleGAN loss func-
tion. Such a perceptual loss addition helps regularize the tissue content and
the stain style discrepancies, as it canmeasure high-level perceptual and se-
mantic differences between each image pair.34 Such a perceptual loss is pro-
duced by a deep convolutional neural network denoted as ϕ, specifically a
16-layer VGG network35 pre-trained on the ImageNet dataset.36 The net-
work ϕ forces the transformed network output image bx to have similar fea-
ture representations as the input real image x. The feature reconstruction
loss Lfeat can be written as:

Lfeat ¼ l
ϕj

feat bx, xð Þ ¼ 1
CjHjWj

∥ϕj bxð Þ � ϕj xð Þ∥22 (1)

where ϕj(x) is the activation map of size Cj × Hj × Wj at the j-th
convolutional layer of network ϕ when processing image x. Although the
image transformation network trained by the feature reconstruction loss
encourages the output image bx to be perceptually similar to the target
image x, it does not force them to match each other exactly. The total loss
L of our modified CycleGAN can be written as:

L ¼ LDHE þ LDIHC þ λcycLcyc þ λfeatLfeat (2)
Fig. 3. The overall architecture of the developed multi-scale FCN model for registrat
estimation and multiple loss function components in the total loss. Paired moving IM a
for estimated DVFs (i.e. V1, V2, and V3) at three scales. Three DVF estimation mode
architecture is presented with different network components color-coded, including
convolution, Batch Normalization (BN) and Rectified Linear Unit (ReLU) (blue), layers
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where LDHE
, LDIHC

and Lcyc are defined in prior studies.25 λcyc and λfeat are
weights for loss term Lcyc and Lfeat, respectively.

Multi-scaled image patch registration

Numerous state-of-the-art histopathology image registration methods
are either based on SIFT-feature matching or MIND-based Demons algo-
rithms. Some learning-based methods (e.g. TUB from ANHIR challenge16)
have been proposed with limited performance. In this study, we leverage
FCN-based deep learning model for histopathology image registration due
to its known promising performance.29 Asmultiple prior studies on flow es-
timation have shown the effectiveness of multi-scale strategy,37,38 we use
the FCN and the multi-scale strategy as building blocks for the proposed
registration method. Specifically, we create a multi-scale FCN model with
multi-scale Deformable Vector Fields (DVFs) that enable a coarse-to-fine
multi-scale deformable image registration. For a better deformation estima-
tion, 3 DVF estimation models at 3 different image resolutions are used to
define the multi-scale spatial mappings. Our registration pipeline is demon-
strated in Fig. 3.

For image registration, a moving IM and a fixed IF image are provided to
our multi-scale FCNmodel as inputs. For model training, a pair of real mov-
ing andfixed images are concatenated and provided to thefirst DVF estima-
tionmodel to estimate the DVFV1 at scale-1. V1 has 3 different components
(i.e. V11, V12 and V13) that are produced by 3 different layers of the FCN
model. The resulting warped moving images are V11 ∘ IM, V12 ∘ IM, and
V13 ∘ IM, respectively, where ∘ is the operator applying a DVF to an image.
Next, the fixed IF and moving IM image pairs are concatenated and down-
sampled by a factor of 4. The resulting image pairs are provided to the sec-
ond DVF estimationmodel for DVF estimation at scale-2. The resulting DVF
is up-sampled to match the original input image size and denoted as V2.
Similarly, V2 is applied to the input moving image IM to generate the
warped moving image V2 ∘ IM. In the next step, the warped moving image
V2 ∘ IM at scale-2 and the input fixed image IF are concatenated and down-
sampled by a factor of 2. The resulting image pairs are provided to the third
DVF estimation model for the residual DVF estimation. The resulting DVF is
up-sampled to the original input image size and denoted as V3 at scale-3.
ion is presented with detailed illustrations of FCN layers for the multi-scale DVF
nd fixed IF images are concatenated and provided to three DVF estimation models
ls are simultaneously trained for the joint loss minimization (in Eq. 3). The DVF
the loss term computation (yellow), the regression analysis (light blue), layers of
of deconvolution, BN and ReLU (green), and the pooling layer (brown).
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Finally, V3 is used to deform the moving image IM for the warped image V3 ∘
IM. We train all 3 DVF estimation models simultaneously to minimize the
joint loss at multiple scale levels, achieving an optimal end-to-end perfor-
mance. Our formulated total loss function can be represented as follows:

L ¼ ∑
3

i¼1
σ1i Lsim IF ,V1i∘IMð Þ þ R V1ið Þf g

þσ2Lsim IF ,V2 ∘IMð Þ þ σ3Lsim IF ,V3 ∘IMð Þ
(3)

where Lsim is the similarity loss measured by the Negative Normalized Cross-
Correlation (NCC),39 penalizing the differences in appearance between the
fixed and moving images. Note σ11, σ12 and σ13 are weights of the similarity
loss metrics at scale level 1, while σ2 and σ3 are weights at scale levels 2 and
3, respectively. R(V) is a total variation based regularizer thatmakes the trans-
formation spatially smooth and physically plausible.40

After the weight initialization, all weights are updated by the joint train-
ing of 3DVF estimationmodels in an end-to-endmanner for the harmonicmi-
nimization of the composite loss. With displacement vectors between the
fixed and moving image pairs, we use Spatial Transformer Network
(STN)30 to deform the moving image.29 To make the resulting registered im-
ages retain more tissue details, we utilize the Enhanced SRGAN (ESRGAN)
model41 in the post-processing step. We demonstrate the registered images
by our proposed multi-scale FCN model with and without the post-
Fig. 4. Representative image patch translation results. (A) Real H&E image patch; (B)

5

processing step in Supplemental Figure 2. Note that such a post-processing
step improves the registration performance as suggested by Table 2.

WSI block registration

Due to the limited GPU memory size, deep learning methods cannot
process giga-pixel WSIs at the full histopathology image resolution all at a
time. Therefore, each WSI is partitioned into image blocks of size 8000 ×
8000 pixels for tissue pre-alignment. Each H&E block is next translated to
a synIHC block by the developedmodified CycleGAN. Real IHC and synIHC
image blocks are next divided into image patches of size 1024 × 1024 to
retain sufficient tissue information for registration. The resulting synIHC
and real IHC patch pairs are further resized to 256 × 256 pixels for the
deep learning model training and prediction. After registration, the regis-
tered real IHC image patches are resized back to 1024 × 1024 size and
spatially assembled for WSI block registration.42

Experimental result

Dataset and implementation

This study cohort consists of 76 Neoadjuvant Chemotherapy (NAC)-
treated Triple Negative Breast Cancer (TNBC) patients from Emory Decatur
synKi67 patch by CycleGAN; and (C) synKi67 patch by our modified CycleGAN.
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Hospital. Formalin-fixed paraffin-embedded serial biopsy sections from
each patient are H&E and immunohistochemically stained with Ki67 as a
biomarker for cell proliferation and Phosphohistone H3 (PHH3) for the mi-
totic activity. There are about 5 μm between each pair of adjacent slides.
In total, we assess our model on 228 WSIs, with 3 serial WSIs from each
patient. After the image pre-alignment by the global affine spatial
transformation at a low image resolution, the resulting transformation
is mapped to the full image resolution level. The pre-aligned tissue re-
gions at the full image resolution level are next partitioned into 1023
WSI blocks of size 8000 × 8000 pixels by each stain. The pre-aligned
WSI blocks are further partitioned into non-overlapping image patches
of size 1024× 1024 pixels and resized to 256× 256 to make the image
size appropriate for deep learning models. Patches containing more
than 30% background pixels are excluded from further analyses. This
process results in 60 000 image patches that are randomly divided
into training, validation and testing cohorts by patients at the ratio of
80:10:10.

Our model is first tested with serial slides in H&E and of Ki67 IHC bio-
marker, followed by additional validation with serial slides in H&E and of
PHH3 IHC biomarker. We compare our model with multiple state-of-the-
art methods using both ‘real’ and ‘synthetic’ datasets. The ‘real’ dataset in-
cludes pairs of H&E and real IHC images, while the ‘synthetic’ dataset con-
sists of real and synthetic (i.e. synIHC) IHC image pairs with synKi67 for
testing and synPHH3 for validation, respectively. Note the dataset with syn-
thetic IHC images by the CycleGAN is labeled ‘syn-1’, whereas that with
synthetic IHC images by our modified CycleGAN model is labeled ‘syn-2’.
The developed CGNReg is implementedwith the open-source deep learning
library Tensorflow,43 while experiments are executed on GPUs (i.e. Tesla
K80 and V100) with CUDA 9.1. Adam optimization algorithm44 with
Fig. 5.RepresentativeWSI block translation results. (A) A representative real H&EWSI b
block; Close-up views of (A–C) are presented in (D–F), respectively.

6

learning rate 0.0001 is used to train both image translation and image reg-
istration model. The modified CycleGAN is trained for up to 2 00 000 iter-
ations. Loss weights λcyc and λfeat are set to 1. All other parameter settings
are suggested by the original CycleGAN work.25 The values of registration
loss weights σ11, σ12, σ13, σ2 and σ3 are empirically set to 0.9, 0.6, 0.3,
0.05 and 0.05, respectively.

Evaluation of image translation

Both CycleGAN and our modified CycleGAN for image translation are
evaluated and compared at the patch and WSI block level. Representative
image patches and WSI blocks after translation are demonstrated in
Fig. 4, Fig. 5, Supplementary Figure S3, and Supplementary Figure S4, re-
spectively. In addition to the qualitative assessments, we quantitatively
evaluate the translated IHC image quality by root mean square error
(RMSE), structural similarity index measure (SSIM), and peak signal-to-
noise ratio (PSNR) with the maximum value range 40 dB.45,46,27 In our
analysis pipeline, the trained generator GIHC and GHE are used to translate
a H&E to a synIHC image, and then back from the synIHC to the synHE
(i.e. black arrows in Fig. 2). The similarity between the real H&E and result-
ing synHE image is quantitatively evaluated and presented in Table 1. Both
forward and reversed translation performances by the original and our
modified CycleGAN model are presented. In our study, the image transla-
tion between H&E and Ki67 is for testing, while the H&E-PHH3 translation
is for validation purpose. Suggested by experimental results, our proposed
modified CycleGAN presents a consistent superior performance to the orig-
inal CycleGAN by all evaluationmetrics in both forward and reversed trans-
lation directions. Additionally, the translated synIHC image patches are
spatially combined to generate the translated synIHC WSI blocks as
lock; (B) the synPHH3WSI blocks by ourmodified CycleGAN; (C) the real PHH3WSI



Table 1
Quantitative comparison of image translation performance between the original and ourmodifiedCycleGANmodel on the testing and validation data. RMSE, SSIMand PSNR
stand for rootmean square error, structural similarity index and peak signal-to-noise ratio, respectively. The notation “→“ represents the image translation direction. For each
evaluation metric, the best performance value in each image translation direction is bolded.

Testing data Validation data

RMSE SSIM PSNR RMSE SSIM PSNR

CycleGAN (H&E → Ki67) 15.200 0.934 29.928 CycleGAN (H&E → PHH3) 17.641 0.905 28.528
Our (H&E → Ki67) 14.414 0.935 30.387 Our (H&E → PHH3) 17.210 0.911 28.754
CycleGAN (Ki67 → H&E) 13.088 0.955 31.215 CycleGAN (PHH3 → H&E) 15.114 0.928 29.956
Our (Ki67 → H&E) 12.123 0.959 31.867 Our (PHH3 → H&E) 14.430 0.935 30.282
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illustrated in Fig. 5. Both qualitative and quantitative experiments with the
testing and validation data suggest an enhanced image translation perfor-
mance by our modified CycleGAN.

Evaluation of image patch registration

After the image translation, the resulting synIHC and real IHC WSI
blocks are first pre-aligned by a global intensity-guided rigid
transformation.47 Next, CGNReg takes rigidly registered synIHC and real
IHC WSI blocks as inputs and fine tunes image alignment by our proposed
multi-scale FCNmodel. To evaluate the registration performance, we apply
our method to the ‘real’, ‘syn-1’ and ‘syn-2’ dataset from both the testing
data with H&E and Ki67 image pairs and validation data with H&E and
PHH3 image pairs. For performance evaluation, our proposed multi-scale
Fig. 6. Patch-based registration performance with the moving image artificially warped
from (A) by CycleGAN. (C) The resulting synIHC image from (A) by our modified Cycle
DirNet, (F) VoxelMorph Unet, (G) FCN, and (H) our proposed multi-scale FCN.

7

FCNmodel is comparedwithmultiple state-of-the-art registrationmethods,
including deep learning based DirNet,48 FCN,29 VoxelMorph Unet,49 and
the conventional image registration method Elastix.50

As the H&E and IHC WSI blocks are pre-aligned by the global affine
transformation before registration methods for comparison in this study,
the registration effect on certain image patches is not visually salient. To
manifest the method efficacy, we thus manually deform the moving images
by affine and elastic transformations, resulting in deformedmoving images
with significant deformations. Additionally, diverse shear transformations
with the rotation angle range of [−40,30] and elastic deformations are ap-
plied to moving images. With such artificial transformation operations,
20000 synthetically deformed image patches of size 256×256 are derived
from 1023 WSI blocks for the training purpose. Typical registration results
by our and state-of-the-art deep learning registration models with moving
by an elastic deformation. (A) Fixed real H&E image. (B)The resulting synIHC image
GAN. (D) Moving images after manual transformations. Registration results by (E)
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images warped by the elastic deformation and a shear transformation are
presented in Fig. 6 and Supplementary Figure S5, respectively. By visual as-
sessments, FCN and our proposed multi-scale FCN model present notice-
ably better registration results than other deep learning models.

After method evaluations with manually deformed images, the same
methods are applied to ‘real’, ‘syn-1’ and ‘syn-2’ from the testing and valida-
tion data, respectively. Representative registration results are demonstrated
in Fig. 7 and Fig. 8, respectively. By visual comparisons, baseline FCN and
our proposed multi-scale FCN models perform better than other methods
for comparison when images with our modified CycleGAN from the ‘syn-
2’ translation result set are used. Additionally, we present quantitative per-
formance evaluation results in Table 2 where normalized cross correlation
(NCC), SSIM, and normalized mutual information (NMI) are used to report
Fig. 7. Typical patch registration performance for the testing data with 2 example patc
CycleGAN. (C) The resulting synKi67 image from (A) by our modified CycleGAN. (D)
(G) FCN, and (H) our proposed multi-scale FCN. Green boxes are used to highlight the r

8

the registration performance. Note our developed multi-scale FCNwith the
‘syn-2’ translation result set from the testing data achieves the best perfor-
mance (bold) by NCC and the second best (underlined) by SSIM and NMI.
For the validation data, our developed multi-scale FCN achieves the third
best (italics) with ‘syn-2’ by NCC, the second best with ‘syn-2’ by SSIM,
and the best value with ‘syn-1’ by NMI. By contrast, the performance of
the conventional registration method Elastix is limited due to its over-
deformed image outputs (Supplementary Figure S6). Additionally, all
deep learning-based models outperform with ‘syn-2’ than ‘syn-1’ or ‘real’
for the testing dataset, suggesting the efficacy of the enhanced image trans-
lation quality by our modified CycleGAN.

Additionally, 2 measures of the predicted DVF are used for deformation
quality assessment. First, we compute the Jacobian determinant to evaluate
h regions. (A) Fixed real H&E image. (B) The resulting synKi67 image from (A) by
Real Ki67 moving image. Registration results by (E) DirNet, (F) VoxelMorph Unet,
egistration results.



Fig. 8. Typical patch registration performance for the validation data. (A) Fixed real H&E image. (B) Fixed synPHH3 image from (A) by CycleGAN. (C) Fixed synPHH3 image
from (A) by our modified CycleGAN. (D) Moving real PHH3 image. Registration results by (E) DirNet, (F) VoxelMorph Unet, (G) FCN, and (H) our proposedmulti-scale FCN.
Green boxes are used to highlight the registration results.

Table 2
Image patch registration performance on the testing (i.e. Ki67) and validation (i.e.
PHH3) data. The ‘real’ dataset includes pairs of H&E and real IHC images. The
‘syn-1’ dataset includes pairs of real and synIHC images generated by the CycleGAN,
while the ‘syn-2’ dataset includes pairs of real and synIHC images generated by our
modified CycleGAN model. NCC, SSIM, and NMI stand for normalized cross corre-
lation, structural similarity index, and normalizedmutual information, respectively.
For each metric, the best performance is in bold. We highlight our developed
method performance by underline and italicswhen its achieves the second and third
best performance, respectively.

Method name Dataset Testing data Validation data

NCC SSIM NMI NCC SSIM NMI

DirNet Real 0.2045 0.2307 1.0358 0.2030 0.2413 1.0344
syn-1 0.2644 0.3320 1.0356 0.2613 0.3161 1.0334
syn-2 0.2977 0.3505 1.0374 0.2553 0.3443 1.0324

VoxelMorph UNet Real 0.0231 0.1922 1.0329 0.0346 0.2078 1.0324
syn-1 0.0755 0.3164 1.0314 0.0910 0.2828 1.0321
syn-2 0.1063 0.3384 1.0347 0.1306 0.3243 1.0260

FCN Real 0.2165 0.2168 1.0373 0.1742 0.2266 1.0362
syn-1 0.2508 0.3119 1.0363 0.2688 0.3050 1.0339
syn-2 0.3057 0.3356 1.0392 0.2683 0.3356 1.0340

Our multi-scale
FCN

Real 0.1971 0.2214 1.0370 0.1776 0.2344 1.0360
syn-1 0.2582 0.3096 1.0370 0.2321 0.2914 1.0362
syn-2 0.3161 0.3403 1.0387 0.2625 0.3375 1.0343
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the invertibility of the DVF transformation.51 The Jacobian determinant of

the DVF (V) at a given point (p!) is defined as:

det J p! þ V p!
� �� �h i

¼

∂V1 p!
� �
∂x

þ 1
∂V1 p!

� �
∂y

∂V2 p!
� �
∂x

∂V2 p!
� �
∂y

þ 1

�����������

�����������
(4)

where, V1 p!
� �

, V2 p!
� �

are 2 components of the DVF V p!
� �

at pixel p!. Neg-

ative Jacobian determinant at a pixel suggests that the local deformation is
not invertible, causing the unrealistic folding artifacts within tissues. A
Jacobian determinant either way larger than 1, very close to but above
0, or less than 0 indicates a poor deformation field quality. Suggested by
literature, 1%–3% of negative Jacobian determinant is generally ac-
ceptable for a deformable image registration.52 In Table 3, we present
the percentage of negative Jacobian determinant (i.e. folding%), stan-
dard deviation, mean, and median of Jacobian determinant for the test-
ing and validation data. Note that percentage of negative Jacobian is
zero in all but VoxelMorph Unet method, suggesting the presence of un-
realistic deformations by VoxelMorph Unet. This agrees with our visual
assessments.

The second measure is Curl of the DVF that suggests local circular mo-
tions within a local tissue region.52 A rapidly changing Curl in a DVF sug-
gests an unrealistic deformation. In Fig. 9, we overlay the opposite
deformation vectors in the associated DVF of a typical image pairs from
‘syn-2’ result set by DirNet, VoxelMorph Unet, FCN and our proposed
multi-scale FCN with the corresponding Curl heatmaps. In this figure,
the fixed image in (A) needs to be rotated to match the moving image
in (B) denoted by the opposite deformation vectors. Suggested by the
deformation vector directions and the Curl magnitudes, the DVF
9

produced by the DirNet model in (C) does not capture such a circulation
motion. Additionally, it is noticeable that the DVF from VoxelMorph
Unet presents drastically changing vector directions in (D), resulting a
high Curl value overall. By contrast, the FCN model (E) and our multi-
scale FCN method (F) can produce a smooth DVF as suggested by the
quiver plot and the Curl heatmap.



Table 3
Percentage of folding, standard deviation, mean, andmedian of the Jacobian of DVFs with testing (i.e. Ki67) and validation (i.e. PHH3) data for image patch registration. The
‘real’ dataset includes pairs of H&E and real IHC images. The ‘syn-1’ dataset includes pairs of real and synIHC images generated by the CycleGAN, while the ‘syn-2’ dataset
includes pairs of real and synIHC images generated by our modified CycleGAN model.

Method name Dataset Testing data Validation data

Folding% Std Mean Median Folding% Std Mean Median

DirNet Real 0.0000 0.0118 0.9999 0.9996 0.0000 0.0131 0.9997 0.9992
syn-1 0.0000 0.0128 0.9997 0.9994 0.0000 0.0121 0.9997 0.9995
syn-2 0.0000 0.0118 0.9997 0.9993 0.0000 0.0124 0.9997 0.9992

VoxelMorph Unet Real 1.4054e-04 0.1506 0.9979 0.9971 7.6896e-04 0.1449 1.0024 1.0006
syn-1 1.2716e-05 0.1531 0.9999 0.9884 1.2046e-05 0.0963 1.0025 0.9999
syn-2 2.0077e-06 0.1056 1.0000 0.9947 0.0000 0.0680 0.9973 0.9978

FCN Real 0.0000 0.0133 0.9999 0.9996 0.0000 0.0156 1.0000 0.9993
syn-1 0.0000 0.0125 0.9997 0.9991 0.0000 0.0146 0.9995 0.9989
syn-2 0.0000 0.0133 0.9997 0.9992 0.0000 0.0144 0.9995 0.9985

Our multi-scale FCN Real 0.0000 0.0131 1.0000 0.9996 0.0000 0.0141 0.9998 0.9990
syn-1 0.0000 0.0132 0.9998 0.9993 0.0000 0.0126 1.0001 0.9998
syn-2 0.0000 0.0125 0.9996 0.9990 0.0000 0.0128 0.9996 0.9989
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Evaluation of WSI block registration

We further evaluate the image registration with WSI blocks. As each
WSI block has a size of 8000 × 8000 pixels, it is partitioned into smaller
image patches for the registration process. After individual image patch
registrations, they are spatially assembled to generate the registered WSI
blocks. In this study, we adopt Dice Similarity Coefficient (DSC),53

Hausdorff Distance (HD),54 SSIM, and NCC forWSI block registration accu-
racy evaluation.55 For DSC and HD evaluation, 8 region of interest (ROI)
pairs are manually annotated from the testing and validation WSI blocks.
The complete evaluation process is presented in Supplemental Figure S7
and the quantitative results are shown in Table 4. Our multi-scale FCN
model is compared with both state-of-the-art deep learning-based (i.e.
DirNet, FCN, and VoxelMorph Unet) and conventional pathology image
registration methods (i.e. Elastix, BUnwarpJ,56 Diffeomorphic Demons,57

and WSIReg21). Of all methods for comparison, our CGNReg consisting of
the modified CycleGAN translation and the multi-scale FCN produces the
best performance (bold) by NCC for both testing and validation data. Addi-
tionally, our method presents the second best performance (underlined) by
DSC for the testing and validation data. By the metric of HD, our method
achieves the second best and third best (italics) for testing and validation
data, respectively. Although no method produces either the best or second
best performance by all metrics for both testing and validation data, our
multi-scale FCN model with our modified CycleGAN image translation
method presents the best, second best or third best performance in most
metrics. Results in Table 4 also suggest that the image translation from
H&E to synIHC helps to improve registration performance in most cases.

We present the registration results of WSI blocks from the testing and
validation data in Fig. 10 and Fig. 11, respectively. Additionally, we super-
impose a representative WSI block in H&E with opposite deformation
vectors in the associated DVF in Fig. 12. These vectors suggest the direction
and magnitude of deformation at a given location in the H&E block to
match the IHC block. Both quantitative and qualitative results suggest
that our CGNReg exhibits promising registration performance.

Discussion

In this study, we develop a 2-stage CGNReg model for multi-stained se-
rial WSI registration. By both qualitative and quantitative evaluations,
CGNReg demonstrates promising registration performance by multiple
10
metrics. Specifically, the registration component of CGNReg follows a
coarse-to-fine multi-scale deformable image registration strategy and opti-
mizes the joint loss at multi-scale levels, leading to a more accurate DVF es-
timation critical for an enhanced image registration. In Table 2, we notice
that performance values (e.g. NCC and SSIM) for the patch-based registra-
tion are relatively low as some image patches are extracted from poorly
matched WSI block pairs after the pre-alignment step (Supplement
Figure S8). For patches from well aligned WSI block pairs after pre-
alignment step, such performance values are much improved (c.f. Supple-
ment Figure S9). To test the CGNReg efficacy, we synthetically deform
moving image patches by different spatial transformations. In such well-
controlled experiments, moving images can be well aligned to the fixed
images by our method.

Both registration results at the patch andWSI block level suggest the ne-
cessity of image translation from one stain to another. Specifically, results
in Table 4 suggest that the ‘syn-1’ and ‘syn-2’ translation datasets can pro-
duce better registration performance than the ‘real’ dataset in most cases.
Additionally, the translated dataset ‘syn-2’ yields better registration perfor-
mance than the ‘syn-1’ dataset by most metrics, suggesting a better DVF es-
timation enabled by synIHC images from our modified CycleGAN.
Meanwhile, our multi-scale FCNwith ‘syn-2’ translated dataset consistently
produces the best, second best, or third best performance values for most
metrics, suggesting the superiority of our model to other methods for
comparison.

Overall, there is a strong need in a large spectrum of disease investiga-
tions where integrative analyses with molecular, cellular and tissue-level
interactions are in need.59–65 Among other diseases, one immediate appli-
cation our developed registration method can enable is to evaluate the pre-
dictive value of the combination of tumors, tumor-infiltrating lymphocytes,
Ki67, and PHH3 biomarkers for enhanced response to chemotherapy,
metastasis, relapse, and clinical survival outcome prediction for
TNBCs.12,11,58 Althoughwe evaluate the efficacy of our registrationmethod
by breast cancer serial WSIs in H&E, Ki67, and PHH3 in this paper, it is not
necessary to limit to these nuclear markers for the developed registration
method validation. Such H&E stain and 2 IHC markers are chosen due to
their known predictive values for predicting response to neoadjuvant che-
motherapy in breast cancer patients.

As our developed registration method spatially aligns pathology images
of serial tissue slides in different stains or biomarkers at the full image res-
olution, pathologists can review such multiplexed biomarkers within the



Fig. 9.Typical patch-basedDVFs overlaidwith Curl heatmaps bydifferentmethods. (A) Fixed synKi67 image by ourmodifiedCycleGAN. (B) Real Ki67moving image. Quiver
plots of DVFs overlaid with Curl values by (C) DirNet, (D) VoxelMorph Unet, (E) FCN, and (F) our multi-scale FCN.
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Table 4
Registration performance of WSI blocks from the testing (i.e. Ki67) and validation (i.e. PHH3) data. The ‘real’ dataset includes pairs of H&E and real IHC images. The ‘syn-1’
dataset includes pairs of real and synIHC images generated by the CycleGAN, while the ‘syn-2’ dataset includes pairs of real and synIHC images generated by our modified
CycleGANmodel. DSC,HD, SSIM, andNCC stand for dice similarity coefficient, Hausdorff distance, structural similarity index, and normalized cross correlation, respectively.
For each metric, the best performance is in bold. We highlight our developed method performance by underline and italics when it achieves the second and third best per-
formance, respectively.

Testing data Validation data

Dataset Method DSC HD SSIM NCC DSC HD SSIM NCC

Real Elastix 0.9423 1240.1000 0.7348 0.6372 0.8881 1214.1727 0.7534 0.5276
BUnwarpJ 0.9357 3.3348e + 03 0.8056 0.7508 0.9115 634.4545 0.8122 0.7492
Diffeomorphic Demons 0.9153 367.4675 0.8138 0.7562 0.8880 550.8127 0.8080 0.7336
WSIReg 0.8797 4154.1401 0.7732 0.5677 0.8510 4447.2181 0.7745 0.4657
DirNet 0.9516 925.6837 0.7914 0.7983 0.9072 1290.1709 0.8153 0.7447
FCN 0.9566 606.5160 0.7887 0.7833 0.9088 1302.1997 0.8145 0.7323
Our multi-scale FCN 0.9454 320.6497 0.8155 0.7905 0.9127 680.1516 0.8173 0.7432

syn-1 BUnwarpJ 0.9578 3.1562e + 03 0.8214 0.7638 0.9078 1.4102e + 03 0.8581 0.7076
Diffeomorphic Demons 0.9351 329.2142 0.8287 0.7728 0.8884 550.8945 0.8495 0.7378
WSIReg 0.9439 3159.1797 0.8076 0.6528 0.8481 4533.4090 0.8194 0.4527
DirNet 0.9510 272.2740 0.8362 0.7958 0.9004 1300.1804 0.8659 0.7241
FCN 0.9572 272.1319 0.8347 0.7988 0.9161 984.5001 0.8709 0.7639
Our Multi-scale FCN 0.9587 1.0520e + 03 0.8316 0.7855 0.9100 1.2442e + 03 0.8690 0.7398

syn-2 BUnwarpJ 0.9171 3.5903e + 03 0.8343 0.6967 0.9073 1.3083e + 03 0.8515 0.7040
Diffeomorphic Demons 0.9124 368.1703 0.8465 0.7641 0.8885 550.8127 0.8488 0.7355
WSIReg 0.8826 3418.5034 0.8126 0.5816 0.8514 4311.2858 0.8139 0.4571
DirNet 0.9554 264.6888 0.8369 0.8075 0.9073 486.4495 0.8641 0.7576
FCN 0.9631 244.2928 0.8345 0.8101 0.9149 1216.2255 0.8637 0.7614
Our Multi-scale FCN 0.9612 257.2176 0.8347 0.8175 0.9152 724.4312 0.8654 0.7683

Fig. 10. WSI block registration with H&E and Ki67 IHC testing image data. (A) Fixed real H&E image block. (B) The resulting synKi67 image block translated from (A) by
CycleGAN. (C) The resulting synKi67 image block translated from (A) by our modified CycleGAN. (D) Real Ki67 moving image block. Registration results by (E) DirNet, (F)
FCN, and (G) ourmulti-scale FCN. (H) Close-up view of a tissue region in (A). (I) Close-up view of a tissue in (D). (J) Close-up view of a tissue in the registered block by DirNet
with the ‘syn-2‘ translated dataset; and (K) close-up view of a tissue in the registered block by CGNReg.
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Fig. 11. WSI block registration with H&E and PHH3 IHC validation image data. (A) Fixed real H&E image block. (B) The resulting synPHH3 image block translated from
(A) by CycleGAN. (C) The resulting synPHH3 image block translated from (A) by our modified CycleGAN;.(D) Real PHH3 moving image block. Registration results by (E)
DirNet, (F) FCN, and (G) our multi-scale FCN. (H) Close-up view of a tissue region in (A). (I) Close-up view of a tissue in (D). (J) Close-up view of a tissue in the
registered block by DirNet with the ‘syn-2’ translated dataset; and (K) close-up view of a tissue in the registered block by CGNReg.
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same tissue space simultaneously. Therefore, this upgraded reviewing func-
tion overlaying multiple markers with the tissue histology can facilitate
human readers to have a more comprehensive and accurate understanding
of the phenotype–genotype tissue environment, leading to a better progno-
sis and treatment decision.

In future research, we plan to improve this work by better learning and
integrating spatial transformations from the H&E-IHC and synIHC-IHC
pipeline for registration. In our current study, we extract non-overlapping
patches from each WSI for deep learning model training and evaluation.
We will extract overlapping patches to better control the displacement
vectors at the patch borders in future. In this study, our goal is to map a
given H&E image to another given IHC stain before registration with 2 im-
ages of the same IHC biomarker. As each such mapping from H&E to a
given IHC stain is independent, we need to train our modified CycleGAN
for each such mapping. In future, such an image translation step can be re-
placed with an advancedmodel that supports simultaneous H&Emappings
to multiple IHC markers of interest. While this study includes 1023 large
image blocks (8000 × 8000) and further 60 000 image patches (1024 ×
1024) from 228 WSIs of 76 TNBC patients, we will further validate our de-
veloped method by increasing the TNBC patient number and testing on ad-
ditional disease datasets of serial tissue sections in future study.

Conclusion

To support the common integrative analyses involving histology hall-
marks and molecular biomarkers in a large spectrum of tissue based bio-
medical research, we develop a fully unsupervised translation based deep
13
learning registration network (namely CGNReg) that spatially aligns WSIs
of serial tissue sections in H&E stain and IHC biomarkers without prior de-
formation information for the model training. In the first preparation step,
CGNReg translates unpaired H&E to synthetic IHC images through a mod-
ified CycleGAN method equipped with a perceptual loss term for an en-
hanced image stain translation. In the next step, a multi-scale FCN is
developed to align the resulting synthetic to the real IHC serial WSIs with
a coarse-to-fine multi-scale deformable image registration strategy, pre-
serving histology structures at the full WSI resolution. The efficacy of
CGNReg is tested with a dataset of 76 breast cancer patients with 1 H&E
and 2 IHC serial WSIs for each patient. After CGNReg is trained without
ground-truth image deformation information, it presents competitive per-
formance compared with other state-of-the-art methods by both qualitative
and quantitative evaluations. Such promising results at both image patch
and WSI level suggest its potential for multi-stained serial WSI registration
essential to a large number of tissue-based integrative biomedical research
studies.
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Fig. 12. A typical WSI block overlaid with the negative DVF quiver plot. (A) Fixed real H&E block. (B–C) Close-up views of 2 tissue regions with the negative DVF overlaid.
(D–E) Close-up views of (B–C) at a higher resolution. (F–G) Associated regions in the Ki67 IHC moving blocks.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2023.100311.
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