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Abstract 

Background: The epidemiology of cannabinoid-related cancerogenesis has not been studied with cutting edge epi-
demiological techniques. Building on earlier bivariate papers in this series we aimed to conduct pathfinding studies to 
address this gap in two tumours of the reproductive tract, prostate and ovarian cancer.

Methods: Age-standardized cancer incidence data for 28 tumour types (including “All (non-skin) Cancer”) was 
sourced from Centres for Disease Control and National Cancer Institute using SEER*Stat software across US states 
2001–2017. Drug exposure was sourced from the nationally representative household survey National Survey of Drug 
Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003–2017 
with response rate 74.1%. Federal seizure data provided cannabinoid concentration data. US Census Bureau provided 
income and ethnicity data. Inverse probability weighted mixed effects, robust and panel regression together with 
geospatiotemporal regression analyses were conducted in R. E-Values were also calculated.

Results: 19,877 age-standardized cancer rates were returned. Based on these rates and state populations this 
equated to 51,623,922 cancer cases over an aggregated population 2003–2017 of 124,896,418,350. Inverse probability 
weighted regressions for prostate and ovarian cancers confirmed causal associations robust to adjustment. Canna-
bidiol alone was significantly associated with prostate cancer (β-estimate = 1.61, (95%C.I. 0.99, 2.23), P = 3.75 ×  10− 7). 
In a fully adjusted geospatiotemporal model at one spatial and two temporal years lags cannabidiol was significantly 
independently associated with prostate cancer (β-estimate = 2.08, (1.19, 2.98), P = 5.20 ×  10− 6). Cannabidiol alone 
was positively associated with ovarian cancer incidence in a geospatiotemporal model (β-estimate = 0.36, (0.30, 0.42), 
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Background
Cannabis has been linked with cancers at many sites 
including head and neck, brain, lung, larynx, prostate, 
testis, cervix and urothelium by previous studies [1–18]. 
However uncertainty on many of these points persists as 
other studies with conflicting results also appear both in 
the literature [4, 19, 20] and in reviews [16, 21–24].

The most strongly documented link between cannabis 
and cancer is for testicular cancer where several recent 
studies have confirmed an association [3, 8–10] and 
dose-response effects have been demonstrated [3, 8, 10]. 
Endocrine disruption through such events as low birth-
weight, short gestation, tall stature, maternal bleeding, 
twinship, first position in the sibship and small sibship 
has also been linked with the development of testicular 
cancer. Since the testis houses the male germ cell epithe-
lium it is conceivable that genomic or epigenomic dam-
age incurred by the male germ cells may be passed along 
to subsequent generations.

This possibility is confirmed by published reports link-
ing prenatal cannabis exposure with paediatric cancer 
incidence including rhabdomyosarcoma [16], child-
hood neuroblastoma [15] and leukaemia particularly 
non-lymphoblastic leukaemia [17, 19] which together 
demonstrate evidence of inheritable mutagenicity and 
carcinogenicity in human populations [25, 26]. The 
importance of mutagenicity, carcinogenicity and herit-
ability was underscored by a recent report showing that 
breast, thyroid, liver and pancreatic cancers and acute 
myeloid leukaemia along with three chromosomal tri-
somies (21, 18 and 13), Turners syndrome and Deletion 
22q11.2 were increased causally and across space-time 
in relation to cannabis use [27]. Other reports show that 
cannabis exposure is a likely cause and driver of rising 
paediatric cancer rates [28] including the commonest 
childhood cancer acute lymphoid leukaemia [28].

Cannabidiol is of particular concern as it is often 
thought to be relatively safe, is widely available in many 

jurisdictions and its known genotoxicity [29–37] and epi-
genotoxicity [38–48] is generally unknown and ignored.

Prostate cancer was previously found to be greatly ele-
vated by current cannabis exposure with an odds ratio of 
4.7 (95%C.I. 1.4, 15.5) [7]. Intriguingly endocrine disrup-
tion was identified as one possible mechanism to explain 
this relationship [7]. Cannabis is a well established endo-
crine disruptor [49–59]. Whilst there are no extant papers 
documenting the relationship of cannabinoid exposure 
to ovarian cancers oocytes have been shown to be highly 
sensitive to cell death during cell division under the influ-
ence of cannabinoids [60] and the ovary is also known to 
be highly sensitive to inhibitors of mitochondrial metabo-
lism a role which several cannabinoids including canna-
bidiol have long been known to play [36, 37, 61–65].

Earlier reports in this series have considered the impact 
of substance and cannabinoid exposure on a panel of 28 
common cancers across USA [66, 67]. Prostate and ovar-
ian cancer were found to be particularly associated with 
cannabidiol exposure in these bivariate studies [66, 67]. 
It was the purpose of this paper to investigate this rela-
tionship further in a multivariable context using the tools 
of causal inferential and geospatial modelling and to 
examine the impacts of limited mathematical modelling 
on some of the important models to proceed from these 
regression studies. This is done both to provide detailed 
information on these two tumours and to demonstrate an 
analytical and causal inferential pipeline for the further 
exploration of such rich epidemiological datasets.

Methods
Data
Rates of age-adjusted cancer rates by state and year 
and cancer type was taken from the Surveillance, Epi-
demiology and End Results (SEER) database from the 
Centres for Disease Control (CDC) Atlanta, Georgia 
and the National Cancer Institute (NCI) and from the 
National Program of Cancer Registries (NPCR) and 

P <  2.20 ×  10− 16). The cigarette: THC: cannabidiol interaction was significant in a fully adjusted geospatiotemporal 
model at six years of temporal lag (β-estimate = 1.93, (1.07, 2.78), P = 9.96 ×  10− 6). Minimal modelled polynomial 
E-Values for prostate and ovarian cancer ranged up to 5.59 ×  1059 and 1.92 ×  10125. Geotemporospatial modelling 
of these tumours showed that the cannabidiol-carcinogenesis relationship was supra-linear and highly sigmoidal 
(P = 1.25 ×  10− 45 and 12.82 ×  10− 52 for linear v. polynomial models).

Conclusion: Cannabinoids including THC and cannabidiol are therefore important community carcinogens addi-
tive to the effects of tobacco and greatly exceeding those of alcohol. Reproductive tract carcinogenesis necessarily 
implies genotoxicity and epigenotoxicity of the germ line with transgenerational potential. Pseudoexponential and 
causal dose-response power functions are demonstrated.

Keywords: Cannabis, Cannabinoid, Δ9-tetrahydrocannabinol, Cannabigerol, Cannabidiol, Mechanisms, Congenital 
anomalies, Oncogenesis, Genotoxicity, Epigenotoxicity, Chromosomal toxicity, Multigenerational genotoxicity, 
Transgenerational teratogenicity, Dose-response relationship, Supra-linear dose response, Sigmoidal dose-response
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SEER Incidence US Cancer Statistics Public Use Data-
base 2019 submission covering years 2001–2017 using 
the SEER*Stat software [68]. The focus of this study was 
28 of the most common cancers (as listed below). This 
includes the category all non-skin cancer (called All 
Cancer in this report). This was joined with drug use 
cross-tabulation data across USA by state and year from 
the National Survey of Drug Use and Health (NSDUH) 
Restricted-Use Data Analysis System (RDAS) of the Sub-
stance Use and Mental Health Data Archive (SAMHDA) 
held by the Substance Use and Mental Health Services 
Administration (SAMHSA) 2003–2017 [69]. Thus the 
overlap period between the cancer and drug exposure 
datasets was 2003–2017 which therefore became the 
period of analysis. The variables of interest were last 
month cigarettes, last year alcohol use disorder (AUD), 
last month cannabis, last year non-medical use of opi-
oid analgesics (Analgesics) and last year cocaine. Quin-
tiles of substance exposure were calculated for each 
year numbered from one, the lowest quintile, to five 
the highest exposure quintile. Data on median house-
hold income, ethnicity and population by state and year 
was sourced directly from the US Census bureau via the 
tidycensus package [70] in R including linear interpola-
tion for missing years. The ethnicities of interest were 
Caucasian-American, African-American, Hispanic-
American, Asian-American, American Indian / Alaska 
Native (AIAN) and Native Hawaiian / Pacific Islander 
(NHPI). Data on cannabinoid concentration across 
USA was taken from reports published by the US Drug 
Enforcement Agency (DEA) for the five cannabinoids 
Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), 
cannabichromene (CBC), cannabinol (CBN), and can-
nabidiol (CBD) [71–73]. It was multiplied by state level 
cannabis use to provide an estimate of state level expo-
sure. Quintiles of cannabinoid exposure were calcu-
lated on the whole period considered in aggregate. Age 
adjusted case numbers were derived by multiplying the 
age-adjusted cancer rate in each state and year by the 
population of that state and dividing it by 10,000.

Statistical analysis
Data was processed in R-Studio version 1.3.1093 (2009–
2020) based upon R version 4.0.3 (2020-10-10). Covari-
ates were log transformed guided by the Shapiro-Wilks 
test. Data was manipulated using the “dplyr” package in 
the “tidyverse” [74]. Graphs were drawn in ggplot2 from 
tidyverse [74, 75] and maps and graphs were drawn in 
R-Base, ggplot2 and “sf ” (simple features) [76]. Some 
colour palettes employed the viridis and plasma palettes 
taken from the package “Viridis” [77] and several pal-
ettes were originally designed for this project. Bivariate 

maps were drawn using colorplaner two way colour 
matrices [78]. All maps and graphs are original and have 
not been previously published. General additive mod-
els (GAM) were computed using the package “mgcv” 
[79, 80]. Models were compared using the Anova test in 
R-base.

Regression models
Bivariate linear trends were computed with linear regres-
sion from R-Base. Repeated measures mixed effects 
regression was conducted using the package “nlme” using 
state as the random effect [81]. Robust generalized linear 
regression was conducted in the R “survey” package again 
using state as the identity variable [82]. Panel regression 
was conducted using package “plm” using a space-time 
method [83]. In each case model reduction from initial to 
final models was by the classical method of serial deletion 
of the least significant term.

Geotemporospatial regression was conducted using 
the spreml (spatial panel random effects maximum 
likelihood) function from the “splm” (spatial panel lin-
ear modelling) package [84]. Spatial weights matrices 
describing the spatial relationship between states were 
computed from edge and corner (“queen”) relationships 
computed from the package “spdep” [85] and edited 
as described. Model specification was checked by the 
previously described reverse method [86]. Four spatial 
coefficients are calculated in full spatial panel random 
error maximum likelihood (spreml) models as phi, psi, 
rho and lambda corresponding to the terms for random 
effects, serial autocorrelation effects, spatial coefficient 
and autocorrelation of the spatial coefficients respec-
tively [87]. When verifying model specification by the 
reverse method non-significant error terms are deleted 
from the fully specified (error = semsrre + lag) model 
[86]. This was the procedure used in the present report. 
Such procedures allow for fine control of the structure of 
the error terms.

Different forms of regression were used for the fol-
lowing reasons. Mixed effects modelling has the advan-
tage over linear modelling that repeated measurements 
can be considered from the same region. Inverse prob-
ability weighting is possible in mixed effects, robust and 
panel modelling but not in spatial models. Mixed effects, 
panel and spatial models allow the calculation of a model 
standard deviation so E-Values can be calculated from 
such models. Lagging can be applied in panel and spatial 
panel models but not in mixed effects or robust models. 
Instrumental variables can be employed in panel mod-
els but not in spatial panel models. Spatial panel mod-
els allow the use of both spatially and temporally lagged 
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variables as well as spatially and temporally lagged varia-
bles simultaneously. Hence it was felt that the use of sev-
eral different regression model types would allow a broad 
and comprehensive overview of the analyses and allow 
result verification by several alternative methods.

Simultaneous multiple model analysis
This was conducted in the tidyverse package “purrr” [74] 
using tidy and glance from package “broom” [88] using 
established nest-map-unnest workflows. In this way a 

deviation of that data series will change its mean to zero 
and its standard deviation to 1. This is a standard statis-
tical transformation known as the z-transformation. In 
this case an extended z-transformation procedure was 
performed whereby the mean of the predicted data series 
for the cancer rate was added to the mean after z-trans-
formation and the new standard deviation was set at the 
ratio of the median of the raw data series to the median 
of the fitted values from the model. Hence the final pre-
dicted value conversion formula appears as follows:

where Res is the raw results from matrix multiplication, 
mean is the average, sd is the standard deviation, median 
is the median, SPDSST is the spatial panel space-time 
dataset for the cancer concerned, FVV is the fitted val-
ues from the model, CancRt is the observed age-adjusted 
cancer rate for that tumour reported from SEER and $ is 
a placeholder for the dataframe signifying the variable 
name. The reported analysis of model predictions was 
performed on the Recalibrated Results after application 
of this extended z-transformation conversion formula.

Spatially and temporally lagged modelling
As it is well known that there has been a spatiotemporal 
progression of the re-scheduling of cannabis products and 
availability across USA over the last decade it was of inter-
est to see if accounting for spatially and temporally lagged 
effects affected the outcomes of the analyses or the main 
conclusions. Preliminary studies suggested that single 
spatial lags were appropriate. Cancer is also a time lagged 
disease so there were several reasons for wanting to con-
sider a series of temporal lags to investigate the effect that 
temporal lagging had on model progression. Temporal 
lagging was used in both panel and spatiotemporal mod-
els whilst spatial lagging was restricted to spatial models.

P < 0.05 was considered significant throughout.

Data availability
Data, including R-code, ipw weights and spatial weights 
has been made freely available through the Mendeley 
Data repository online and can be accessed at https:// doi. 
org/ 10. 17632/ dt4jb z7vk4.1

Ethics
Ethical approval for this study was granted from the 
University of Western Australia Human Research Eth-
ics Committee approval number on 7th January 2020 
RA/4/20/7724.

Recalibrated_Result =
(

(Res −mean(Res))∕
(

(sd(Res))∕
(

sd(FVV ) ∗
(

median
(

SPDSST$CancRt
)

∕median(FVV )
))))

+
(

mean
(

SPDSST$CancRt
))

whole long dataset providing data on many cancers could 
be analyzed in a single analysis run at one time.

Causal inference
Causal inference was addressed in two ways. Firstly 
inverse probability weighting (IPW) was conducted on 
all mixed effects, robust and panel models which had 
the effect of equilibrating exposure across all observed 
groups. IPW were computed from the R-package “ipw” 
[89]. Inverse probability weighting transforms an obser-
vational dataset into a pseudo-randomized dataset so 
that it becomes appropriate to draw inferences as to truly 
causal relationships. Secondly E-values were computed 
using the R-package “EValue” [90] both from count data 
and from regression equations using the parameter esti-
mate, its standard error and the standard model deviation 
[91–93]. E-Values were computed both for regression 
models and for the predicted output from fitted mod-
els. E-Values were computed for mixed effects, panel and 
spatial panel models [92–95]. Minimum E-Values above 
1.25 are said to suggest causal relationships [91].

Predictive spatial modelling
Selected spatial panel models were chosen for predic-
tive analysis as described. Spatial panel (spreml) model 
objects include a vector of model predicted values ($fit-
ted.values). Matrix multiplication was used to multiply 
101 vectors, comprising percentiles zero to 100 of expo-
sure to the cannabinoids THC, cannabigerol and can-
nabidiol by the model parameter coefficients to produce 
model predicted values. Terms which did not include 
cannabinoids were set at their mean value for this exer-
cise and the intercept coefficient was set at one. In each 
case the resulting predictions were outside and below the 
range of the cancer incidence, which was unsurprising as 
the models themselves included both log and lag terms.

The z-transformation is often used in statistics to cor-
rect variable distributions. Subtracting the mean of a 
data series from the values and dividing by the standard 

https://doi.org/10.17632/dt4jbz7vk4.1
https://doi.org/10.17632/dt4jbz7vk4.1
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Results
The cancers upon which we chose to focus our atten-
tion were chosen because they were relatively common 
or because they involved tissues which had been impli-
cated in the literature with cannabinoid activities. For 
this reason cancers of the male and female reproductive 
tract were well represented amongst the cancers chosen 
for this study. The list in alphabetical order comprises 
tumours of: acute lymphoid leukaemia (ALL), acute 
myeloid leukaemia (AML), bladder, brain, breast, cervix, 
chronic lymphoid leukaemia (CLL), chronic myeloid 
leukaemia (CML), colorectum, oesophagus, Hodgkins 
lymphoma, Kaposi sarcoma, kidney, liver, lung, mela-
noma, multiple myeloma, Non-Hodgkins lymphoma, 
oropharynx, ovary, pancreas, penis, prostate, stomach, 

testis, thyroid and vulva and vagina combined. Based 
on 2017 data the 27 cancers chosen comprehended 
1,339,737 of the 1,670,227 cancers reported to state can-
cer registries in that year or 80.21% of all non-melanoma 
non-skin cancers reported. In addition total non-skin 
cancer was also included in this list making 28 cancer 
types in all.

19,877 age-adjusted cancer rates were retrieved from the 
SEER*Stat State NPCR database. The total age-adjusted 
number of cancers reviewed across the 28 cancer types 
was 51,623,922 and the total aggregated population across 
the period 2003–2017 was 124,896,418,350.

Other papers in this series consider these covari-
ates as continuous [66] and categorical [67] covariates 
respectively.

Fig. 1 Relationship of prostate and ovarian cancer incidence to cannabidiol exposure
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Specific cancer examples
Figure 1 shows the rates of two selected cancers, namely 
(A) prostate cancer and (B) ovarian cancer against can-
nabidiol use. Panels (C) and (D) show these same plots as 
log of the cancer rates. One notes that both prostate and 
ovarian cancer rates are falling, as is cannabidiol expo-
sure (Figs. 1 and 2). Fig. 2 shows a similar plot to Fig. 1 but 
now representing the quintiles of cannabis exposure. The 
steady shift of the regression line to the right indicates an 
ordered relationship of these two tumours to cannabidiol 
exposure quintile. These tumours are analyzed in greater 
detail in the third paper in this series.

Prostate cancer
It is of interest to investigate some of the tumours most 
significantly linked to cannabidiol exposure in further 
detail. For this purpose prostate and ovarian cancer 
have been chosen as illustrative rather than exhaustive 

examples of the way in which more detailed analyses may 
be conducted upon these datasets.

We turn first to prostate cancer. The dramatically 
declining rate of prostate cancer was noted in the first Fig-
ure in the first paper in this series. This is likely related to 
the impact of the introduction of Prostate Specific Anti-
gen (PSA) screening and its widespread application in 
the community with a falling impact thereafter. Figure 3 
(in the present paper) sets out the relationship of prostate 
cancer to the exposure to various substances. One notes 
an obviously positive relationship with tobacco, alcohol 
and cocaine exposure and a negative relationship with 
cannabis exposure.

Figure 4 shows the relationship of prostate cancer inci-
dence to cannabinoid exposure. One notes that in most 
cases cannabinoids are negatively associated with pros-
tate cancer incidence with the notable exception of can-
nabidiol which is positively associated.

Fig. 2 Relationship of prostate and ovarian cancer incidence to cannabidiol exposure by cannabidiol exposure quintile
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Fig. 3 Prostate cancer rates by substance exposure

Fig. 4 Prostate cancer rates by estimated cannabinoid exposure
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Figure  5 sets out map-graphically the declining rate 
of prostate cancer across USA over time. Figure 6 is a 
bivariate map plot of the relationship between prostate 
cancer incidence and cannabidiol exposure. The pur-
ple and pink tones show where both cannabidiol and 
prostate cancer are high. One notes that as both fall 
the map changes to green where both are low, with the 
sole exception of Maine, Vermont and New Hampshire 
which remain persistently elevated.

Supplementary Table  1 (Excel sheet “ST1 Pros lme”) 
shows a series of increasingly inverse probability weighted 
complex mixed effects models of the relationship of pros-
tate cancer with various parameters. The relationship 
with cannabis, THC and cannabigerol is noted to be 
strongly negative. However the relationship with canna-
bidiol is highly significantly positive (β-estimate = 25.09, 
95%C.I. 23.31, 26.87). The lower part of the Table pre-
sents final additive and interactive comprehensive models 
including all drugs, ethnicity and income

Supplementary Table  2 (Excel sheet “ST1 Pros lme 
Comp”) presents the results of an interactive cannabinoid 
model. In this model terms including cannabidiol are 
mostly negative

Supplementary Table  3 (Excel sheet “ST1 Pros SG”) 
presents the results of comprehensive additive and inter-
active inverse probability weighted robust generalized 
linear regression. In the additive model cannabidiol is 
independently significant and the coefficient is positive. 
The interactive model includes two terms where can-
nabidiol is positive and three where it is negative. The 
net effect of cannabidiol, and indeed of all cannabinoids 
in this interactive model, is strongly positive (by matrix 
multiplication)

Supplementary Table  4 (Excel sheet “ST1 Pros plm 
Intro”) shows the results of panel regression for increas-
ingly complex models. Cannabis terms are negative in 
additive models. As shown in the last two models in this 
table in both additive and interactive models cannabidiol 
terms are positive

Supplementary Table 5 (Excel sheet “ST5 Pros plm Lag 
Add”) presents a series of additive panel models lagged to 
0, 2, 4, 6, and 8 years. One notes that at zero, 4 and 6 years 
of lag cannabidiol is independently significant in these 
models and its terms are positive. However at eight years 
the term becomes negative. This indicates that the effects 
of cannabidiol appears to have dissipated at eight years 
which is to be expected of an environmental carcinogen

Supplementary Table  6 (Excel sheet “ST1 Pros plm 
IR”) presents the results of lagging interactive models at 
zero and two years. Due to the technical requirements 
of panel models and the restrictions imposed by interac-
tions on dimensionality constraints exhaustive analysis in 
this format is not possible

Spatiotemporal models of prostate cancer
Figure  7 presents the geospatial relationships between 
the various US states. As shown Hawaii and Alaska were 
conceptually elided and edited onto the contiguous con-
tinental 48 US states to facilitate geospatial modelling.

Table  1 shows the introductory results of geospatial 
modelling with these data. Cannabidiol is again found to 
be strongly associated with prostatic cancer rates across 
space and time together (β-estimate = 1.61 (C.I. 0.99, 
2.23), P = 3.75 ×  10− 7).

Table 2 presents the results of various temporally and 
spatially lagged models. At 2 years lag cannabidiol is 

Fig. 5 Map-graph of prostate cancer rates across the USA
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independently significant and the coefficient is positive. 
At six years lag cannabidiol is included in three terms 
with an overall net positive effect.

Table 3 shows the final models from spatial and tempo-
ral lagging of various cannabinoids.

Various cannabinoids are shown to have both positive 
and negative effects on the prostate cancer rate. For each 
final model the net effect of cannabidiol is negative.

It is of interest to consider the modelled behaviour 
of the predicted values as the percentile of cannabidiol 
exposure increases. For the purposes of examining model 
predictions the spatiotemporal model lagged to six years 
shown in Table 2 was chosen. Figure 8 shows the behav-
iour of the fitted outcomes from the model as a function of 

simultaneously increasing cannabidiol exposure. A line of 
best fit (panel A), a cubic regression line (in panel B) and a.

general additive model (in panel C) was fitted to these 
data. Table 4 presents the results of comparisons of the 
various percentiles from this model. One notes that the 
final column shows that the ratio of the various compari-
sons increases as a function of the increasing nature of 
the curve and its various inflections.

Results of regression based upon the least squares 
regression lines, polynomials and GAM fitted curves 
is shown in Table  5. Anova tests demonstrated that the 
cubic model was significantly better than the linear 
model (Anova: F = 240.83, df = 2,97, P = 4.03 ×  10− 39) 
and that the GAM model was also better than the linear 

Fig. 6 Map-graph of bivariate distribution of prostate cancer and cannabidiol exposure across the USA. Drawn using colorplaner palette

Fig. 7 Geospatial links between various US states (A) edited and (B) Final. These links were used to form the sparse spatial weights matrices used in 
the geospatial models for prostate and ovarian cancer
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Table 1 Prostatic Cancer – Introductory Space – Time Models

Parameter Model

Parameter Estimate (C.I.) P Coefficient Value P-Value

Cannabis Alone S.D. 4.8855

spreml(Cancer Rate ~ Cannabis) Log.Lik − 2104.454

Cannabis −3.34 (−4.54, − 2.15) 4.36e-08 phi 1.799117 0.0003

psi 0.662222 < 2.2e-16

rho −0.809768 < 2.2e-16

lambda 0.902303 < 2.2e-16

THC Alone S.D. 5.0538

spreml(Cancer Rate ~ THC exposure) Log.Lik − 2099.24

THC exposure −2.06 (− 2.59, − 1.52) 4.48e-14 phi 1.968582 0.0021

psi 0.626775 < 2.2e-16

rho −0.782918 < 2.2e-16

lambda 0.887035 < 2.2e-16

Cannabigerol Alone S.D. 1.0251 4.9450

spreml(Cancer Rate ~ Cannabigerol exposure) Log.Lik − 979.9955 − 2106.9850

Cannabigerol exposure − 1.84 (− 2.58, − 1.1) 1.01e-06 phi 1.864451 0.0020

psi 0.655393 < 2.2e-16

rho −0.80251 < 2.2e-16

lambda 0.906276 < 2.2e-16

Cannabidiol Alone S.D. 5.1501

spreml(Cancer Rate ~ Cannabidiol exposure) Log.Lik − 2105.8960

Cannabidiol exposure 1.61 (0.99, 2.23) 3.75e-07 phi 2.064829 0.0016

psi 0.675325 < 2.2e-16

rho −0.782638 < 2.2e-16

lambda 0.897849 < 2.2e-16

Additive Model - Drugs S.D. 5.0551

spreml(Cancer Rate ~ Age + Cigarettes + AUD + Cannabis + Anal-
gesics + Cocaine

Log.Lik − 2088.4810

AUD 30.08 (3.65, 56.51) 0.02571 phi 2.045313 5.47e-05

Cannabis −1.54 (−3, −0.08) 0.0384 psi 0.607328 < 2.2e-16

Age −0.79 (− 1.13, − 0.46) 3.50e-06 rho − 0.789941 < 2.2e-16

lambda 0.878741 < 2.2e-16

Interactive Model - Drugs S.D. 5.0317

spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine Log.Lik − 2090.8060

Cannabis −1.81 (−3.22, − 0.39) 0.01231 phi 2.018035 0.0030

Age −0.9 (−1.21, − 0.59) 1.81e-08 psi 0.61679 < 2.2e-16

rho −0.792062 < 2.2e-16

lambda 0.88467 < 2.2e-16

Interactive Model - Comprehensive S.D. 4.8427

spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine + Income + Five Races) Log.Lik −2090.3930

Age −1 (−1.28, − 0.73) 4.04e-13 phi 1.751775 0.0003

Hispanic −1.49 (− 2.56, − 0.42) 0.006247 psi 0.63281 <  2.2e-16

rho − 0.778829 <  2.2e-16

lambda 0.88237 <  2.2e-16

Interactive Cannabinoid Model - Comprehensive
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Income + Five Races)
 AUD 36.55 (9.15, 63.96) 0.0090 S.D. 5.1269

 CBG 2.18 (0.2, 4.16) 0.0312 Log.Lik − 2079.543

 THC: CBG: CBD −5.19 (−8.32, − 2.06) 0.0012 phi 2.152804 0.0015
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model (Anova: F = 245.26, df = 3,96, P = 1.25 ×  10− 45). 
These results show that the inflections in the curve are 
highly statistically significant and this is consistent with 
non-linearity of the effect, that is increasing effects at 
higher cannabidiol concentrations and an increasing rate 
of rise of the effect.

The applicable E-Values for these models are shown 
in Table  6. In particular one notes that the minimum 
E-Values for the cubic polynomial fit (5.59 ×  1051 and 
1.91 ×  105) are much higher than those for the linear 
model (1.79). As was noted above the polynomial is a 
much better fit to the modelled data.

Ovarian cancer
We move next to consideration of ovarian carcinoma. As 
shown in Fig. 9 ovarian cancer shows a positive relation-
ship with all five substances examined except cannabis. 
As seen in Fig.  10 ovarian carcinoma shows a positive 
relationship with cannabidiol but a negative relationship 
with other cannabinoids.

Figure 11 shows the falling rate of ovarian cancer across 
USA over time. The bivariate relationship between can-
nabis use and ovarian cancer is shown map-graphically in 
Fig. 12.

Mixed effects models for ovarian cancer are shown in 
Supplementary Table 7 (Excel sheet “ST1 Ov lme”). Inter-
estingly in additive models for drugs and for all covari-
ates, cannabis is independently and positively predictive.

Supplementary Table  8 (Excel sheet “ST1 Ov lme 
Cannbd”)presents the results of comprehensive additive 
and interactive cannabinoid models. The three cannabi-
noids THC, cannabigerol and cannabidiol are noted to be 
significant in both models. Cannabidiol is independently 
significant with a positive coefficient in the interactive 
model.

The positive relationship between cannabidiol and 
ovarian cancer is confirmed by robust generalized linear 
regression in Supplementary Table  9 (Excel sheet “ST1 
Ov SG”).

In the robust comprehensive interactive models in Sup-
plementary Table 10 (Excel sheet “ST1 Ov SG Cannbd”) 

whilst the effects of cannabidiol are negative overall the 
effects of rising cannabinoid percentiles is positive.

At panel regression cannabis is both independently 
positive in its effects on ovarian cancer in additive mod-
els and has a positive effect overall in interactive models, 
as shown in Supplementary Table  11 (Excel sheet “ST1 
Ov plm Intro”).

Supplementary Table  12 (Excel sheet “ST1 Ov plm 
Add”) shows a series of additive cannabinoid panel 
models lagged to 0, 2, 4, 6 and 8 years. One notes that 
at 2 and 8 years cannabidiol has a positive and indepen-
dently highly significant effect (β-estimate = 1.84 (1.44, 
2.23), P = 1.2 ×  10− 19 and β-estimate = 8.51 (6.96, 10.07), 
P = 8.06 ×  10− 27 respectively)

In interactive cannabinoid panel models cannabidiol 
is again positively related to ovarian cancer rates at both 
zero and two years lag (Supplementary Table  13, Excel 
sheet “ST1 Ov plm IR”)).

Table  7 shows the results of introductory temporos-
patial modelling. The effect of cannabidiol alone is 
again noted to be positive (β-estimate = 0.36 (0.3, 0.42), 
P <  2.2 ×  10− 16).

As shown in Table  8 cannabis exposure is negatively 
associated with ovarian cancer.

Table  9 presents the results of spatial models lagged 
to 2, 4 and 6 years. In the first two models cannabinoids 
have a negative effect on ovarian cancer incidence. When 
lagged to 6 years cannabinoids in general, and cannabid-
iol in particular, has an overwhelmingly positive effect on 
ovarian cancer incidence.

Spatiotemporally lagged models are presented in 
Table  10. The effect of cannabinoids in these models is 
negative.

It is of interest to consider the effect of spatiotempo-
ral modelling for ovarian carcinoma. Fig. 13 presents the 
results of predictive model output from the interactive 
spatial model at 6 lags shown in Table 9 of cannabinoids 
and ovarian cancer with 101 increasing percentiles of 
cannabidiol exposure. Again a sigmoidal curve shape is 
noted. Linear, cubic, quintic and GAM functions are fit-
ted. Table 11 presents the results of the comparisons of 
the model values at varying cannabinoid percentiles and 

Table 1 (continued)

Parameter Model

Parameter Estimate (C.I.) P Coefficient Value P-Value

 THC: CBD −17.59 (−28.21, −6.97) 0.0012 psi 0.579133 < 2.2e-16

 THC: CBG −21.24 (−33.23, −9.25) 0.0005 rho −0.779342 < 2.2e-16

 THC −74.58 (−115.58, − 33.58) 0.0004 lambda 0.862257 < 2.2e-16

 Age −0.84 (−1.24, − 0.43) 4.61e-05



Page 12 of 32Reece and Hulse  Archives of Public Health          (2022) 80:101 

an increasing effect of rising cannabidiol concentrations 
is noted. The results of model regression are shown in 
Table 12.

Model comparison with anova tests confirm that the 
cubic fit is better than the linear fit (Anova: F = 118.17, 

df = 2,97, P = 2.89 ×  10− 27), the quintic fit is bet-
ter than the cubic fit (Anova: F = 233.77, df = 2,95, 
P = 3.44 ×  10− 38), and the GAM model is better than 
both the linear fit (Anova: F = 177.85, df = 7.810, 914.19, 
P = 1.81 ×  10− 52) and the cubic fit (Anova: F = 58.441, 

Table 2 Prostatic Cancer – Lagged Space – Time Models

Lagged Variables Parameter Model

Parameter estimate (C.I.) P Coefficient Value P-Value

LAGGING WITH CANNABINOIDS
Comprehensive Interactive Model 
- 2 Temporal Lags
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Temporal Lags: Cocaine 80.28 (15.7, 144.86) 0.0148 S.D. 5.2086

THC, 2 CBD 5.95 (0.76, 11.15) 0.0247 Log.Lik − 1772.068

Cannabidiol, 2 Analgesics 59.62 (6.42, 112.81) 0.0280 phi 2.689466 0.0004161

Cannabigerol, 2 Income 3.89 (0.36, 7.43) 0.0308 psi 0.583621 < 2.2e-16

CBG −5.07 (−9.71, − 0.44) 0.0318 rho − 0.826646 < 2.2e-16

Cigarettes: CBG −62.38 (−108.32, −16.43) 0.0078 lambda 0.84905 < 2.2e-16

Cigarettes − 282.27 (− 484.13, −80.41) 0.0061

Cigarettes: CBD −88.44 (−137.35, −39.53) 0.0004

Cigarettes: CBG: CBD −20.64 (− 31.36, −9.92) 0.0002

Age −0.72 (−1.09, − 0.35) 0.0001

Comprehensive Interactive Model - 4 Temporal Lags
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Temporal Lags: Cocaine 0.0006 0.0006 S.D. 4.7498

THC, 4 Hispanic 0.0012 0.0012 Log.Lik − 1505.899

Cannabidiol, 4 Age 2.18e-10 2.18e-10 phi 2.091523 0.0004814

Cannabigerol, 4 psi 0.652059 < 2.2e-16

rho −0.829187 < 2.2e-16

lambda 0.876342 < 2.2e-16

Comprehensive Interactive Model - 6 Temporal Lags
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Temporal Lags: Cigarettes: THC: CBG 24.04 (14.72, 33.36) 4.29e-07 S.D. 5.1497

THC, 6 Cigarettes: CBG 334.94 (176.94, 492.95) 3.26e-05 Log.Lik − 1218.3530

Cannabidiol, 6 Cigarettes 1080.16 (552.4, 1607.92) 6.03e-05 phi 2.710614 3.11e-05

Cannabigerol, 6 Cigarettes: CBG: CBD 49.06 (17.39, 80.73) 0.0024 psi 0.617539 < 2.2e-16

Cigarettes: CBD 150.69 (45.25, 256.13) 0.0051 rho −0.722522 < 2.2e-16

Age − 0.63 (−1.09, − 0.18) 0.0067 lambda 0.822562 < 2.2e-16

CBG −38.43 (−55.72, −21.13) 1.33e-05

THC −53.27 (−77, −29.55) 1.07e-05

THC: CBD −20.22 (− 28, − 12.44) 3.49e-07

Comprehensive Interactive Model - 1 Spatial Lag
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Spatial Lags: Cigarettes: THC: CBD −128.412 (− 202.52, − 54.31) 0.0006 S.D. 5.1497

THC, 1 Cigarettes: THC: CBG: CBD −38.166 (− 59.63, − 16.7) 0.0070 Log.Lik − 2081.4700

Cannabidiol, 1 Cigarettes: THC −517.602 (− 800.36, − 234.85) 0.0053 phi 2.09673 3.96e-06

Cannabigerol, 1 Cigarettes: THC: CBG −151.094 (− 232.66, −69.53) 0.0034 psi 0.593689 < 2.2e-16

Age − 0.949 (−1.34, − 0.56) 4.3e-05 rho − 0.765839 < 2.2e-16

lambda 0.867413 < 2.2e-16
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Table 3 Prostatic Cancer – Spatially and Temporally Lagged Space – Time Cannabinoid Models

Lagging Parameter Model

Lagged Variables Parameter estimate (C.I.) P Coefficient Value P-Value

Spatiotemporal Lags
Comprehensive Interactive Model - 1 Spatial & 2 Temporal Lags
THC Temporally Lagged
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Spatial: Income 6.59 (3.22, 9.96) 0.0001 S.D. 4.6652

THC, 1 Cocaine 1.82 (0.58, 3.06) 0.0039 Log.Lik −1759.5510

Cannabigerol, 1 Analgesics 2.54 (0.16, 4.92) 0.0365 phi 1.9006 0.0003446

Cannabidiol, 1 Hispanic −1.74 (−3.13, − 0.35) 0.0139 psi 0.5811 <  2.2e-16

Temporal: Cigarettes: THC: CBD −128.33 (− 199.73, −56.93) 0.0004 rho − 0.8096 <  2.2e-16

Cigarettes,2 Age −0.82 (−1.27, − 0.37) 0.0004 lambda 0.8158 < 2.2e-16

AUD,2 Cigarettes: THC −513.27 (− 786.94, − 239.59) 0.0002

THC, 2 Cigarettes: THC: CBG: CBD −39.99 (− 60.98, −19) 0.0002

Analgesics, 2 Cigarettes: THC: CBG −158.61 (− 238.74, − 78.49) 0.0001

Cocaine, 2 THC −2.9 (−3.93, − 1.87) 3.11e-08

Comprehensive Interactive Model - 1 
Spatial & 2 Temporal Lags
Cannabidiol Temporally Lagged
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Spatial: CBD 2.08 (1.19, 2.98) 5.20e-06 S.D. 4.7079

THC, 1 Cocaine 2.56 (1.3, 3.81) 6.75e-05 Log.Lik − 1758.7820

Cannabigerol, 1 Income 5.5 (2.26, 8.75) 0.0009 phi 5.3487 1.83e-08

Cannabidiol, 1 CBD.Spatial 1.06 (0.03, 2.1) 0.0442 psi 0.6391 < 2.2e-16

Temporal: AIAN −32.1 (−60.98, −3.21) 0.0294 rho −0.7110 5.65e-16

Cigarettes,2 THC: CBG: CBD −0.43 (− 0.81, − 0.05) 0.0257 lambda 0.6854 < 2.2e-16

AUD,2 Hispanic −2.33 (−3.69, −0.97) 0.0008

Cannabidiol, 2 Cigarettes: THC: CBD −163.72 (− 246.95, −80.48) 0.0001

Analgesics, 2 Cigarettes: THC: CBG: CBD −48.79 (−73.06, − 24.51) 8.17e-05

Cocaine, 2 Cigarettes: THC −651.36 (−967.53, − 335.2) 5.39e-05

Cigarettes: THC: CBG −199.58 (− 291.7, − 107.47) 2.17e-05

Age −1.18 (− 1.59, − 0.76) 2.36e-08

Spatial: Comprehensive Interactive Model - 1 Spatial & 4 Temporal Lags
THC, 1 THC Temporally Lagged
Cannabigerol, 1 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 1 THC 642.76 (165.3, 1120.23) 0.0083 S.D. 18.5723

Temporal: CBG: THC 181.1 (41.49, 320.71) 0.0110 Log.Lik − 2045.3050

Cigarettes,4 CBD: THC 146.56 (25.64, 267.49) 0.0175 phi 2.2917 0.0009418

AUD,4 CBG: CBD: THC 41.24 (5.57, 76.9) 0.0235 psi 0.6228 < 2.2e-16

THC, 4 Cocaine 1.42 (0.18, 2.65) 0.0247 rho −0.8426 < 2.2e-16

Analgesics, 4 Cigarettes: CBG: CBD: THC −192.44 (− 336.83, −48.04) 0.0090 lambda 0.8542 < 2.2e-16

Cocaine, 4 Cigarettes: CBD: THC − 694.28 (−1189.26, − 199.3) 0.0060

Hispanic −2 (−3.43, −0.58) 0.0060

Cigarettes: CBG: THC − 837.5 (− 1403.64, − 271.36) 0.0037

Cigarettes: THC − 3015.28 (− 4971.81, − 1058.74) 0.0025

Age −1.06 (− 1.48, − 0.64) 7.82e-07

Spatial: Comprehensive Interactive Model - 1 Spatial & 4 Temporal Lags
THC, 1 Cannabidiol Temporally Lagged
Cannabigerol, 1 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 1 Cocaine 2.34 (1.21, 3.46) 4.53e-05 S.D. 4.7813
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df = 5.81, 91.19, P = 5.91 ×  10− 29). These results show that 
the inflections in the curves are statistically highly signifi-
cant and explain the increasing acceleration of the effect 
of cannabidiol exposure on ovarian cancer incidence as 
the cannabidiol exposure rises, indicating a strong power 
function effect with rising dose.

Table 13 presents the E-Values applicable to the linear, 
cubic and quintic fitted functions for cannabidiol expo-
sure, all of which are highly signifcant. Minimum E-Val-
ues range up to 1.92 ×  10− 125 in this table for the quintic 
function.

Discussion
Main results
As it was demonstrated in the first and second papers 
in this series [66, 67] that prostate and ovarian cancers 
were closely associated with cannabidiol exposure these 
tumours were explored in more analytical detail by way 
of the present exemplary analyses. The strong bivari-
ate relationships observed were robust to adjustment in 
comprehensive interactive inverse probability weighted 
mixed effects, robust generalized and panel models 
and also in space-time analyses. In selected geospatial 
models for these two tumours polynomial minimum 

Table 3 (continued)

Lagging Parameter Model

Lagged Variables Parameter estimate (C.I.) P Coefficient Value P-Value

Temporal: THC: CBG 19.63 (6.78, 32.48) 0.0028 Log.Lik − 1492.4380

Cigarettes,4 THC 64.38 (22.13, 106.64) 0.0028 phi 2.2091 0.0002842

AUD,4 CBD −1.05 (−2.04, −0.06) 0.0374 psi 0.5981 <  2.2e-16

Cannabidiol, 4 Cigarettes: THC: CBG: CBD: CBD.Spatial −0.41 (− 0.78, − 0.05) 0.0272 rho −0.8249 <  2.2e-16

Analgesics, 4 Cigarettes: THC: CBG −83.75 (− 136.43, −31.07) 0.0018 lambda 0.8468 <  2.2e-16

Cocaine, 4 Hispanic −2.26 (−3.63, − 0.9) 0.0012

Cigarettes: THC −303.31 (−480.04, −126.57) 0.0008

Age −1.06 (− 1.48, −0.64) 7.18e-07

Fig. 8 Modelled scaled output values from geospatial models of a comprehensive interactive prostate cancer model lagged to six years

Table 4 Prostate Cancer - Percentile Rank Comparisons

Percentiles Difference Ratio

Low Percentile High Percentile

Rank Value Rank Value

10th Percentile 42.5469 90th Percentile 74.8319 32.2850 1.7588

5th Percentile 39.4475 95th Percentile 78.6431 39.1956 1.9936

1st Percentile 34.3401 99th Percentile 82.6379 48.2978 2.4065
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E-Values ranged up to 5.59 ×  1059 and 1.92 ×  10125. 
Moreover the dose-response relationships between 
rising modelled cannabidiol exposure and increasing 
cancer incidence was strongly non-linear with general 
additive model spline curves fitting the predicted data 
much better than linear models at significance levels 
of 1.25 ×  10− 45 and 1.81 ×  10− 52 respectively. This was 
strong evidence of a supra-linear sigmoidal power-
function relationship with cancerogenesis.

We are very concerned at the supra-linear sigmoidal 
shape of the cannabinoid dose-oncogenesis response 
curve demonstrated in both tumours examined by pre-
dictive spatiotemporal modelling. Its direct corollary 
is that rising levels of cannabinoid exposure will be 
met by an inordinate increase in carcinogenesis. From 
the findings with AML and other pediatric cannabis-
related tumours [11, 17–19, 96–99] real concerns exist 
that this may lead to a multigenerational epidemic of 
cancer. This view is closely concordant with a recent 
report describing cannabis exposure as a primary 
driver of USA pediatric cancers [100] and of the com-
monest cancer of childhood acute lymphoid leukaemia 

[28]. From the very clear findings with testicular cancer 
it would appear that the usual course of oncogenesis 
may be greatly accelerated [101].

The strong bivariate relationships reported herein 
and in the accompanying reports [66, 67] demonstrate 
that the cannabinoid-cancer relationships are robust 
to adjustment, fulfil quantitative epidemiological cri-
teria for causality, and for prostate and ovarian cancer 
demonstrate a supra-linear sigmoidal dose-response 
relationship with carcinogenic outcomes so that rising 
doses of cannabinoid exposure generate disproportion-
ate tumorigenic outcomes. Rather than prostate and 
ovarian cancer being outliers, our unpublished analy-
ses to date show that the observations made on these 
cancers, particularly in relation to supra-linear sigmoi-
dal dose-response exposure-oncogenic outcome rela-
tionships can also be found for many other tumours 
(manuscript in preparation). In this context the wide 
distribution and free availability of many cannabinoids 
including cannabidiol is of particular concern not only 
for the effect on the users, but as shown by ALL which 
is primarily a paediatric tumour [28], on subsequent 

Table 5 Prostate Cancer – Predictive Regression Model Summaries

Linear Models

Parameter Model
Term Estimate (C.I.) P_Value Adj.R.Squared Standard 

Deviation
t-Value P-Value

Linear Model
 Percentile 0.95 (0.92, 0.97) 2.52E-87 0.9811 3.8586 5185.354 2.52E-87

Cubic Polynomial Model
 First Order Percentile 277.86 (273.73, 281.98) 2.58E-111 0.9943 2.1028 5898.511 1.31E-109

 Second Order Percentile −10.41 (− 14.53, − 6.28) 3.15E-06

 Third Order Percentile 30.61 (26.49, 34.73) 3.91E-26

GAM Model

Parameter Model
Term Estimated 

Degress of 
Freedom

Residual 
Degrees of 
Freedom

Statistic P-Value Log.Likelihood Akaike 
Information 
Crierion

Bayesian 
Information 
Criterion

Smoothened Percentile 8.8184 8.9902 8777.838 < 2.2E-320 − 137.9338 297.5044 325.7959

Table 6 Prostate Cancer – E-Values of Predictive Regression Models

term Estimate Standard Error Stanhdard 
Deviation

Relative Risk E-Values

Linear Model
 Percentile 0.8193 0.0162 4.7448 1.25 (1.24, 1.26) 1.81, 1.79

Cubic Polynomial Model
 First Order Percentile 277.8563 2.1028 2.1028 1.66E+ 52 (2.79E+ 51, 9.84E+ 52) 3.31E+ 52, 5.59E+ 51

 Third Order Percentile 30.6074 2.1028 2.1028 5.65E+ 05 (9.53E+ 04, 3.35E+ 06) 1.13E+ 06, 1.91E+ 05
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Fig. 9 Relationship of ovarian cancer to various substance exposures

Fig. 10 Relationship of various estimated cannabinoid exposures to ovarian cancer
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generations who are exposed indirectly through paren-
tal access and presumably via gametotoxic, genotoxic 
and epigenotoxic pathways.

Prostate cancer summary
Terms including THC, cannabigerol and cannabidiol 
are significant in final comprehensive interactive mixed 
effects models (Supplementary Tables  1 and 2). Can-
nabidiol is independently significant in comprehensive 
additive robust generalized linear model (Supplementary 
Table  3). In an interactive comprehensive robust gener-
alized linear model the effects of cannabinoids THC, 

cannabigerol and cannabidiol were overwhelmingly posi-
tive (Supplementary Table 3).

In a series of lagged additive panel models cannabidiol 
was independently significant with positive coefficients 
at zero, four and six years (Supplementary Table  5). In 
a series of comprehensive interactive panel models can-
nabidiol was independently significant at zero and two 
years lag (Supplementary Tables 5 and 6).

Cannabidiol by itself was geospatiotemporally posi-
tively associated with prostate cancer rates (Table 1). In 
interactive geospatiotemporal models CBD was signifi-
cantly positively associated with prostate cancer rates at 

Fig. 11 Map-graph of ovarian cancer rates across USA over time

Fig. 12 Bivariate map-graph of the relationship between cannabidiol use and the ovarian cancer across USA over time
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Table 7 Ovarian Cancer – Introductory Space-Time Regression

Parameter Model

Parameter estimate (C.I.) P Coefficient Value P-Value

Cannabis Alone S.D. 0.6119

spreml(Cancer Rate ~ Cannabis) Log.Lik − 719.3662

 Cannabis −0.46 (− 0.57, − 0.35) < 2.2e-16 phi 0.578764 5.73e-05

rho −0.786241 < 2.2e-16

lambda 0.803723 < 2.2e-16

THC Alone S.D. 0.6212

spreml(Cancer Rate ~ THC exposure) Log.Lik −699.7751

 THC exposure −0.36 (− 0.41, − 0.31) < 2.2e-16 phi 0.534787 5.09e-05

rho −0.687793 < 2.2e-16

lambda 0.7014 < 2.2e-16

Cannabigerol Alone S.D. 0.6175

spreml(Cancer Rate ~ Cannabigerol exposure) Log.Lik − 709.6908

 Cannabigerol exposure −0.43 (−0.5, − 0.35) < 2.2e-16 phi 0.557597 5.16e-05

rho −0.738106 < 2.2e-16

lambda 0.754643 < 2.2e-16

Cannabidiol Alone S.D. 0.6246

spreml(Cancer Rate ~ Cannabidiol exposure) Log.Lik −709.5827

 Cannabidiol exposure 0.36 (0.3, 0.42) < 2.2e-16 phi 0.58377 4.66e-05

rho −0.71922 < 2.2e-16

lambda 0.746991 < 2.2e-16

Additive Model - Drugs

spreml(Cancer Rate ~ Age + Cigarettes + AUD + Cannabis + Analgesics + Cocaine S.D. 0.6667

 Analgesics 6.5 (0.56, 12.43) 0.0319 Log.Lik − 682.9304

 AUD 4.82 (1.04, 8.59) 0.0123 phi 0.836607 3.34e-05

 Cigarettes 3.97 (2.36, 5.57) 1.27e-06 rho −0.690814 < 2.2e-16

 Age −0.06 (− 0.1, − 0.03) 0.0005 lambda 0.637209 < 2.2e-16

Interactive Model - Drugs

spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine S.D. 0.6630

 Cigarettes 2.73 (0.64, 4.83) 0.0104 Log.Lik − 681.5923

 Analgesics 6.83 (0.89, 12.76) 0.0243 phi 0.810219 4.21e-05

 Age −0.05 (−0.09, − 0.02) 0.0055 rho −0.683232 < 2.2e-16

 Cigarettes: Cannabis: AUD −6.85 (−11.26, −2.43) 0.0024 lambda 0.631604 < 2.2e-16

Interactive Model - Comprehensive

spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine + Income + Five Races)

 Cigarettes 3.9 (2.04, 5.77) 4.19e-05 S.D. 0.6762

 Analgesics 6.42 (0.38, 12.45) 0.0373 Log.Lik −674.869

 African −0.14 (− 0.24, − 0.03) 0.0095 phi 3.3102 0.003983

 Income −0.62 (−1.07, − 0.16) 0.0083 rho − 0.6737 < 2.2e-16

 AIAN −5.52 (−9.19, − 1.86) 0.0032 lambda 0.7279 < 2.2e-16

 Age −0.07 (− 0.11, − 0.03) 0.0005

Interactive Cannabinoid Model - Comprehensive

spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Income + Five Races)

 Cigarettes 3.58 (1.58, 5.58) 0.0005 S.D. 0.6448

 CBG 0.69 (0.32, 1.07) 0.0003 Log.Lik −672.8832

 Hispanic 0.15 (0.01, 0.29) 0.0303 phi 0.686632 4.17e-05

 Cocaine −8.04 (−15.8, −0.28) 0.0422 rho −0.640042 1.43e-15

 AIAN −3.78 (−7.09, −0.46) 0.0256 lambda 0.597138 < 2.2e-16

 Income −0.73 (−1.21, − 0.26) 0.0023

 THC −0.72 (−1, − 0.44) 3.87e-07
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2 and 6 lags (Table  2). In an interactive spatiotemporal 
model with spatial and temporal lagging where canna-
bidiol was temporally and spatially lagged, cannabidiol 

was independently significantly associated with prostate 
cancer rates (Table  3). The cannabinoids THC, cannab-
igerol and cannabidiol are independently significantly 

Table 8 Ovarian Cancer – Lagged Space-Time Regression

Lagged Variables Parameter Model

Parameter Estimate (C.I.) P Coefficient Value P-Value

LAGGING WITH CANNABIS
Temporal Lagging
Comprehensive Interactive Model - 2 Temporal Lags
spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine + Income + Five Races)

Cigarettes, 2 Caucasian −0.78 (− 1.49, − 0.07) 0.0306 S.D. 0.6405

AUD, 2 AIAN −5.31 (− 8.92, − 1.71) 0.0039 Log.Lik − 569.0211

Cannabis, 2 African −0.18 (− 0.29, − 0.08) 0.0006 phi 0.8173 8.97e-05

Analgesics, 2 Income −0.92 (−1.32, − 0.53) 4.50e-06 rho − 0.6447 7.27e-16

Cocaine, 2 Cannabis −0.5 (− 0.69, − 0.31) 2.71e-07 lambda 0.6346 < 2.2e-16

Comprehensive Interactive Model - 4 Temporal Lags S.D. 0.5950

spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analge-
sics + Cocaine + Income + Five Races)

Log.Lik − 473.9722

Cigarettes, 4 Cocaine 13.5 (5.36, 21.65) 0.0012 phi 0.5570 0.0002

AUD, 4 Cigarettes 2.34 (0.29, 4.4) 0.0257 rho −0.5503 8.03e-08

Cannabis, 4 Cannabis −0.37 (− 0.57, − 0.17) 0.0003 lambda 0.6351 < 2.2e-16

Analgesics, 4

Cocaine, 4

Spatial Lagging
Comprehensive Interactive Model - 1 Spatial Lag
spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine + Income + Five Races)

Cannabis, 1 Cigarettes: Cannabis: AUD: 2.87 (1.57, 4.17) 1.44e-05 S.D. 0.6618

AIAN −3.74 (−7.14, −0.33) 0.0313 Log.Lik −674.5209

Cannabis −0.45 (− 0.82, − 0.08) 0.0183 phi 0.8060 3.02e-05

Age −0.06 (− 0.11, − 0.02) 0.0042 rho −0.6641 < 2.2e-16

Cannabis −0.16 (− 0.26, − 0.06) 0.0017 lambda 0.6062 < 2.2e-16

Income −0.7 (−1.11, − 0.29) 0.0008

Spatiotemporal Lagging
Spatial Lags: Comprehensive Interactive Model - 1 Spatial & 2 Temporal Lags
Cannabis, 1 In this model Cannabis was considered as both a spatially and temporally lagged variable

Temporal Lags: spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analgesics + Cocaine + Income + Five Races)
Cigarettes, 2 Cigarettes 3.9 (2.15, 5.64) 1.21e-05 S.D. 18.7670

AUD, 2 White −0.97 (−1.68, − 0.25) 0.0082 Log.Lik − 2419.9740

Cannabis, 2 AIAN −6.01 (−9.63, −2.39) 0.0011 phi 0.7901 0.0001

Analgesics, 2 African −0.2 (− 0.31, − 0.1) 0.0002 rho − 0.6287 2.11e-14

Cocaine, 2 Cannabis −0.52 (− 0.71, − 0.32) 2.58e-07 lambda 0.6229 < 2.2e-16

Spatial Lags: Comprehensive Interactive Model - 1 Spatial & 4 Temporal Lags
Cannabis, 1 In this model Cannabis was considered as both a spatially and temporally lagged variable S.D. 0.5877

Temporal Lags: spreml(Cancer Rate ~ Age + Cigarettes * AUD * Cannabis + Analge-
sics + Cocaine + Income + Five Races)

Log.Lik −474.4161

Cigarettes, 4 Cocaine 14.43 (6.66, 22.21) 0.0003 phi 0.5226 0.0001

AUD, 4 Income −0.47 (−0.94, 0) 0.0492 rho −0.5685 1.27e-08

Cannabis, 4 Cannabis −0.32 (− 0.54, − 0.1) 0.0050 lambda 0.6437 < 2.2e-16

Analgesics, 4

Cocaine, 4
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associated with prostate cancer rates in comprehensive 
interactive space-time models (Tables 2 and 3).

Examining the space-time model lagged to 6 years one 
notes that the predictive values for increasing percentiles 
of cannabidiol exposure show a strong positive upward 
trend, and that the curve has obvious inflections making 
the cubic and GAM fits much better fits to the predicted 
model values. Inflections and supra-linear sigmoidality 
are highly statistically significant.

Hence in all pseudorandomized and geospatial models 
cannabinoids and cannabidiol are significantly associated 
with prostate cancer including positive coefficients in 
final comprehensive interactive models.

Ovarian cancer summary
Cannabinoids are predictive in both additive and compre-
hensive mixed effects models (Supplementary Table  7). 
Cannabidiol is independently positively predictive in an 
interactive mixed effects model (Supplementary Table 8). 
In a robust generalized linear comprehensive interactive 

model cannabidiol is independently positively significant 
(Supplementary Table 10).

At 2 and 8 lags cannabidiol is independently and posi-
tively significant in lagged additive panel models (Sup-
plementary Table  12). At zero and 2 years of lag terms 
including cannabidiol are positively significant in inter-
active panel models (Supplementary Table 13). In space-
time models cannabidiol considered alone is positively 
significant (Table 7). Terms including cannabidiol are sig-
nificant and positive at 6 lags (Table 8).

It is possible to consider ovarian cancer as a lagged 
function of increasing cannabidiol and cannabinoid con-
centrations. Inflections in the dose-response relationship 
curve strongly indicate that the relationship is supra-
linear, sigmoidal and a non-linear power function of the 
percentile cannabidiol exposure.

Hence in all models cannabinoids and cannabidiol are 
significantly associated with ovarian cancer including 
positive coefficients in final comprehensive interactive 
models.

Table 9 Ovarian Cancer – Lagged Cannabinoid Space-Time Regression

Lagged Variables Parameter Model

Parameter estimate (C.I.) P Coefficient Value P-Value

Temporal Lags: LAGGING WITH CANNABINOIDS
THC, 2 Comprehensive Interactive Model - 2 Temporal Lags
Cannabidiol, 2 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabigerol, 2 Income − 0.57 (−1.03, − 0.11) 0.0157 S.D. 0.6168

Cigarettes, 2 THC −0.32 (− 0.42, − 0.23) 1.64e-10 Log.Lik − 574.7914

AUD, 2 phi 0.587232 5.71e-05

Analgesics, 2 rho −0.581409 5.83e-10

Cocaine, 2 lambda 0.628577 < 2.2e-16

Temporal Lags: Comprehensive Interactive Model - 4 Temporal Lags
THC, 4 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 4 Cocaine 9.14 (0.28, 18) 0.0433 S.D. 0.3489

Cannabigerol, 4 Cigarettes: THC: CBG −1.16 (−1.91, −0.42) 0.0021 Log.Lik − 460.3743

Cigarettes, 4 Cigarettes: THC −6.09 (−8.87, −3.31) 1.79e-05 phi 0.50581 9.48e-05

AUD, 4 rho −0.47394 3.27e-05

Analgesics, 4 lambda 0.526539 7.87e-14

Cocaine, 4

Comprehensive Interactive Model - 6 Temporal Lags
Temporal Lags: spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
THC, 6 Cigarettes: THC: CBD 1.93 (1.07, 2.78) 9.96e-06 S.D. 0.5552

Cannabidiol, 6 White 1.31 (0.53, 2.09) 0.0010 Log.Lik −359.3580

Cannabigerol, 6 Hispanic 0.24 (0.09, 0.39) 0.0016 phi 0.311493 0.0009978

Cigarettes, 6 Cocaine 16.36 (5.53, 27.19) 0.0031 rho −0.25786 0.0821654

AUD, 6 THC: CBG: CBD 0.07 (0.02, 0.12) 0.0049 lambda 0.40592 8.75e-05

Analgesics, 6 AUD −6.67 (−11.56, −1.79) 0.0074

Cocaine, 6 Cigarettes: CBG: CBD −0.24 (−0.4, − 0.09) 0.0025
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Interpretation
Causal assignment
E-values have been used extensively in the present 
report. In the literature E-Values greater than 1.25 are 
said to be linked with causality [91]. It is worth noting 
that the minimum E-Value for the association between 
tobacco smoke and lung cancer is 9. This places the 
greatly elevated E-Values highlighted in this report in 

a proper context. The methodology employed here has 
also been validated en passant in that many tobacco-
related cancers including lung, colorectum, all can-
cer, vulva and vagina, penis, bladder, oropharynx and 
esophagus, were correctly identified as such by the 
methodology adopted. Further age was correctly iden-
tified as a major risk factor for prostate cancer in the 
regression models.

Table 10 Ovarian Cancer – Spatially and Temporally Lagged Space-Time Regression

Lagged Variables Parameter Model

Parameter Estimate (C.I.) P Coefficient Value P-Value

Comprehensive Interactive Model - 1 Spatial Lag
spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)

Spatial Lags: White 47.91 (20.68, 75.13) 0.0006 S.D. 0.4125

THC, 1 Age −2 (−3.46, − 0.55) 0.0070 Log.Lik −672.3628

Cannabidiol, 1 Cannabigerol: Cannabidiol − 0.94 (− 1.59, − 0.28) 0.0053 phi 4.2682 1.83e-08

Cannabigerol, 1 THC: Cannabigerol −6.3 (− 10.51, − 2.08) 0.0034 rho − 0.5883 2.59e-12

THC −31.25 (−46.22, − 16.28) 4.3e-05 lambda 0.6520 < 2.2e-16

Spatial: Comprehensive Interactive Model - 1 Spatial & 1 Temporal Lags
THC, 1 THC Lagged both Temporally and Spatially
Cannabigerol, 1 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 1 Cigarettes 6.17 (3.38, 8.97) 1.54e-05 S.D. 0.6109

Temporal: Hispanic 0.16 (0.03, 0.29) 0.0162 Log.Lik −621.5385

Cigarettes,1 African −0.11 (−0.21, − 0.02) 0.0201 phi 0.5509 8.38e-05

AUD,1 AIAN −5.2 (−8.47, −1.94) 0.0018 rho −0.6617 9.76e-16

THC, 1 Cigarettes: CBG: CBD −0.28 (− 0.45, − 0.11) 0.0013 lambda 0.6109 <  2.2e-16

Analgesics, 1 Income −0.83 (−1.3, − 0.36) 0.0006

Cocaine, 1 THC −0.22 (− 0.32, − 0.12) 1.07e-05

Spatial: Comprehensive Interactive Model - 1 Spatial & 2 Temporal Lags
THC, 1 THC Lagged both Temporally and Spatially
Cannabigerol, 1 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 1 CBG 0.77 (0.38, 1.16) 9.90e-05 S.D. 0.6190

Temporal: Income −0.76 (−1.23, − 0.29) 0.0017 Log.Lik −567.1623

Cigarettes,2 THC −0.52 (− 0.78, − 0.26) 7.78e-05 phi 0.5898 8.16e-05

AUD,2 THC −0.33 (− 0.48, − 0.17) 2.67e-05 rho −0.5512 2.44e-08

THC, 2 lambda 0.5790 <  2.2e-16

Analgesics, 2

Cocaine, 2

Spatial: Comprehensive Interactive Model - 1 Spatial & 4 
Temporal Lags

THC, 1 THC Lagged both Temporally and Spatially
Cannabigerol, 1 spreml(Cancer Rate ~ Age + Cigarettes * THC * CBG * CBD + AUD + Analgesics + Cocaine + Income + Five Races)
Cannabidiol, 1 CBG 0.76 (0.22, 1.31) 0.0061 S.D. 0.5875

Temporal: Cocaine 0.25 (0.09, 0.42) 0.0023 Log.Lik − 452.9861

Cigarettes,4 THC: CBG 0.2 (0.05, 0.35) 0.0073 phi 0.4665 0.0001169

AUD,4 Cigarettes: THC: CBG: THC −4.21 (−8.39, −0.03) 0.0482 rho −0.4140 0.0006749

THC, 4 Cigarettes: THC: CBG: CBD: THC −1.24 (−2.34, −0.15) 0.0261 lambda 0.4449 7.33e-08

Analgesics, 4 THC −0.47 (− 0.62, − 0.33) 9.73e-11

Cocaine, 4
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Our regression modelling used inverse probability 
weighting in all mixed effects, robust generalized and 
panel regression models. This is the method of choice for 
application in observational studies to even out an expo-
sure of interest across experimental groups and create a 
pseudo-randomized cohort from which causal inferences 
can properly be drawn.

Mechanisms
Central to any causal consideration of the relationship 
between cannabinoid exposure and carcinogenicity is 
the pivotal issue of the biological pathways by which can-
nabinoids might exert any oncogenic activities. This sec-
tion is intended to be read alongside similar mechanistic 
discussions in the first and second papers in this series.

Fig. 13 Modelled scaled output values from geospatial models of a comprehensive interactive ovarian cancer model lagged to six years
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The subject of cannabinoids and cancer is too large 
to be reviewed in detail here. This and related subjects 
have been described in several other publications to 
which the interested reader is referred [45,  102–118]. 
Our intention here is merely to make some observations 
which are of particular interest and illustrate how all 
these seemingly disparate observations may present a 
coherent conceptual framework of cannabinoid-related 
carcinogenesis.

Rather than addressing prostatic and ovarian carcino-
genesis specifically the present mechanistic discussion will 
focus on general oncogenic activities of cannabinoids in 
many tissues overall, and will touch on ovarian and germ 
cell oncogenesis where this is appropriate. This section will 
follow an outline. First a hierarchy of mechanistic consid-
erations will be briefly reviewed proceeding from germ 
cells (eggs and sperm) to chromosomes and DNA.

Germ cells
Sperm
The luminal concentration of lipophilic testosterone 
in the seminiferous tubules is known to be 100 times 
higher than that in the serum and it is maintained at 
these high levels in part by the blood testis barrier for 
which the morphological basis is the tight junctions 
between the supporting Sertoli cells which hold and 
cradle and nurture the developing spermatids [119]. 
Anandamide, one of the major endocannabinoids, 
is similarly concentrated in seminiferous tubules 

Table 11 Ovarian Cancer – Predicted Model Percentile Values

Percentiles Difference Ratio

Low Percentile High Percentile

Rank Value Rank Value

10th Percentile 5.4089 90th Percentile 6.6647 1.2558 1.2322

5th Percentile 5.2884 95th Percentile 6.8129 1.5245 1.2883

1st Percentile 5.0897 99th Percentile 6.9683 1.8786 1.3691

Table 12 Ovarian Cancer – Predicted Regression Model Summaries

Linear Models

Parameter Model
Term Estimate (C.I.) P_Value Adj.R.Squared S.D. t-Value P-Value
Linear Model
 Percentile 0.016 (0.0157, 0.0166) 2.52E-87 0.9811 0.0656 5185.35 2.52E-87

Cubic Polynomial Model
 First Order 
Percentile

4.728 (4.657, 4.799) 2.58E-111 0.9944 0.0358 5898.511 1.31E-109

 Second 
Order Percen-
tile

−0.177 (−0.248, − 0.106) 3.15E-06

 Third Order 
Percentile

0.521 (0.449, 0.591) 3.91E-26

Quintic Polynomial Model
 First Order 
Percentile

4.728 (4.698, 4.757) 1.19E-145 0.9991 0.0149 20,617.98 1.59E-142

 Second 
Order Percen-
tile

−0.177 (−0.206, − 0.147) 1.45E-20

 Third Order 
Percentile

0.520 (0.491, 0.550) 3.85E-56

 Fourth 
Order Percen-
tile

0.244 (0.215, 0.274) 1.43E-29

 Fifth Order 
Percentile

0.208 (0.178, 0.237) 7.22E-25

GAM Models

Parameter Model
Term Estimated Degrees of Freedom Residual 

Degrees of 
Freedom

statistic P_Value Log.Likelihood Aliake 
Information 
Criterin

Bayesian Information 
Criterion

Smoothened 
Percentile

8.8097 8.9893 8777.844 1.46E-19 273.484 −525.3486 −497.0799
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12.0  +  2.1 nM [120] (compared to 5.7  +  0.9pM in 
serum [121]) where it acts to inhibit sperm activation, 
acrosomal reaction and swimming and metabolism by 
inhibiting mitochondrial respiration [65, 122, 123]. 
This makes sense because the sperm has limited meta-
bolic reserves and penetration of the gransulosa cells 
and zona pellucida surrounding the oocyte is very 
difficult and requires hyperactivation of sperm motil-
ity in the context of the acrosomal reaction which 
releases digestive enzymes into the thick proteogly-
can layers surrounding the egg. Cannabinoids are also 
suppressive to the hypothalamic release of LHRH, 
to LH release and to testicular Leydig cell endocrine 
function and thus acute serum testosterone levels 
[124, 125].

Indeed cannabinoids in testicular and male reproduc-
tive tissue have been noted to have many actions includ-
ing affecting DNA fragmentation, sperm DNA packing, 
modification of sperm histones to sperm-specific variants 
which facilitate their replacement by protamines which 
are themselves tightly packed and heavily disulphide-
linked cores for DNA wrapping, DNA nicking, DNA 
repair, protection of DNA, and thus nuclear size determi-
nation [122, 126].

Sperm have a series of specialized histones which make 
the genome more accessible and facilitate their replace-
ment by protamines which allow much tighter DNA 
packing [127]. Interestingly in sperm 5–10% of histones 
remain in place and are not replaced by protamines 
which is one mechanism by which transgenerational epi-
genetic inheritance occurs [128]. In one study differential 
histone retention was only manifested in the F3 (grand-
children) generation [128].

Oocytes
Cannabinoids are found in the midcycle Graafian follicle 
fluid and the midcycle oviduct fluid [122, 126].

Polycystic ovarian syndrome (PCOS) is a clinical syn-
drome characterized by menstrual irregularity, excess 
androgens and sometimes ovarian cysts. It often accom-
panies obesity, may be complicated by systemic inflam-
mation, impaired fertility and insulin resistance and may 
be complicated by endometrial carcinoma [129]. It is 
believed to have an heritable component. A fascinating 
recent paper showed that the ovary itself was involved 
in the dysregulated metabolic state and immune acti-
vation and that this was transmissible to a subsequent 
generation of mice via a hypomethylated DNA methy-
lome [130]. DNA hypomethylation has also been dem-
onstrated in the offspring of mice prenatally exposed 
to cannabis [117]. A characteristic gene signature was 
observed including Robo1, CDKN1, HDC1, IGFBPL1 
and IRST4 in both mouse F1 offspring and daughters of 
human PCOS patients. Supplementation of the mice with 
a methyl donor S-adenosyl-methionine (SAM) rescued 
and reversed these changes [130]. Robo is also a key brain 
morphogen which directs the exuberant neocortical out-
growth in human infants [131] and the Robo-slit system 
has been shown to be inhibited by cannabinoids [132].

Certain features of this syndrome are reminiscent of 
the changes seen in human females consuming cannabis 
including the impaired fertility and altered reproduc-
tive hormones [124]. Moreover cannabinoids have been 
shown to interact with Robo [132]. Like other tissues the 
ovary will undergo increased methylation of CpG islands 
in and near gene transcriptional start sites with age. 
Epigenetic changes are known to be largely impacted 
by metabolic processes as described above. Moreover 
age-related decline in ovarian mitochondrial respiratory 
function also occurs [133]. It has been shown that age-
related ovarian follicular failure in mice could be rescued 
by dietary supplementation of coenzyme Q10 [134]. The 
interaction between epigenomic, metabolic and immune 
processes is well documented [130, 135–137].

Table 13 Ovarian Cancer – E-Values of Predicted Regression Models

Term Estimate Stamdard Error Standard 
Devaition

Relative Risk E-Values

Linear Model
 Percentile 0.0161 0.0002 0.0656 1.251 (1.243, 1.258) 1.81, 1.79

Cubic Polynomial Model
 First Order Percentile 4.7280 0.0357 0.0357 1.66E+ 52 (9.40E+ 50, 2.93E+ 53) 3.32E+ 52, 1.88E+ 51

 Third Order Percentile 0.5208 0.0357 0.0357 5.65E+ 05 (3.21E+ 04, 9.98E+ 06) 1.13E+ 06, 6.41E+ 04

Quintic Polynomial Model
 First Order Percentile 4.7283 0.0149 0.0149 5.69E+ 125 (9.60E+ 124, 3.38E+ 126) 1.13E+ 126, 1.92E+ 125

 Third Order Percentile 0.5208 0.0149 0.0149 7.12E+ 13 (1.21E+ 13, 4.23E+ 14) 1.43E+ 14, 2.40E+ 13

 Fourth Order Percentile 0.2446 0.0149 0.0149 3.19E+ 06 (5.39E+ 05, 1.89E+ 07) 6.39E+ 06, 1.08E+ 06

 Fifth Order Percentile 0.2084 0.0149 0.0149 3.48E+ 05 (5.87E+ 05, 2.06E+ 06) 6.96E+ 05, 1.17E+ 05
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Chromosomes
Chromosomal damage is increasingly recognized as a 
major cause of tumourigenesis generally [138–141].

As mentioned evidence of single stranded and double 
stranded breaks in chromatin after cannabis exposure 
have been provided by several classical studies includ-
ing dramatic photomicrographs of chromosomes with 
obvious breaks and gaps in them [142–145]. Pictures of 
ring and long chains of four chromosomes have also been 
described [146]. Indeed Stenchever found that the rate of 
chromosomal breaks was 3.4% compared to 1.2% in con-
trol cells [145]. Evidence of whole genome doubling has 
also been presented [143, 144] which is of particular rel-
evance to testicular cancer where this is known to occur 
as a major precursor genetic lesion [147, 148]. Leuchten-
berger published dramatic photomicrographs showing 
obviously lagging chromosomes in metaphase and ana-
phase spreads of dividing human lung cells [143]. These 
are well known to be the morphological precursors of 
micronucleus formation [149].

Micronuclei are known to be a major engine of 
tumourigenesis and of birth defect induction when they 
occur in germinative cells [138–141, 149–154]. For this 
reason in  vitro and in  vivo micronucleus assays have 
been foundational in genotoxicity testing and are writ-
ten into the OECD genotoxicity testing Guidelines 474 
and 487 [150].

Micronuclei are believed to arise either from aneugens 
which break off pieces of the chromatid ends, or by clas-
togens which interfere with the action of the mitotic spin-
dle and sister chromatid separation at anaphase [150]. A 
further mechanism has been described involving nuclear 
elongation [150]. It has recently been suggested that 
nuclear mobilization, elongation and deformity may be 
central to the mechanism by which cannabidiol induces 
micronucleus formation [150].

Cannabinoids including THC, cannabidiol, cannabi-
nol and cannabidivarin have been well demonstrated to 
test positively in the micronucleus assay for many dec-
ades [146, 155–159]. Synthetic cannabinoids includ-
ing AM-2201, UR-144, 5F-AKB-48, AM-2201-1C, 
CP-478497-C8, RCS4, XLR-11, APINAC, BB-22, JWH-
018, JWH-018-CL and STS-135 also test positive in 
micronucleus assays [160–163].

Nuclear blebs and chromosomal bridges are known to 
be associated with micronucleus development [156] and 
have been described after THC exposure in lymphocytes 
and oocytes [60, 164]. Nuclear blebs and bridges are also 
seen often in association with cannabinoid exposure 
[150, 156].

Cannabis has long been known to test positively in the 
micronucleus assay [158, 159]. Micronuclei are believed 
to develop around chromosomes which become derailed 

from the mitotic spindle or lag behind and do not join 
it and then become encapsulated in their own nuclear 
envelope, where lacking the normal large complement 
of enzymes usually involved in DNA functions they are 
shattered by normal cell replicative processes [107, 115, 
146, 149, 165–167]. Cannabis does this by interfering 
with tubulin synthesis since the rails of the mitotic spin-
dle are made of microtubules which are essentially greatly 
elongated tubulin monomers [168]. For this reason can-
nabis has been designated as an indirect clastogen [115, 
146, 165–167].

Importantly it has been shown that, along with many 
other proteins, tubulin undergoes a variety of post-trans-
lational modifications including glycosylation, which 
appear to affect its function, perhaps by giving it a subcel-
lular address within the cell to target [169]. This “tubulin 
code” is believed to function somewhat like the “histone 
code”. Interruption of this glycation process interferes 
with flagellar function and makes sperm swim in a cir-
cular pattern so that linear progress towards an oocyte 
is impossible and fertility is greatly compromised. This is 
believed to be a major factor in male infertility [169].

This implies that protein glycosylation is not only a 
biomarker of various parameters but also a functional 
readout of cell’s protein state. This finding supports the 
previous call for protein glycosylation to be included 
along with epigenomic markers in a potential biomarker 
for cannabinoid exposure [109]. As cannabinoids pen-
etrate increasingly into American society the need for a 
quantitative biomarker to objectively define past can-
nabinoid exposure for both clinical and epidemiological 
reasons becomes correspondingly greater.

DNA
It is well established that cannabinoids reduce cell growth 
and reduce synthesis of the macromolecules of life such 
as DNA, RNA and proteins including histones [30, 115, 
146, 159, 165–167, 170–175]. Cannabinoids have been 
shown to inhibit cell growth and division in all three lay-
ers of the embryo as well as haemopoietic and mesen-
chymal stem cells and their derivatives in osteoblastic, 
adipoblastic, peripheral nerves and cutaneous adult tis-
sues [171].

Cannabinoids including THC and cannabidiol have 
been shown to oxidize the purine and pyrimidine bases 
of DNA in a manner which is greatly amplified by meta-
bolic activation which manifests due to the action of the 
cytochrome oxidizing system of the liver such as occurs 
normally in vivo [156, 176].

As mentioned evidence of single-stranded and double-
stranded breaks in chromatin have been provided by 
several classical studies including dramatic photomicro-
graphs of chromosomes with obvious breaks and gaps in 
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them ((Leuchtenberger1971, Leuchtenberger1973, Gil-
mour1971, Stenchever1974)). Indeed Stenchever found 
that the rate of chromosomal breaks was 3.4% compared 
to 1.2% in control cells ((Stenchever1974)).

Retrotransposon activation
Gestational toxin exposure to arsenic is known to induce 
DNA hypomethylation in active retrotransposons mobi-
lizing these mobile elements in the genome and leading 
to genomic instability, cancer birth defects and mental 
retardation which is transmissible to sperm and the fol-
lowing F1 generation [177].

DNA hypomethylation is also well described following 
cannabis exposure [110, 117] and has also been shown to 
be transmissible to sperm [110] and to the following gen-
eration where it may be detected in the Nucleus Accum-
bens of the brain [117].

It would appear feasible therefore that cannabinoid-
related hypomethylation could similarly mobilize repeat 
elements in the human genome causing them to be rep-
licated and to be inserted randomly into the genome 
destabilising its integrity in a manner which is known to 
lead to oncogenic destabilization.

Moreover some of the DNA material will leak into the 
cytoplasm where it will trigger innate immunity via the 
sensitive and powerful cyclic guanosyl monophosphate 
- cyclic adenosine monophosphate synthase (cGAS) – 
STimulator of INterferon Gamma (STING) pathway 
which is powerfully proinflammatory [178]. Inflamma-
tory and oxidizing milieus directly stimulate retrotrans-
poson activation which makes the “jumping genes jump” 
worse. Hence this sets up a positive feedback loop. This 
pathway has been shown to be a powerful driver of both 
innate immunity, tumour progression and aggressive 
metastatic behaviour [178–184].

cGAS-STING pathway is also strongly stimulated by 
micronuclei and their cytoplasmic rupture [181].

Such mechanisms may in part account for the numer-
ous reports of aggressive cancers developing in young 
patients who consume large amounts of cannabis [185–
188] and the many reports of widespread premalignant 
field changes in the tissues of the upper aerodigestive 
tracts [16, 20].

Generalization
We feel that our results are widely generalizable for a 
number of reasons. The datasets comprising the foun-
dation of this analysis are a national census cancer data 
series, with age-standardization of cancer incidence rates 
performed by CDC [68], and a large nationally repre-
sentative annual widely quoted survey of drug use data 
[189]. As noted above many of the present results have 
been reported elsewhere in sources external to this study. 

The present bivariate analysis is at once conceptually 
simple yet very powerful especially when paired with 
E-Value calculations. For prostate and ovarian cancer 
bivariate results were verified by further causal regres-
sion and space-time modelling which confirmed the 
bivariate results and demonstrated overall robustness to 
multivariable adjustment. One of the major result out-
puts from the present study was several E-Values which 
constitute one of the major pillars of causal inference. We 
feel that the large US datasets represent an ideal context 
within which to address the present concerns. In that the 
present results demonstrate causal relationships we are 
confident that they could be widely reproduced with the 
sole caveat that in nations where cannabis use is more 
widespread we would expect the findings to be stronger 
provided that the underlying datasets are sufficiently 
accurate.

Strengths and limitations
This study has several strengths. A large national cancer 
census dataset was used. Age adjusted rates derived from 
CDC, SEER and NCI were employed. The drug dataset 
was taken from a large well-validated nationally repre-
sentative dataset. The bivariate statistics were straightfor-
ward and combined with the power of E-values they were 
powerful to directly address. These studies were inter-
nally consistent and also and externally concordant with 
known data both on tobacco-related cancer and on can-
nabis-related cancer. For the inferential modelling three 
forms of inverse probability weighted regression were 
employed with broadly consistent results. Geospace-
time regression was also used to capture the inherently 
spatiotemporal setting of the data including its inherently 
complex spatially and temporally autocorrelated error 
structure. Panelled graphs were used to allow the simul-
taneous display of results for direct comparison across 
many cancer types.

In common with most epidemiological studies indi-
vidual level participant data was not available to it. 
State-level cannabinoid exposure had to be estimated as 
described as state level data itself was also not directly 
available. Another issue of considerable interest is the 
possible role of synthetic cannabinoids as genotoxins. In 
the absence of spatiotemporal data on this issue we are 
unable to comment on this increasingly important mat-
ter. However several lines of evidence suggest that they 
are likely to be implicated. Several recent studies impli-
cate many cannabinoids in genotoxic activities [27, 28, 
45, 100, 101, 156, 157, 190–192]. Long ago the geno-
toxic action was found to reside in the polycyclic olevi-
tol nucleus of the cannabinoids with little modulation 
by the various side chains [29, 190]. And several other 
studies implicate synthetic cannabinoids in genotoxicity 
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[160–163, 193–195]. Overall therefore we feel that this is 
a fertile and important area for further laboratory based 
investigation and epidemiological surveillance.

Furthermore this was also an ecological study. It is 
therefore potentially susceptible to the short-comings 
typical of ecological studies including the ecological fal-
lacy and selection and information biases. Within the 
present paper we began to address these issues with 
the use of E-values in all Tables. This issue is further 
addressed by the detailed pathophysiological mecha-
nisms which have been described above, by mention 
of other countries where many of the same findings 
have been made, and with the use of inverse probabil-
ity weighting in multiple regression models and further 
extensive application of E-values in Parts 2 and 3 of the 
present series of papers.

Conclusion
Strong bivariate relationships between cannabidiol expo-
sure and prostate and ovarian cancer previously reported 
[66, 67] were confirmed to be robust to multivariable 
adjustment by mixed, panel, robust and spatiotempo-
ral regression modelling. Mathematical modelling of the 
relationship between increasing percentiles of canna-
bidiol exposure and prostate and ovarian cancer dem-
onstrated strong evidence of a supra-linear sigmoidal 
relationship between rising cannabidiol exposure and 
cancer incidence such that increases in community can-
nabidiol exposure can be predicted to greatly and dispro-
portionately increase tumour incidence. The implication 
of both prostate and ovary (and also testicular in [3, 8, 10, 
66, 101, 148, 196, 197]) cancers in this oncogenic portrait 
carries very grave implications for community transmis-
sion of mutagenic and oncogenic genotoxicity from both 
parental germ lines to subsequent generations. Further 
work to investigate these themes in more detail and 
increased depth and by groups working in related labo-
ratory fields and epidemiological and statistical meth-
odology is strongly indicated. The present study clearly 
highlights the dangers of allowing increased cannabinoid 
penetration into the community not only in terms of its 
relationship to adult carcinogenesis but also in terms of 
heritable and paediatric cancerogenesis and transgenera-
tional transmission of mutagenic and oncogenic geno-
toxicity and epigenotoxicity and clearly demonstrates 
supra-linear quasi-exponential dose- oncogenic-response 
kinetics in population health profiles. Such results 
strongly underscore the likely risks of increased cannabi-
noid penetration into the food chain which at the time of 
writing has not been formally studied. The clear implica-
tion from the present work and its accompanying reports 
[66, 67] is that community penetration of cannabinoids 

should be carefully restricted not only as a matter of pub-
lic health and safety including importantly integrity of 
the food chain, but also as a non-negotiable investment 
in the genomic health and onco-protection of multiple 
coming generations in a manner precisely analogous to 
that of all other seriously genotoxic agents. Particular 
concerns relate to the movement of increasing sections 
of the community into higher dose ranges of cumula-
tive cannabinoid exposure in the context of exponentia-
tion of genotoxic dose-responses in higher dose ranges 
which has now been convincingly demonstrated both in 
the laboratory and in epidemiological studies of human 
populations.
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