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A quantitative model reveals a frequency ordering
of prediction and prediction-error signals in the
human brain
Zenas C. Chao 1✉, Yiyuan Teresa Huang 1,2 & Chien-Te Wu 1,2

The human brain is proposed to harbor a hierarchical predictive coding neuronal network

underlying perception, cognition, and action. In support of this theory, feedforward signals for

prediction error have been reported. However, the identification of feedback prediction sig-

nals has been elusive due to their causal entanglement with prediction-error signals. Here, we

use a quantitative model to decompose these signals in electroencephalography during an

auditory task, and identify their spatio-spectral-temporal signatures across two functional

hierarchies. Two prediction signals are identified in the period prior to the sensory input: a

low-level signal representing the tone-to-tone transition in the high beta frequency band, and

a high-level signal for the multi-tone sequence structure in the low beta band. Subsequently,

prediction-error signals dependent on the prior predictions are found in the gamma band. Our

findings reveal a frequency ordering of prediction signals and their hierarchical interactions

with prediction-error signals supporting predictive coding theory.
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Predictive coding is an emerging general theory of the
functional organization of the brain. The basic principle of
this theory is that brain networks continuously generate

and update prediction signals representing sensory inputs that, in
turn, drive the production of prediction-error signals when the
predicted and actual sensory inputs differ1–4. According to pre-
dictive coding theory, this form of dynamic communication is
achieved by a hierarchical and bidirectional cascade of large-scale
cortical signaling in order to minimize overall prediction errors.
In a highly recursive process, higher-level cortical areas harboring
internal models of the world predict inputs from lower-level areas
through top-down connections, and prediction-error signals are
generated to update the internal models through bottom-up
connections.

The predictive coding framework provides broad explanatory
power for diverse cognitive processes, such as perceptual
decision-making5–7, expectation-facilitated visual and auditory
perception8,9, and attention10,11, compared to alternate theories,
and has been proposed as a unified model of cognition12,13.
Predictive coding also offers a plausible neurocomputational
mechanism for psychiatric disorders, such as schizophrenia and
autism14–17. However, direct evidence for some of its core tenets
remains lacking, and it is essential to unambiguously identify the
theorized prediction and prediction-error signals in brain phy-
siology, and experimentally evaluate their hierarchical flows and
interactions.

Prediction-error signals have been extensively studied and
commonly characterized as neural responses evoked by unex-
pected or oddball stimuli. Macroscopic prediction-error signals
have been identified as reduced responses to expected stimuli or
increased responses to unexpected stimuli in fMRI18,19, gamma-
band oscillations (>40 Hz) in electrocorticography (ECoG)20–22,
and magnetoencephalography (MEG)23,24, or mismatch nega-
tivity responses in EEG25–27 and MEG28,29. At the microscopic
level, neuronal responses to unexpected stimuli were observed in
layer 2/3 of visual cortex in mice30, in the central auditory
pathway and subcortical regions in rat31, and in association with
increased spiking and gamma-band local field potential (LFP)
oscillations in superficial-layer cortex in monkey32. The hier-
archical organization of prediction-error signals has been exam-
ined in a local-global paradigm25 used to investigate hierarchical
auditory processing in human and monkey10,20,22,27,33,34.

Unlike prediction-error signals, the identification of hier-
archical prediction signals has not been achieved because changes
in predictions lead to changes in prediction errors and vice versa,
and it is difficult using current methods to separate these two
interdependent neural processes. As a first step toward under-
standing prediction signals, a few studies focused on neural
responses correlated to sensory predictability. For example, when
manipulating the tone sequence from one frequency to another,
beta-band (12–30 Hz) activity in ECoG was found to correlate
with the change in prediction35. Furthermore, beta-band activity
in MEG was found to change parametrically with the predict-
ability of action-outcome sequences23, and enhanced alpha-band
and beta-band LFP oscillations were found during predictable
stimuli in monkeys32. However, manipulating predictability also
changes the subsequent prediction-error signal, thus neural
responses recorded under these sensory predictabilities contain
different prediction errors that cannot be factored out. Another
approach is to examine the neural response during omission,
based on the argument that it reflects solely the prediction signals
since no errors are computed when sensory inputs are absent27,36.
However, unpredicted omissions also lead to surprises or omis-
sion errors, thus omission responses contain both prediction and
prediction-error signals.

To disentangle prediction and prediction-error signals, a
dynamic causal model has been used to identify top-down
functional connectivity that encoded predicted stimuli during a
discrimination task when the stimulus predictability was
manipulated7. In a similar task, a regression model was used to
evaluate the latent contributions of predictions and prediction
errors in spiking activity37. However, how prediction and
prediction-error signals interact across functional hierarchies,
another fundamental element of predictive coding theory,
remains unknown. To identify hierarchical prediction and
prediction-error signals, we provided a quantitative definition of
these signals based on a mechanistic and hierarchical predictive
coding model, where predictions at each hierarchical level are
generated to minimize the mean-squared prediction errors
received at the same level. This allows us to infer the interactions
between prediction and prediction-error signals within and across
hierarchies when prediction is manipulated. With this computa-
tional strategy, we recorded human EEG data during an auditory
local-global paradigm with manipulated stimulus predictabilities
at two hierarchies, and used a model-fitting approach to extract
prediction and prediction-error signals from the EEG responses
by a tensor-based decomposition method20,38,39, and revealed
their spatio-spectro-temporal structures and hierarchical
interactions.

Our results provide a comprehensive view of the signal flow
and interactions of hierarchical prediction and prediction-error
signals in the cortical network. In particular, we show that hier-
archical prediction signals are not only spatiotemporally dis-
tinctive, but also frequency-specific. More broadly, our combined
experimental and analytical approach can be applied to any
experimental paradigm where predictability can be defined, and
provides a robust platform for the functional mapping of brain-
wide predictive coding in normal and disordered brain.

Results
Local-global paradigm with manipulated temporal regularities.
Thirty healthy adults were recruited in this study. During the
task, participants listened to a series of short tone sequences based
on the local-global auditory paradigm while brain activity was
recorded by 64-channel EEG. To ensure vigilance, participants
were instructed to both visually fixate and attend to the sounds.

Three stimulus items were used to create the short tone
sequences: x (standard tone), y (deviant tone), and o (omission,
no tone). Each sequence consisted of 2 or 3 stimulus items with
one of three temporal structures: (1) the last tone is identical to
the preceding tone(s) (xx or xxx, jointly denoted as xx), (2) the
last tone is different from the preceding tone(s) (xy or xxy, jointly
denoted as xy), or (3) the last tone is omitted (xo or xxo, jointly
denoted as xo) (Fig. 1a). Note that xo contained only one stimulus
items, but was used to represent an omission in a 2-tone
sequence. Similarly, xxo was used to represent an omission in a
3-tone sequence. Sequences were delivered in blocks of 144 trials,
which consisted of either only 2-tone sequences (xx, xy, and xo)
or only 3-tone sequences (xxx, xxy, and xxo). Eight blocks were
used, each with a distinct configuration of the sequence length
and trial numbers for xx, xy, and xo (Fig. 1b).

The local-global paradigm is designed to establish predictions
with different strengths by varying the degree of temporal
regularity at two hierarchical levels. A local regularity is
established by the tone transition probability (TPx, TPy, and
TPo: the conditional probability of the incoming tone being x, y,
or o, respectively, when the previous tone is x), which is
controlled by the sequence length and sequence ratio. On the
other hand, a global regularity is established by a sequence
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probability (SPxx, SPxy, and SPxo: the probability of the current
sequence being xx, xy, or xo, respectively), which is controlled by
the sequence ratio. The transition and sequence probabilities for
the 8 blocks are shown in Fig. 1b (see their calculation in
“Methods”). To examine the brain responses influenced by these
probabilities, we eliminated tone-specific effects by delivering
each block twice (one run with a low-pitched tone A as x and a
high-pitched B as y, and the other run with tone B as x and tone A
as y), and merged the EEG data from two runs for analysis (see
“Methods”).

A hierarchical predictive coding model for the local-global
paradigm. We instantiated a hierarchical predictive coding model
to extract the underlying signals and their interdependence dur-
ing the local-global paradigm. This allowed us to decompose the
EEG data based on quantitative model predictions and identify
the neural responses for each prediction and prediction-error
component at each level of the hierarchy. The model consists of
three hierarchical levels (Level S, Level 1, and Level 2) and two
streams (x stream and y stream). Level S is the sensory level that
receives thalamic input, which was a value between 0 and 1, Level
1 learns and encodes the local regularity (transition probabilities),
and Level 2 learns and encodes the global regularity (sequence
probabilities). The x and y streams process the tone x and y,
respectively. Importantly, the model focuses on the interactions
between prediction and prediction-error signals during the last
tone of a sequence after both local and global regularities are
learned.

Figure 2a shows the neural operations in the x stream between
Levels S and 1. Level S contains a neuronal population (denoted
by xs) that receives a sensory input (black arrow) and a prediction
signal (green arrow) from Level 1, and sends a prediction-error
signal (blue arrow) to Level 1. Level 1 contains a neuronal
population (x1) that receives the prediction-error signal from
Level S, and sends a prediction signal to Level S. If we assume that
the strengths of the sensory input and the prediction signal are 1
and P1x (0 ≤ P1x ≤ 1), respectively, then there are two possible
situations: (1) if the last tone is x, then the strength of the
prediction-error signal is 1– P1x, (2) if the last tone is not x (either
the tone is y or omitted), then the prediction error is 0 – P1x (a
negative value), and the strength of the corresponding prediction-
error signal is |0 – P1x|= P1x (|•| indicates the absolute value).

Absolute values are taken because we assume predictions and
prediction errors are encoded in neuronal firing rates, a most
straightforward scheme for encoding probabilistic representations
and computations40, which can only have non-negative values.
Thus, the prediction-error signal received at Level 1 in the x
stream during the last tone (denoted as PE1x) is either 1 – P1x or
P1x, where the probability of receiving the former is the transition
probability from tone x to x (TPx) and the probability of receiving
the latter is 1– TPx (see the bar graph in Fig. 2a).

Figure 2b shows the neural operations in the x stream between
Levels 1 and 2. Similar to Level 1, Level 2 contains a neuronal
population (x2) that receives the prediction-error signal from
Level 1, and sends a prediction signal P2x to Level 1. If the
sequence is xx, then the prediction-error signal received at Level 1
is 1 – P1x (since Level S receives tone x) and the prediction-error
signal received at Level 2 is |1 – P1x – P2x|. If the sequence is not
xx (xy or xo), then the prediction-error signal received at Level 1
is P1x (since Level S receives not x) and the prediction-error
signal received at Level 2 is |P1x – P2x|. Thus, the prediction-error
signal received at Level 2 in the x stream during the last tone
(denoted as PE2x) is either |1 – P1x – P2x| or |P1x – P2x|, where
the probability of receiving the former is the sequence probability
of sequence xx (SPxx) and the probability of receiving the latter is
1– SPxx.

Figure 2c shows the complete model during the last tone in xx,
xy, and xo sequences. We assume that the strengths of prediction
signals (P1x, P2x, P1y, and P2y) reach steady-state values when the
transition and sequence probabilities in a given block are learned.
We note that the same prediction signals appear in all sequences
(xx, xy, and xo), since predictions occur before the last tone
arrives. Furthermore, even though the x and y tones are processed
in separate streams based on the tonotopic organization, two
streams need to integrate information at Levels 1 and 2 to
compute transition probabilities (TPx, TPy, and TPo) and
sequence probabilities (SPxx, SPxy, and SPxo), respectively. In
Fig. 2c, we indicate these integrations for probability computa-
tions as horizontal gray bars between populations x1 and y1 and
between populations x2 and y2.

We further added some tunings to the model across different
levels (see Fig. 2d). At Level S, a scaling factor s0 was added to the
sensory input in the x stream to account for the sensory adaption
for the repetitive tone x. The value of s0 was between 0 and 1,

Fig. 1 Local-global paradigm with manipulated temporal regularities. a The sequence structures of xx, xy, and xo for the 2-tone and 3-tone sequences.
b The configurations of the 8 sequence blocks and the corresponding transition and sequence probabilities. The probably values were rounded up to two
decimal places.
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where s0= 1 represents no sensory adaptation. Therefore, in the
n-tone xx sequence where tone x is repeated n�1 times, the PE1
and PE2 in the x stream are |s0n−1 – P1x| and | s0n−1 – P1x – P2x|,
respectively. For the xy sequence, since tone y does not repeat,
adaption does not occur in the y stream. At Levels 1 and 2, we
added scaling factors s1 and s2 to the first-level predictions (P1x

and P1y) and the second-level predictions (P2x and P2y),
respectively, to account for imperfect predictions. When s1= 1
and s2= 1, the predictions are optimal (see how the optimal
predictions were quantified below). When s1 < 1 or s2 < 1, the
predictions are hypo-sensitive to the inputs. For example, if
s1= 0, there will be no first-level prediction. When s1 > 1 or s2 > 1,
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the predictions are hyper-sensitive to the inputs, where the
corresponding transition or sequence probabilities are over-
estimated. Note that s1 and s2 were applied to both the x and y
streams, since erroneous estimation of transition or sequence
probabilities could occur at both streams.

Next, we asked what steady-state values the prediction signals
(P1x, P2x, P1y, and P2y) will reach when the transition and
sequence probabilities are learned. We propose a simple model
where the optimal value of each prediction signal is to minimize
the mean-squared error received (see model calculation in
“Methods”). Based on the model, all prediction signals are
determined once the transition probabilities (TPx and TPy),
sequence probabilities (SPxx and SPxy), and scaling factors (so, s1,
and s2) are known. The transition probabilities can be calculated
based on the number of tones in a sequence (n) and the sequence
probabilities. It is important to note that the transition from tone
x to o occurs not only during the xo sequence, but also at the end
of the xx sequence where the last x tone is followed by no tone.
Since Level 1 simply predicts what will happen after an x tone and
makes no distinction between the two cases, the x to o transitions
in both the xo and xx sequences were considered in the transition
probability calculation (see “Methods”). Examples of the
strengths of the prediction and prediction-error signals in Blocks
3 and 7 with s0= s1= s2= 1 (the optimal predictions with no
sensory adaptation) are shown in Fig. 2e.

Model prediction: prediction and prediction-error components
in contrast responses. The model identifies the prediction and
prediction-error signals present in each trial type during each of
the 8 blocks, and predicts how much these signals remain when
we contrast different trial types. These model predictions form
the basis of our data-fitting decomposition analysis to extract
prediction and prediction-error components from the EEG sig-
nals. To achieve this, we used the model predictions in 16 within-
block contrasts and 24 across-block contrasts (Fig. 3a). Within
each block, there were three possible contrasts: between the xy to
xx sequences (xy – xx), between the xo to xx sequences (xo – xx),
and between the xy to xo sequences (xy – xo). Since xy – xo is
equivalent to the difference between xy – xx and xo – xx, i.e., (xy
– xx) – (xo – xx), it was excluded from the analysis. Therefore,
among 24 possible within-block contrasts (3 contrasts per
block × 8 blocks), only 16 were included in the analysis (shown as
blue arrows in Fig. 3a).

Conversely, the across-block contrasts compare the same
sequence from two blocks. For a 2-tone sequence (xx, xy, or
xo), there were 6 possible across-block contrasts: Blocks 1 – 2, 2 –
6, 6 – 5, 5 – 1, 1 – 6, and 2 – 5. Since Blocks 2 – 5 is equivalent to
the combination of Blocks 5 – 1 and 1 – 2, i.e., (5 – 1) – (1 – 2) it
was excluded from the analysis. Similarly, Blocks 1 – 6 is
equivalent to the combination of Blocks 1 – 2 and 2 – 6, and was
excluded from the analysis. Therefore, among 18 possible
across-block contrasts for 2-tone sequences (6 contrasts
per sequence × 3 sequences), 12 were included in the analysis.

By adding another 12 contrasts for 3-tone sequences, a total of 24
across-block contrasts were included in the analysis (shown as
green arrows in Fig. 3a).

In the 16 within-block contrasts, only prediction-error signals
remain since the prediction signals are the same within each
block. Figure 3b shows the model predictions of the remaining
prediction-error signals at the first level (PE1= PE1x+ PE1y) and
the second level (PE2= PE2x+ PE2y) when s0= s1= s2= 1. Note
that while both PE1 and PE2 are positive values, their contrast
values between two trial types can be negative. On the other hand,
in the 24 across-block contrasts, both prediction and prediction-
error signals remain. The model predictions of the remaining
prediction signals at the first level (P1= P1x+ P1y) and the
second level (P2= P2x+ P2y) and prediction-error signals (PE1
and PE2) are shown in Fig. 3c (only the model with both positive
and negative errors is shown for clarity). Note that we assume
that EEG recordings offer insufficient spatial resolution to
separate the x and y streams, therefore, the model predictions
focus on P1, P2, PE1, and PE2, where the x and y streams are
combined.

Model-fitting: optimal decomposition of EEG data. Our strat-
egy to extract prediction and prediction-error signals from EEG
data was to perform the within-block and across-block contrasts
on EEG signals and factorize the contrast responses into com-
ponents predicted by the model. In other words, EEG compo-
nents of P1, P2, PE1, and PE2 should have distinct and unique
contributions to contrast responses in the 16 within-block and 24
across-block contrasts, as shown in Fig. 3b, c.

To demonstrate this strategy, here we use the within-block
contrasts as an example. Figure 4a shows an example of the
contrast response at a single channel (channel 22) in a single
within-block contrast (xy – xx in Block 3, or contrast 3 in Fig. 3a).
Here, the contrast response was quantified as the significant
difference in event-related spectral perturbation (ERSP) of the
current source density (CSD) between the xy and xx sequences
across subjects (p < 0.05, 30 subjects, 1000 bootstrapping, two-
sided, false discovery rate correction) (see “Methods”). Figure 4b
shows the contrast responses from the same channel in all 16
within-block contrasts, where distinct patterns were observed
around the last tone (time zero). Please see the overall occurrence
of significant contrast responses across all channels for both the
within-block and across-block contrasts in Supplementary Fig. 1.

To evaluate the model, we acquired a more comprehensive
view of the contrast responses across the multi-dimensional space
of channels, time, frequencies, and contrasts. This classification
was achieved using an unbiased decomposition analysis that
extracts latent components hidden within functional network
dynamics20,38,39 (see “Methods”). We first pooled significant
contrast responses from all channels and all contrasts to create a
broadband library. To organize and visualize this dataset, we
created a tensor with three dimensions: Channel (brain area),
Time-Frequency (in-trial dynamics), and Contrast (contrast

Fig. 2 A hierarchical predictive coding model for the local-global paradigm. a The proposed neural operations in the x stream between Levels S and 1
during the presentation of tone x or not. An explanatory illustration of the probability distribution of the first-level prediction error in the x stream (PE1x) is
shown on the right. The neuronal populations (diamonds with labels xs or x1), prediction-error signal (blue arrow), prediction signal (green arrow), and
sensory input (black arrow) are shown. b The neural operations in the x stream between Levels 1 and 2. c The complete model during the last tone in xx, xy,
and xo sequences. The horizontal gray bars at Levels 1 and 2 indicate integration between the x and y streams for computing transition and sequence
probabilities, respectively. d Model tunings with s0, s1, and s2. A decreased response (scaled by s0) to repeated tone x during the xx sequence, and a
decreased response to repeated tone x with a fresh response to tone y during the xy sequence. The corresponding models of the last tone are also shown,
where P1 and P2 are scaled by s1, and s2, respectively. e An example of the strengths of prediction and prediction-error signals in Blocks 3 and 7 with no
tunings (s0= s1= s2= 1). The negative errors, where the prediction is greater than the input or prediction error to be predicted, are shown in blue dashed
arrows.
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response), for the anatomical, dynamic, and functional aspects of
the data, respectively. The dimensionality of the tensor was 60
(channels) by 37,500 (375 time points and 100 frequency bins) by
16 (within-block contrasts) or 24 (across-block contrasts). To
extract structured information from the dataset, we factorized the
3D tensor into multiple components by performing parallel factor
analysis (PARAFAC), a generalization of principal component
analysis (PCA) to higher-order arrays41, and measured the
consistency of factorization under different numbers of
components42 (see “Methods”).

For the within-block contrasts, we first performed a model-free
data-driven decomposition to examine how many structured
components were contained in the contrast responses. A
consistency of 100% was obtained when the tensor was factorized
into two components, while it dropped significantly when the
tensor was factorized into three components (Fig. 4c). This
indicated that there were two consistent components in the
pooled contrast responses, where each component contained a
unique fingerprint of network anatomy, dynamics, and function
(see these components in Supplementary Fig. 2). To further test
whether the two dominant components were associated with PE1
and PE2, we repeated the factorization with the third dimension
Contrast fixed with the values proposed by the model (the 16
values in Fig. 3b). This model-driven analysis was performed by
using models with different scaling factors s0 (between 0 and 1), s1

(between 0 and 2), and s2 (between 0 and 2). The best-fitting
model with the smallest residual sum of squares (RSS) was found
with a consistency of 90% when s0= 0.3, s1= 1.2, and s2= 1.0
(Fig. 4d). This suggested that the total contrast responses
consisted of two structured components that subserved PE1
and PE2.

For the across-block contrasts, the model-free data-driven
analysis indicated three consistent components in the pooled
contrast responses, where consistency dropped from 85 to 35%
when factorizing the tensor from 3 to 4 components (Fig. 4e). We
hypothesized that the 3 components in the data represented P1,
P2, and the combination of PE1 and PE2, since the model
predictions of P1 and P2 showed distinct patterns while the
model predictions of PE1 and PE2 are highly correlated and thus
difficult to be separated (see Fig. 3c). Therefore, for the model-
driven analysis, we factorized the total contrast responses with the
third dimension fixed with the predicted values of P1, P2, and
a*PE1+ (1–a)*PE2 from the model, where a was a weighting
factor between 0 and 1. The best-fitting model with the smallest
RSS was found with a consistency of 85% when s0= 0.3, s1= 0.8,
s2= 1.0 (Fig. 4f), and when a= 0.5 (see Supplementary Fig. 3).
This suggested that the identified components subserved P1, P2,
and overall prediction errors (PE1+ PE2).

To explore further, we considered two distinct computations
for prediction-error signals: a positive-error computation when

Fig. 3 Block comparisons and model predictions. a The 16 within-block contrasts and the 24 across-block contrasts. Each gray bar represents a block
(labeled), where each block contains 3 types of trials (xy, xx, and xo). The within-block and across-block contrasts are indicated by blue and green arrows,
respectively. The contrast indices are also shown. b The model prediction of prediction-error signals in the 16 within-block contrasts. The indices of
contrasts (1 to 16) are indicated in panel a. Only prediction-error signals are shown, since no prediction signals are left after the within-block contrasts.
c The model prediction of prediction signals and prediction-error signals in the 24 across-block contrasts. The indices of contrasts (1 to 24) are indicated in
panel a.
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the prediction is smaller than the sensory input or prediction
error, and a negative-error computation when the prediction is
greater than the sensory input or prediction error (see detailed
discussion on positive and negative prediction errors in
Discussion). Since different error computations could involve
different neural mechanisms or occur at different cortical layer,
which could differentially contribute to the EEG signal, we tested
models with different error computations, and the best-fitting
model was found when both positive- and negative-error
computations were considered (see Supplementary Fig. 4). We
also tested models with different transition probability calcula-
tions: (1) a model considered only the overall occurrences of
tones and the transitions between them were neglected (denoted
by No-transition), and (2) a model neglected transitions from

tone x to o at the end of the xx sequence (denoted by No-ending).
Compared to the proposed model, these two alternative models
showed higher RSS (see Supplementary Fig. 5), which suggested
that lower-level predictions manage both tone transitions and
sequence endings.

In summary, our proposed model fitted the data with high
consistencies, and the best-fitting models indicated that (1)
sensory adaptation was needed to explain the data (s0 ≈ 0.3, which
was consistent with the adaptation factor measured directly from
EEG responses shown in Supplementary Fig. 6), (2) predictions at
both levels were close to optimal (s1 ≈ s2= 1.0), and (3)
prediction-error signals in EEG responses could represent the
combination of positive- and negative-error computations. To
visualize the prediction and prediction-error components, we

Fig. 4 Data-fitting and model comparisons. a An example of the contrast response at channel 22 (location shown on a head map) in a within-block
contrast (xy – xx in Block 3). The average ERSPs for the xy and xx sequences and their contrast response (xy – xx) are shown. The significant difference is
indicated by the black contour. The time zero represents the onset of the last tone. b The contrast responses from the same channel in all 16 within-block
contrasts. c The consistencies of data-driven factorization for contrast responses from the within-block contrasts. d The optimal parameters for data-fitting
for the within-block contrasts. Only models with a fitting consistency >80% were considered. For each s0, the minimal residual sum of squares (RSS)
across different combinations of s1 and s2 is shown in the left panel. The minimal RSS was found when s0= 0.3 (indicated by a black circle). The
combination of s1 and s2 under this minimum is indicated by a white circle in the right panel. Models with a fitting consistency >80% are indicated by white
dots. The color bar represents RSS. e The consistencies of data-driven factorization for the across-block contrasts. f The optimal parameters for data-fitting
for the across-block contrasts. The same representation is used as in panel d. g Model comparisons for the within-block and across-block contrasts. The
vertical dash line indicates the benchmark from the model-free data-driven decomposition.
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later used the same parameters for the within-block and across-
block contrasts: s0= 0.3, s1= s2= 1.0.

Model comparison: alternative predictive coding and
adaptation-only models. To further validate the model, we
introduced alternative models with different architectures and
mechanics to fit the same EEG data and compare their perfor-
mance. In addition to the proposed model, a two-level predictive
coding model based on both transition and sequence probabilities
(denoted by 2-level PC:TP+ SP), we tested: (1) a single-level
predictive coding model with only transition probability (1-level
PC:TP), (2) a single-level predictive coding model with only
sequence probability (1-level PC:SP), and (3) an adaptation-only
model with no predictive coding mechanisms (Adaptation-only).
We also used the model-free data-driven decomposition (Model-
free, as shown in Fig. 4c, e), which provided the optimal and
unbiased description of the data, as a benchmark.

The single-level predictive coding models were similar to the
one shown in Fig. 2, but with only Levels S and 1. For 1-level
PC:TP and 1-level PC:SP, P1 at Level 1 minimized the mean
squares of PE1 based on transition and sequence probabilities,
respectively. Also, a scaling factor s0 was added to the sensory
input and a scaling factor s1 was added to P1 (similar to the
proposed model in Fig. 2d). The optimal parameters (s0 and s1)
for 1-level PC:TP and 1-level PC:SP for the within-block and
across-block contrasts are shown in Table 1 and Supplementary
Fig. 7.

For Adaptation-only, sensory adaptation was modeled by two
parameters: a scaling factor s0 (between 0 and 1) and a time
constant τ0 (between 0.1 and 2 s, including timescales from a
single tone to multiple sequences). s0 determines the maximal
response that can be evoked immediately after receiving a
stimulus. If s0= 1, there is no adaptation, and the next stimulus
can immediately evoke a full response. On the other end, if s0= 0,
the next stimulus cannot evoke any response immediately after
the previous stimulus, however, this effect can recover over time

with a time constant τ0. The model describes the trial-by-trial
responses during each block, and thus predicts the contrast
responses in the within-block and across-block contrasts (see
example and details in Supplementary Fig. 8). We then fitted the
EEG data with these predicted values, and the optimal parameters
were found to be: s0= 0.3 and τ0 ≈ 1.4 s (see Table 1 and
Supplementary Fig. 8). This indicated that in Adaptation-only,
adaption with a timescale that covered multiple sequences was
needed.

For model comparison, we quantified the goodness of fit by
using the Bayesian information criterion (BIC), which penalizes
models with more variables (see details in Table 1). For both the
within- and across-block contrasts, our proposed model showed
the best fitting with the BIC significantly lower than the
alternative models (the between-model differences in BIC were
greater than 10, which corresponded to a 150:1 odds that the
proposed model was the better fitting model43), and was close to
the model-free data-driven results (Fig. 4g, more details in
Table 1). This indicated that the proposed hierarchical cascade of
prediction and prediction-error signals was most suitable to
describe the neural processes in the observed data.

Prediction-error signals extracted from within-block contrasts.
Here we visualized the two components obtained from the
within-block contrasts based on the proposed model (with
s0= 0.3, s1= s2= 1.0). These components were visualized by their
composition in the three tensor dimensions (Fig. 5a–c). The first
component was PE1, which appeared in centrocephalic areas (C3,
C4) (Fig. 5a), immediately after the last tone in both lower-
frequency (<20 Hz) and higher-frequency (>40 Hz) bands
(Fig. 5b). The contributions of this spatio-spectro-temporal pat-
tern to the contrast responses across the 16 within-block contrasts
were fixed thus identical to PE1 in the model prediction (Fig. 5c).
Note that Fig. 5c differs slightly from the model predictions in
Fig. 3b (compare to the model of POS+NEG) due to different
adaptation factors were used (s0= 0.3 and 1, respectively). The

Table 1 Model comparisons.

Model Optimal
parameters

Number of data point
(u)

Number of estimated elements
(w)

Residual sum of
squares (RSS)

Bayesian information
criterion (BIC)

Within-block contrasts
Model-free N/A 60 × 37,500 × 16 (60+ 37,500+ 16) × 2 2.2013e+ 05

(Consistency= 100%)
−1.8219e+ 08

2-level
PC:TP+ SP

s0= 0.3 60 × 37,500 × 16 (60+ 37,500) × 2 2.2068e+ 05
(Consistency= 90%)

−1.8210e+ 08
s1= 1.2
s2= 1.0

1-level PC:TP s0= 0.2 60 × 37,500 × 16 (60+ 37,500) × 1 2.2747e+ 05 −1.8166e+ 08
s1= 1.4

1-level PC:SP s0= 0.2 60 × 37,500 × 16 (60+ 37,500) × 1 2.2720e+ 05 −1.8170e+ 08
s1= 0.6

Adaptation-only s0= 0.3 60 × 37,500 × 16 (60+ 37,500) × 1 2.3071e+ 05 −1.8115e+ 08
τ0= 1.3 s

Across-block contrasts
Model-free N/A 60 × 37,500 × 24 (60+ 37,500+ 24) × 3 1.2854e+ 06

(Consistency= 99%)
−1.9984e+ 08

2-level
PC:TP+ SP

s0= 0.4 60 × 37,500 × 24 (60+ 37,500) × 3 1.2911e+ 06
(Consistency= 85%)

−1.9960e+ 08
s1= 0.8
s2= 1.0

1-level PC:TP s0= 0.4 60 × 37,500 × 24 (60+ 37,500) × 2 1.3163e+ 06 −1.9923e+ 08
s1= 2.0

1-level PC:SP s0= 0.4 60 × 37,500 × 24 (60+ 37,500) × 2 1.3131e+ 06 −1.9936e+ 08
s1= 1.0

Adaptation-only s0= 0.3 60 × 37,500 × 24 (60+ 37,500) × 1 1.3433e+ 06 −1.9880e+ 08
τ0= 1.5 s
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second component was PE2, which appeared in the central
midline area (Cz) (Fig. 5a), slightly after PE1 in both lower- and
higher-frequency bands (Fig. 5b), and with the contribution
profile of PE2 in the optimal model prediction (Fig. 5c).

Spatially, PE1 represented a source of bilateral auditory
cortices, as evidenced by similar CSD-based distribution linked
to auditory processing in other human studies44–46. On the other
hand, PE2 distribution represented a source of frontal cortex, as
evidenced by similar CSD-based distribution linked to the medial
prefrontal cortex or dorsal anterior cingulate cortex47–49. To
examine the spectral profile of the PE1 and PE2 components, we
measured their maximal activation at each frequency bin in the
Time-Frequency dimension, and showed that PE1 and PE2 were
strongest in the gamma frequency band (31–100 Hz) (Fig. 5d).
We further averaged their Time-Frequency dimension across the
gamma band, and showed that PE1 and PE2 peaked at 156 ms
and 192 ms after the last tone, respectively (Fig. 5e). The temporal
dynamics of PE1 and PE2 in different frequency bands: theta
(4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma
(31–100 Hz) are shown in Supplementary Fig. 9.

Prediction signals extracted from across-block contrasts. For
the across-block contrasts, the three components obtained from
the proposed model (with s0= 0.3, s1= s2= 1.0) were visualized

by their compositions in the three tensor dimensions (Fig. 6a–c).
The first component was P1, which appeared in the central
midline area (Cz) (Fig. 6a), slightly before the last tone in the beta
band (Fig. 6b), and with the contribution profile of P1 in the
optimal model prediction (Fig. 6c). The second component was
P2, which appeared in the frontal and the frontocentral regions
(Fig. 6a), slightly before the last tone in the beta band (Fig. 6b),
and with the contribution profile of P2 in the optimal model
prediction (Fig. 6c). The third component was PE1+ PE2, which
appeared in centrocephalic (C3, C4) and central midline (Cz)
areas (Fig. 6a), after the last tone in both lower-frequency
(<20 Hz) and higher-frequency (>40 Hz) bands (Fig. 6b), and
with the contribution profile identical to PE1+ PE2 in the model
prediction (Fig. 6c). Note that this component was comparable to
the sum of PE1 and PE2 identified previously (see Fig. 5a, b),
where their correlations were 0.96 and 0.71 (Pearson’s correlation
coefficient) in the first dimension (Channel) and the second
dimension (Time-Frequency), respectively (see Supplementary
Fig. 10).

To examine the spectral profile of the P1 and P2 components,
we measured their maximal activation at each frequency bin in
the Time-Frequency dimension, and showed that P1 and P2 were
both strongest in the beta band but P1 peaked around 23 Hz
while P2 peaked around 15 Hz (Fig. 6d). This indicated that

Fig. 5 Neural signatures of PE1 and PE2 extracted from within-block contrasts. a The Channel dimension of the PE1 and PE2 components extracted from
the optimal model. b The Time-Frequency dimension of the PE1 and PE2 components extracted from the optimal model. The time-frequency representation
was normalized to equalize the visualization across frequencies, where each value was divided by the standard deviation within the corresponding
frequency. The horizontal dashed lines are drawn at 4, 8, 13, and 30 Hz to indicate different frequency bands in panel d. c The contributions of PE1 and PE2
to the contrast responses in the 16 within-block contrasts. The values were based on the optimal model prediction and fixed in the model-driven
factorization. d The spectral profiles of PE1 and PE2. The frequency bands are labeled on the top (T: theta, A: alpha, B: beta, and G: gamma). e The temporal
profiles of PE1 and PE2 in the gamma band. The peak values are labeled with black asterisks to show the timings of maximal activations.
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predictions were frequency-specific, and suggested that predic-
tions of faster events (e.g., transitions between tones) were
encoded in faster neural oscillation frequency bands, and
predictions of slower events (e.g., sequence occurrences) were
encoded in slower neural oscillations. We further averaged the
Time-Frequency dimension across the beta band, and defined
significant activation as a value 3 times greater than the standard
deviation of the corresponding baseline values during
–0.7 s ~ –0.4 s. The results showed that P1 and P2 were activated
before the last tone (Fig. 6e), which indicated that predictions of
the last tone were activated prior to its onset, suggesting a
proactive and preparatory effect. Furthermore, P1 and P2 were
activated again after the last tone, and we theorize that the former
was triggered by the last tone to predict the next incoming tone

that was absent, and the latter canceled this omission error to
predict the sequence ending (see discussion on signal flows in the
“Discussion” section).

Prediction-error signaling during the learning phase. Our
model assumed that the transition and sequence probabilities
were learned. Our next step was to examine the learning process
by evaluating changes in the within-block contrast responses
from the early phase (first half of the trials) to the late phase
(second half of the trials). Based on the model, the P1 and
P2 signals were canceled out from the within-block contrast, thus
the learning effect was evaluated by changes in the PE1 and PE2
components in each phase. The overall within-block contrast

Fig. 6 Neural signatures of P1 and P2 extracted from across-block contrasts. The three components obtained from the model-driven factorization on the
across-block contrast responses. a The Channel dimension of the P1, P2, and PE1&PE2 components extracted from the optimal model. b The Time-Frequency
dimension of the extracted components. The same presentation is used as in Fig. 5b. c The contributions of the extracted components to the contrast
responses in the 24 across-block contrasts. The values were based on the optimal model prediction and fixed in the model-driven factorization. d The
spectral profiles of P1 and P2. The frequency bands are labeled on the top as in Fig. 5d. The peak values are labeled with black asterisks to show the
frequencies of maximal activations. e The temporal profiles of P1 and P2 in the beta band. The values significantly greater than 3 times of the standard
deviation of values during the baseline period (from –0.7 s to –0.4 s) are shown as asterisks with the corresponding colors.
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responses (xy – xx and xo – xx) in the early and late phases are
shown in Fig. 7a. Stronger significant contrast responses were
found in the late phase, particularly in the contrast xy – xx. This is
consistent with the view that predictions became more precise in
the later phase, thus the tone that violated local or global reg-
ularities induced a larger surprise and stronger PE1 and PE2 in
the contrast responses.

To further visualize the learning effect in xy – xx, we compared
the significant contrast responses (value= 0 or 1) between the
early and late phases (Late – Early) for each channel, and
performed PCA on the 2D data (Channel × Time-Frequency,
value= –1, 0, or 1) (see “Methods”). The first and the most
dominant principal component showed a stronger gamma-band
response followed by a stronger alpha-band response during the
late phase (Fig. 7b), which appeared primarily in the frontal and
the frontocentral regions (Fig. 7c). Note that the across-block
contrasts were excluded in this analysis, since learning varied
across blocks due to different transition and sequence probabil-
ities and thus cannot be distinctly examined.

Interdependence of prediction and prediction-error signals.
The neural signatures of PE1, PE2, P1, and P2 were extracted
based on the signal dependence proposed by the model. Based on
the model, during the xx sequence in Blocks 1–4 (where xx is the
dominant sequence), greater P1x will lead to smaller PE1x in the x
stream, i.e., prediction reduces the surprise (Fig. 8a). However,
greater P1Y will lead to greater PE1y in the y stream since PE1y is a

negative error (indicated as dashed arrows), i.e., strong prediction
leads to a bigger surprise when the input is omitted. Therefore,
P1x and PE1x are negatively correlated, while P1y and PE1y are
positively correlated (indicated as the black negative and positive
signs, respectively). Similarly, since PE2x and PE2y are negative
errors, greater P2x and P2y will lead to greater PE2x and PE2y,
respectively (indicated as the red positive signs). Furthermore,
smaller inputs PE1x and PE1y will lead to greater omission errors
PE2x and PE2y, respectively (indicated as the red negative signs).
Collectively, the correlation between P1 (P1x+ P1y) and PE1
(PE1x+ PE1y) is not significant, since the correlations share dif-
ferent signs in the x and y streams. At the second level, P2 and
PE2 are positively correlated in both streams, and PE1 and PE2
are negatively correlated in both streams. Collectively, the cor-
relations between P2 (P2x+ P2y) and PE2 (PE2x+ PE2y) and
between PE1 and PE2 are significantly positive and negative,
respectively. On the other hand, the correlations are opposite
during the xy sequence in Blocks 5–8 (where xy is the dominant
sequence), since the negative and positive errors are switched.

To examine these theorized correlations in the EEG data, we
monitored how PE1, PE2, P1, and P2 changed across trials, and
examined whether and how their activations correlated with each
other. The single-trial activations of PE1, PE2, P1, and P2 were
obtained by projecting EEG responses from each trial onto their
corresponding spatio-spectro-temporal structures (Fig. 8b). For
PE1 and PE2, the spatial structures were created from the
Channel dimension (Fig. 5a) and the spectro-temporal structures

Fig. 7 PE1 and PE2 during learning. a The overall within-block contrast responses, xy – xx and xo – xx, in the early and late phases. The pixel value
represents the ratio of significance across all channels and contrasts. b The first principal component to visualize the difference between the late and early
phases (Late – Early) in the significant contrast responses (xy – xx). c The corresponding spatial location of the first principal component.
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were created from the gamma-band components in the Time-
Frequency dimension (Fig. 5b). For P1 and P2, the spatial
structures were created from Channel dimension (Fig. 6a) and the
spectro-temporal structures were created from the beta-band
components in the Time-Frequency dimension (Fig. 6b). To refine
the spatial and spectro-temporal structures, the absolute values
below the corresponding median values were set to zero. Note
that P1 and PE2 components shared similar spatial distribution,
which were consistent with the model in which the neural
populations for P1 and PE2 locate at the same level (see Fig. 2).

The ERSP responses on each trial were then projected onto
each spatio-spectro-temporal structure, which resulted in a scalar
value for each structure (see “Methods”). These values indicate
how much PE1, PE2, P1, and P2 appeared in the single-trial EEG
responses (see an example in Supplementary Fig. 11). We further
quantified the correlation coefficients (r) between the time
courses of projection values to evaluate how PE1, PE2, P1, and
P2 interacted with each other. To ensure the correlations were not
artifactually caused by the spatio-spectro-temporal structures
which shared overlapping features, we measured the projection
values and the corresponding correlation coefficients for ERSP
responses shuffled over channels, frequency bins, and time points
(see Supplementary Fig. 11). The average correlation coefficients
from 500 shuffles are denoted as rshuffle. Figure 8b shows the
adjusted correlations (r – rshuffle) between three direct interac-
tions: P1↔ PE1, P2↔ PE2, and PE1↔ PE2.

Among Blocks 1–4, significant positive and negative correla-
tions were found between P2 and PE2 and between PE1 and PE2,
respectively (p < 1e−15, Wilcoxon signed rank test, two-sided,
n= 120: 4 blocks * 30 subjects) (Fig. 8c). Among Blocks 5–8,

significant negative and positive correlations were found between
P2 and PE2 and between PE1 and PE2, respectively (p < 1e−14).
These results were consistent with the model predictions.

Discussion
We provide a quantitative definition of prediction and prediction-
error signals based on the predictive coding theory, allowing us to
extract hierarchical prediction and error signals from the neural
responses. We also demonstrate that the hierarchical and bidir-
ectional predictive coding framework was most suitable to
describe the observed data. The utility of our computational
strategy and its value for the field is that it can be applied to any
experimental paradigm where predictability can be defined, not
just the local-global paradigm.

In Fig. 9, we provide an analysis-driven model of the signal
flow map for predictive processing in human EEG data for the
local-global paradigm in a 2-level cortical hierarchy. The theo-
retical model illustrates the quantitative interactions between
prediction signals at the lower level (P1) and the higher level (P2),
and the prediction-errors signals at the lower level (PE1), and the
higher level (PE2). The results provide a cohesive view of how
these multiplicative signals propagate and interact in the cortex
based on their timing and dependence. Here, we will describe
below the signal information flow of a 2-tone sequence in the
cortical hierarchical map after the transition and sequence
probabilities are learned. We exclude adaptation for simplicity.
The first tone initially evokes a sensory response (see step 1 in
Fig. 9). Since the first tone is unpredictable due to the random
interval between sequences, there is no P1 nor P2. Without

Fig. 8 Correlated activations and theorized signal flow. a The models of the xx sequence in Blocks 1–4 and the xy sequence in Blocks 5–8. Positive and
negative signs indicate positive and negative correlations, respectively. Red positive and negative signs indicate same tendencies in both the x and y
streams, and black signs indicate different tendencies across the x and y streams. b The spatial structures and spectro-temporal structures of PE1, PE2, P1,
and P2. c The adjusted correlations (r – rshuffle) in Blocks 1–4 and Blocks 5–8. For each pair, the median and the corresponding 95% confidence interval are
shown as the black bar and red vertical line, respectively. All 120 data points (4 blocks * 30 subjects) are shown as gray crosses. Significant correlations are
indicated by red asterisks (see details in the “Results” section).
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cancellation by these absent prediction signals, the sensory
response generates PE1 after a delay (step 2), which further
propagates and generates PE2 (step 3). These bottom-up signals
are carried by gamma oscillations. Similarly, the sensory response
to the second tone (step 4) generates PE1 (steps 5), which con-
tinues to propagate to generate PE2 (step 6). To confront PE1, we
theorize that P1 predicts not only the size of incoming PE1 but
also its timing (i.e., the tone interval), and is triggered by each
tone (steps 1 and 4) and sent via top-down communication from
Level 1 via high-beta oscillations (steps 7 and 8). Importantly, P1
needs to be activated before the sensory input so it can propagate
from Level 1 to Level S to cancel it. Since the sensory response to
the second tone is predicted by P1, the size of the consequent PE1
is reduced (step 5). For the last tone, there is no sensory input to
confront P1 triggered (step 8), thus an omission error is generated
(step 9), which represents the surprise of the sequence ending and
is canceled at Level 2. To confront PE2, we assume that once the
sequences are learned (not only the probabilities of xx, xy, and xo,
but also the sequence length), the first tone is sufficient to trigger
the prediction of the last tone (x, y, or o), its timing, and the
subsequent ending. This assumption is supported by our previous
study using the local-global paradigm in monkeys, where we
found that global prediction signals occurred soon after the first
stimulus20. Subsequently, P2 is transmitted from Level 2 via low-
beta oscillations (steps 10 and 11) to reduce the sizes of PE2 from
the last tone (step 6) and the omission at the sequence ending
(step 12). We note that PE2 at step 12 could be very small since
the sequence ending is highly predictable (although not 100%
predictable due to the omission trial). The described signals
represent their properties and flows in a single trial. In contrast,
some signals will be canceled out in the contrast between trial
types. For example, the error signals at steps 2 and 3 are the same
in all sequences, thus are canceled out in the within-block con-
trasts, and PE1 and PE2 identified by the within-block contrasts
(Fig. 5) correspond to PE1 at step 5 and PE2 at step 6, respec-
tively. Furthermore, the error signals at steps 9 and 12 only occur
in the xx sequence, since they are caused by the additional local
prediction from the last x tone in the xx sequence. Therefore, in
the within-block contrasts (xy – xx or xo – xx), and they could

underlie the negative gamma oscillations observed at longer
latencies (see Fig. 5b, e). On the other hand, P1 and P2 identified
by the across-block contrasts (Fig. 6) correspond to P1 at steps 7
and 8 and P2 at steps 10 and 11, respectively. Together, these
results reveal the map of signal flow for predictive coding in the
local-global paradigm. We will next discuss the properties, timing,
and dependence of these signals within the network.

The prediction signals P1 and P2 appeared before the last tone
(see results in Fig. 6e and our model in Fig. 9). This proactive
emergence is an expected feature of prediction-related signals. In
human, pre-stimulus alpha-band EEG oscillations were found to
influence early stages of visual processing50, and MEG signals
encoded incoming predictable stimuli were observed shortly
before they were presented51. In monkeys, enhanced beta-band
functional connectivity was found before predictable stimuli32.
Our results demonstrate that these proactive prediction signals
occur across multiple hierarchies and set a baseline for incoming
error information. How early prediction signals need to be acti-
vated depends on two factors. First, neuronal transmission delays
that are required for signal propagation and neuronal processing,
and second, the actual timing of the predicted events (e.g., the
timing of the next tone and the end of the sequence). Neuronal
transmission delays are often neglected in computational models
of predictive coding3,52,53, but they are critical for prediction and
prediction-error signals to align properly across cortical hier-
archies in real time54. However, empirical evidence of how the
timings of predictions are tunned across hierarchies is lacking. On
the other hand, event timing predictions have been widely studied
by using temporal reproduction or foreperiod paradigms where
subjects learn and anticipate the forthcoming sensory stimulus,
and the neural substrates of temporal prediction have been
characterized as the phase of alpha-band oscillations in EEG50,
the power of beta-band oscillations and the contingent negative
variation in EEG55,56, the phase-power coupling between theta
and beta bands57, and population neuronal firing rates in the
dorsomedial frontal cortex58. However, it remains unclear how
these proactive neuronal processes are initiated. In this study, we
theorize that P1 and P2 were triggered by the sensory input,
which suggests the existence of direct pathways that bypass

Fig. 9 Theorized signal flows. The theorized signal flows during a 2-tone sequence. See details in the “Discussion” section.
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intermediate hierarchical levels. One possible route is the thala-
mocortical pathways, which converge with corticocortical path-
ways to enable higher auditory and visual perception59,60.

Signals related to top-down predictions and bottom-up pre-
diction errors are channeled by neural oscillations of distinct
frequencies: alpha/beta and gamma bands, respectively20,23,61–63.
This asymmetric signal transmission is anatomically plausible,
since alpha/beta oscillations are largely found in the deep layers
(5/6) of the cortex, whereas gamma activity is prominently gen-
erated in the superficial layers (2/3)64–66. This expectation is also
functionally reasonable, since top-down signals could serve a
modulatory integrative function operating over longer timescales,
while bottom-up signals could require higher frequencies with
greater energetic costs in order to achieve higher communication
throughput52,61,65. Our results demonstrate that frequency spe-
cificity also occurs for prediction signals, where the frequency that
channels prediction information is hierarchy level-specific. These
hierarchy level-specific neural oscillations have also been found in
bottom-up signals in monkeys, where slightly different gamma
bands were found to carry feed-forward prediction-error signals
at different hierarchical levels20. Functionally, the hierarchical
ordering of neural oscillations, or frequency ordering, could allow
different levels in hierarchies to encode information at different
time scales, where lower and higher levels can predict faster and
slower dynamical events, respectively. Anatomically, different
brain areas naturally resonate at particular frequency bands67,68,
which could be the neural basis of such frequency-specific pre-
dictions. Particularly, the intrinsic timescales of neuronal activity
have been found to be hierarchically organized, with sensory and
prefrontal areas showing shorter and longer timescales,
respectively69,70. This organization may allow lower levels to
quickly and robustly track dynamic sensory inputs, while higher
levels can integrate multi-scale information and achieve noise-
invariant computation.

Prediction errors can be either positive or negative, since
bottom-up inputs can be larger than predicted (e.g., when
receiving an unexpected stimulus) or smaller than predicted (e.g.,
when failing to receive an expected stimulus). It has been pro-
posed that positive and negative errors are processed by distinct
neurons in the neocortex, since cortical baseline firing rates are
low and it is less plausible for a single neuron to signal both types
of prediction errors by changing its firing rate bidirectionally71.
However, most studies only focused on positive or negative
prediction errors5,72–75, possibly due to the difficulty of separat-
ing neuronal processes underlying positive and negative error
computations which can occur simultaneously. Using a model-
fitting approach, we showed that EEG responses capture both
positive and negative prediction errors. To identify the positive
and negative error signals or test the theorized biological
circuitries71,76, one would need to use neural recordings with
single-cell resolution, such as single-unit activity recordings or
calcium imaging. Another solution would be to design a task in
which positive and negative prediction errors are generated in
different and distant domains, such as probing expectations of
face and place stimuli in different brain regions19.

We observed reduced responses during sequences with repe-
titive stimuli (see Supplementary Fig. 6), thus we hypothesize that
neural adaptation occurs for those sequences and P1 predicts a
reduced input scaled by an adaptation factor. Our model does not
differentiate the origins of this presumed adaption, only its out-
come. One possible cause is stimulus-specific adaptation (SSA),
which is a lower-level inhibitory neuronal mechanism in response
to repetitive stimulation that has been observed in both cortical
and subcortical structures77–79. Another possible cause for the
adaptation is predictive coding itself, where the prediction of
transitions between identical tones is learned during repetitions,

and the repetitive tones generate less surprise over time. To fully
explain the data will require a model that includes the interplay
between predictive coding and SSA to describe the neural
dynamics during each tone in cortical and subcortical areas.

Our model focuses on signal dependence after transition and
sequence probabilities are learned and errors are minimized. To
understand the dynamic process of prediction updating and error
minimization, it is essential to examine how probabilities are
encoded. It is thought that probability distributions, or their log
values, are encoded straightforwardly in population firing rates
(as adopted in our model), combinational firing patterns of
neuronal populations representing specific probability distribu-
tions (called basis functions), or the value of membrane
potentials40, and their updates based on prediction errors are
mediated by neuromodulators, such as acetylcholine80. One
candidate to incorporate these ideas is a Bayesian model called
the Hierarchical Gaussian Filter81, which updates predictions by
precision-weighted prediction errors1,3,12 and was implemented
to examine prediction-error signals during learning in the
brain74,82–85. However, its implementation in hierarchical pre-
diction is limited (despite the term hierarchical in the name,
which refers to a motor part of the model) but highly demanded.
One important feature in our model is that while prediction is
established in each individual stream, its value is determined by
the stimulus probability (TP at Level 1 and SP at Level 2) which
requires information integrated from both streams. Therefore, we
believe that prediction is encoded in a neuronal network with
four key features which can be tested by using finer-grained
measurements such as single-unit activity recordings or calcium
imaging: (1) inter-stream connections (spans spatially across
streams), (2) probability encoding (changes activation based on
sensory predictability), (3) proactive timing (activates before the
sensory input), and (4) top-down regulation (influences responses
at the lower hierarchy). Our EEG results showed an enhanced
frontal alpha-band response during the late phase of learning
(Fig. 7b), which could represent a prediction update process that
occurred immediately after gamma-band prediction-error signals.
Similar long-latency alpha-band activities in the frontal cortex
have been observed in ECoG in both humans and monkeys20,22.
Furthermore, alpha-band signal magnitudes have been found to
correlate with prediction updates when changes in the stimulus
probability occur35,86. Understanding interactions among alpha-
band activity, gamma-band prediction-error, and beta-band
prediction signals, may require the use of a trial-by-trial analy-
sis with Bayesian modeling87,88.

In summary, we used a cortical signal dependence model to
disentangle prediction and prediction-error signals and reveal a
frequency ordering of prediction signals that allows different
hierarchical levels to encode information at different time scales
in the human brain. These results advance the physiological
measurement and modeling of predictive coding, and provide a
platform to examine predictive signaling beyond two hierarchical
levels (e.g., information of longer timescales or greater abstrac-
tion) and among multiple sensory modalities in normal and
disordered brain.

Methods
Model calculation. We propose a simple model where the optimal value of each
prediction signal is to minimize the mean-squared error received. For example, the
mean squares of PE1x (denoted by MSPE1x) can be devised as (based on the bar
graph in Fig. 2a):

MSPE1x ¼ TPx � s0
n�1 � P1x

� �2 þ 1� TPx

� � � P1x
� �2 ð1Þ
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The minimums occur when:

d
dP1x

MSPE1x ¼ 0 ð2Þ

Which leads to:

P1x ¼ s0
n�1 � TPx ð3Þ

And P1y can be obtained in the same fashion:

P1y ¼ TPy ð4Þ
This represents the optimal prediction where first-level prediction errors are

minimized. Then we added the scaling factor s1 to P1x and P1y and calculate the
mean squares of PE2x (denoted by MSPE2x):

MSPE2x ¼ SPxx � ðjs0n�1 � P1x � s1j � P2xÞ2 þ 1� SPxx

� � � ðP1x � s1 � P2xÞ2

ð5Þ
The minimums occur when:

d
dP2x

MSPE2x ¼ 0 ð6Þ
Which leads to:

P2x ¼ SPxx � js0n�1 � P1x � s1j
� �þ 1� SPxx

� � � P1x � s1 ð7Þ
And P2y can be obtained in the same fashion:

P2y ¼ SPxy � j1� P1y � s1j
� �

þ 1� SPxy

� �
� P1y � s1 ð8Þ

Note that the P2x and P2y here represent the optimal predictions when potential
erroneous predictions at the first level are considered. Also, s2 was applied to
calculate the second level prediction errors, i.e., P2x*s2 and P2y*s2 were used (as
shown in Fig. 2d).

Based on the model, all prediction signals are determined once the transition
probabilities (TPx and TPy), sequence probabilities (SPxx and SPxy), and scaling
factors (so, s1, and s2) are known. The transition probabilities can be calculated
based on the number of tones in a sequence (n) and the sequence probabilities. For
n-tone sequences, there are n–1, n–2, and n–2 transitions from tone x to x in the
xx, xy, and xo sequences, respectively. Combining with the corresponding sequence
probabilities, the expected number of transitions from tone x to x (denoted by TNx)
is

TNx ¼ n� 1ð Þ � SPxx þ n� 2ð Þ � SPxy þ n� 2ð Þ � ð1� SPxx � SPxyÞ ð9Þ
Similarly, the expected number of transitions from tone x to y (denoted by TNy)

is:

TNy ¼ 1 � SPxy ð10Þ
For the expected number of transitions x to o (denoted by TNo), the transition

from tone x to o at the end of the xx sequence is considered:

TNo ¼ 1 � SPxx þ 1 � 1� SPxx � SPxy

� �
¼ 1� SPxy ð11Þ

Thus, TPx, TPy, and TPo can be calculated as

TPx ¼
TNx

TNx þ TNy þ TNo
¼ TNx

TNx þ 1
ð12Þ

TPy ¼
TNy

TNx þ TNy þ TNo
¼ TNy

TNx þ 1
ð13Þ

TPo ¼
TNo

TNx þ TNy þ TNo
¼ TNo

TNx þ 1
ð14Þ

The values of these transition probabilities in the 8 blocks are shown in Fig. 1b.
Examples of the strengths of the prediction and prediction-error signals in Blocks 3
and 7 with s0= s1= s2= 1 (the optimal predictions with no sensory adaptation) are
shown in Fig. 2e. The MATLAB code for these calculations is also provided.

Participants. Thirty healthy adults were recruited in this study (15 males and 15
females; age: 24 ± 2.6 years old, mean ± standard deviation). The inclusion criteria
for participants were: (1) aged 20–40 years old; (2) no participation in drug studies;
(3) no apparent cognitive difficulties or serious deficits in vision and hearing; (4) no
known neurological and psychological diagnosis. All research protocols were
approved by the Research Ethics Committee of the National Taiwan University
Hospital (201906081RINA). Each participant signed informed consent before the
experiment.

Stimuli. Two tones were created by combining three sinusoidal waves of different
base frequencies: 350, 700, and 1400 Hz for the low-pitch tone (tone A), and 500,
1000, and 1500 Hz for the high-pitch tone (tone B). The duration of each tone was
set to be 100 ms with a 7 ms rise and fall. A tone sequence was composed of either 2
or 3 tones in which 200 ms was set between successive tone onsets within a
sequence, and 1000–1400 ms was set between the offset of the last tone of a
sequence and the onset of the first tone of the following sequence (see Fig. 1a).

Eight sequence blocks were used, each with a total of 144 sequences (see Fig. 1b).
The order of the sequences was pseudorandom within each block, where the total
sequences were divided into four phases while each phase kept the same sequence
ratios. For example, for Block 1, each phase had 24 trials of xx, 6 trials of xy, and 6
trials of xo (a total of 36 trials in a phase). The sequence order was randomized for
each phase in each block, with possibilities of consecutive rare sequences (e.g., two
consecutive xy sequences in Block 1). The reason for the pseudorandom order was
to maintain overall sequence probabilities throughout the learning. Furthermore,
the reason to allow consecutive rare sequences was to avoid introducing additional
statistical structures into the sequences. Each block was delivered twice, one time
with tone A as the frequent tone (block A) and the other time with tone B as the
frequent tone (block B). For example, for Block 1 (see Fig. 1b), sequences AA, AB,
and AO (O as omission) were used in one run, and sequences BB, BA, and BO were
in the other run. A total of 16 runs of 144 sequences were used.

Experimental procedure. Each participant underwent 16 blocks in a pseudoran-
dom order. During a block, participants were instructed to visually fixate at a
central fixation cross on the screen and pay attention to the sounds. To minimize
the chance that the learned sequential structure of the previous block being carried
over to influence the next block, participants were presented with a 15 s video
during breaks between successive blocks for wash-out purposes. All experimental
protocols were programmed with the MATLAB-based Psychophysics Toolbox
Version 389 and all auditory stimuli were delivered through a pair of desktop
speakers (~60 dB).

EEG recording. EEG signals were recorded with an elastic custom EEG cap (64-
channel Quick-cap, the extended 10–20 system, Compumedics Neuroscan, Aus-
tralia) and a SynAmps RT amplifier (Compumedics Neuroscan, Australia). EEGs
were on-line referenced to the reference electrode near Cz. At the preparation stage
before recordings, electrode impedances were kept to be <2 kΩ for the left and right
mastoid (M1 and M2) electrodes, 10 kΩ for the eye electrodes, and 5 kΩ for the
remaining electrodes.

During the EEG recording, eye blinks and eye movements were detected by
horizontal and vertical electrooculography (HEOG and VEOG) electrodes. The
HEOG electrodes were attached to the outer canthi of each eye to monitor
horizontal eye movement. The VEOG electrodes were attached to the supraorbital
and infraorbital ridge of the left eye to monitor vertical eye movement and eye
blinks. When each tone sequence was displayed, the onset time of the first tone was
simultaneously labeled as an event code, a number representing types of tone
sequences in different blocks. Raw EEG and EOG signals were recorded online with
a band-pass filter of 0.01 to 100 Hz, a gain setting of 1000 and digitalization, and by
a sampling rate of 500 Hz. Then all EEG data were digitally stored for later off-line
preprocessing. The whole recording process took place in a sound-attenuated,
dimly lit room.

EEG analysis
EEG preprocessing. EEG preprocessing was done by EEGLAB on MATLAB90. The
raw data were first re-referenced to the average of the left and right mastoids (M1
and M2) to eliminate systematic noise from the environment. Then EEG epochs
were extracted from –1.5 to 2.3 s for the 2-tone sequences and from –1.5 to 2.5 s for
the 3-tone sequences (time zero as the onset of the first tone in a given sequence).
This segmentation keep data from –1.2 s before the first tone to 1.9 s after the last
tone for both 2-tone and 3-tone sequences. Excessive fluctuations or high-
frequency noise in the EEG epochs were eyeball screened and manually rejected.
For each participant, an average of ~2.6% of the total 2304 trials (144 trials per
block, 8 blocks, 2 configurations: block A and block B) were rejected (60.9 ± 73.9
trials, mean ± standard deviation).

To remove eye movement artifacts from the signals, we first performed an
independent component analysis (ICA) with the infomax algorithm
(pop_runica.m) with the electrodes VEO and HEO removed (62 channels left), and
used the ADJUST algorithm to automatically identify and remove artefactual
component(s) related to eye movement91 (pop_ADJUST_interface.m). To acquire
reference-free signals, a 3D 60-channel EEG montage spherical coordinates were
used to estimate scalp current source density (CSD), where the cerebellar electrodes
CB1 and CB2 were excluded. The CSD analysis was done by using the CSD toolbox
with a smoothing constant lambda of 1e−5 and the head radius of 10 cm44.

Event-related spectral perturbation (ERSP). ERSP was calculated for each trial type
(e.g., the xy sequence in Block 3) and each subject. For each subject, channel, and
trial, the time–frequency representation (TFR) of the CSD signal was generated by
Morlet wavelet transformation at 100 different center frequencies (1–100 Hz) with
the half-length of the Morlet analyzing wavelet set at the coarsest scale of 7 sam-
ples, which is implemented in the FieldTrip Toolbox (ft_freqanalysis.m)92. Baseline
normalization was then performed to calculate the decibel values by using the
baseline period from –0.2 to 0 s (time zero as the onset of the first tone)
(ft_freqbaseline.m). For each trial type, the ERSP was calculated by averaging the
normalized TFRs from the corresponding trials including both block A and block B
to eliminate tone-specific effects.
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Contrast response. For each contrast (use xy – xx in Block 3 as an example), the
contrast response was calculated for each channel across 30 subjects. The average
ERSPs for the xy and xx sequences were first calculated across 30 subjects, and then
the difference in the average ERSPs was obtained. To measure the significance of
the difference (as the black contours shown in Fig. 4a, b), the confidence intervals
of each ERSP value for the xy and xx sequences were first obtained by boot-
strapping the corresponding ERSPs from 30 subjects 1000 times (α= 0.05, two-
sided, false discovery rate correction). By comparing the confidence intervals, the
significant contrast responses were obtained (value= 0 or 1, where 1 represented
significance). For the decomposition analysis, the contrast responses were masked
with the significance, where nonsignificant values were set to 0.

Overall occurrence of significant contrast responses. The overall occurrence of sig-
nificant contrast responses shown in Supplementary Fig. 1 was obtained by aver-
aging the significant contrast responses (value= 0 or 1) from multiple contrasts
and all channels. For each frequency bin, the standard deviation of the average
significance during a baseline period (–0.5 s ~ –0.2 s for 2-tone sequences, –0.7 s ~
–0.4 s for 3-tone sequences, where time 0 represented the onset of the last tone) was
calculated, and only values above 5 times of the standard deviation were shown for
clarity.

Data-driven analysis with parallel factor analysis (PARAFAC). To obtain a com-
prehensive view of the contrast responses, the contrast responses masked with the
significance were pooled to create a tensor with three dimensions: Channel (brain
area), Time-Frequency (in-trial dynamics), and Contrast (contrast response), for the
anatomical, dynamic, and functional aspects of the data, respectively. The
dimensionality of the tensor was 60 (channels) by 37,500 (375 time points and 100
frequency bins) by 16 (within-block contrasts). To extract structured information
from the dataset, we factorized the 3D tensor into multiple components by per-
forming PARAFAC, a generalization of principal component analysis (PCA) to
higher-order arrays41, which was previous used for the computational extraction of
latent structures in functional network dynamics20,38,39. PARAFAC was performed
using the N-way toolbox93, with no constraint on all three dimensions (parafac.m).
The convergence criterion (i.e., the relative change in fit for which the algorithm
stops) was set to 1e−6. The initialization method was set to be direct trilinear
decomposition (DTLD), which was considered the most accurate method94. To
determine the number of structures hidden in the dataset, we performed the core
consistency diagnostic (CORCONDIA) to identify the appropriate latent structures
where adding other latent structures does not considerably improve the model fit42.

Model-fitting with PARAFAC. To decompose pooled contrast responses into
components with theorized contrast values, PARAFAC was performed with the
third dimension Contrast fixed with the values proposed by the model (using
FixMode and OldLoad inputs in parafac.m). For any given model (e.g., within- or
across-block contrasts, different adaption factors, different error types, etc.), a core
consistency diagnostic value and residual sum of squares (RSS) were obtained to
represent how well the pooled data fit the model.

Model comparison. The Bayesian information criterion (BIC) was calculated to
evaluate the goodness of fit of each model. For tensor-based decomposition ana-
lysis, such as PARAFAC, BIC was calculated as follow95:

BIC ¼ u � log RSS
u

� �
þ w � logðuÞ ð15Þ

where u represents the number of data point, w represents the number of estimated
elements, and RSS represents the residual sum of squares from PARAFAC. The
values of u, w, and RSS for each model are shown in Table 1.

Visualization of learning in contrast responses. To visualize the learning effect in xy
– xx (as shown in Fig. 7b, c), the differences in significant contrast responses
between the early and late phases (Late− Early) were obtained for each channel
(value= –1, 0, or 1). A two-dimensional data was then created: 60 (channels) by
37,500 (375 time points and 100 frequency bins), and PCA was performed on the
2D data for visualization.

Single-trial projection and adjusted correlation. The projection value of a single-trial
ERSP responses (ERSP= 60 channel × 100 frequency bins × 375 time points) on to
the spatial structure (S= 1 by 60) and the spectro-temporal structure (F/T= 100
by 375) of a component (shown in Fig. 8a) was calculated as S*ERSP*F/T, which
yields a single scalar value. For all the available trials (after removal of bad trials) in
each block (a total of 480 blocks: 8 block types, 2 runs per block types, and
30 subjects), the Pearson correlation coefficients (r) were calculated between the
144-value time courses of PE1, PE2, P1, and P2. To shuffle ERSP response, values
in channel, time, and frequency are randomly exchanged. For each shuffle, the
projection values and the correlation coefficients were calculated as described
above. The average correlation coefficients across 500 shuffles (rshuffle) are mea-
sured, and the adjected correlations were calculated as r – rshuffle. See Supple-
mentary Fig. 11 for an example of the process.

Statistics and reproducibility. The sample size is comparable to previous similar
EEG/MEG studies25,27, and no participant was excluded. The proposed model is
fully described in equations and the MATALB code for its calculation is provided.
For EEG analysis and data-fitting analysis, the details including the variable
dimensionality, MATALB toolboxes, functions, and key parameters are provided.
For statistical comparisons, details including the number of resampling and mul-
tiple comparisons methods are provided. The only subjective step is the EEG
preprocessing where bad trials were manually excluded via visual inspection.
However, we followed a general guideline and only ~2.6% of the total 2304 trials
were excluded.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying main figures are presented in Supplementary Data 1. The raw
EEG data are available from the corresponding author upon request.

Code availability
The code to calculate values of predictions and prediction errors in the proposed model
has been deposited in Zenodo96.
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