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Abstract

Extracellular vesicles such as exosomes contain several types of transcripts, including

mRNAs and micro RNAs (miRNAs), and have emerged as important mediators of cell-to-

cell communication. Exosome-like vesicles were identified in the ovarian follicles of several

mammalian species. Although the miRNA contents have been extensively characterized,

the detailed investigation of their mRNA profiles is lacking. Here, we characterize the mRNA

profiles of exosome-like vesicles in ovarian follicles in a pig model. The mRNA contents of

the exosome-like vesicles isolated from porcine follicular fluid were analyzed and compared

with those from mural granulosa cells (MGCs) using the Illumina HiSeq platform. Bioinfor-

matics studies suggested that the exosomal mRNAs are enriched in those encoding pro-

teins involved in metabolic, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) -protein

kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. While the mRNA

profile of the exosome-like vesicles resembled that of MGCs, the vesicles contained

mRNAs barely detectable in MGCs. Thus, while the majority of the vesicles are likely to be

secreted from MGCs, some may originate from other cell types, including theca cells and

oocytes, as well as the cells of non-ovarian organs/tissues. Therefore, the mRNA profiles

unveiled several novel characteristics of the exosome-like vesicles in ovarian follicles.

Introduction

Exosomes are lipid bilayer vesicles of around 40–200 nm diameter produced by most cell types

[1]. These vesicles contain several bioactive materials such as proteins, lipids, micro RNAs

(miRNAs), and mRNAs with properties slightly different from their originating cells [2, 3].

Exosomes mediate cell-to-cell communication by transferring these molecules to target cells,

wherein the transferred molecules may affect multiple biological processes [4–6]. Exosomes

produced from several organs and tissues are readily detectable in the blood stream and may

be considered as potential diagnostic markers of diseases such as cancers [7–9].

The presence of exosome-like vesicles in ovarian follicular fluids was first reported in mares

[10]. Exosome-like vesicles isolated from equine follicular fluid contained several proteins and

miRNAs, and were taken-up by granulosa cells both in vitro and in vivo. The miRNAs
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detected were predicted to target several signaling pathways, including the WNT, transforming

growth factor beta (TGFβ), and mitogen-activated protein kinase (MAPK) pathways [10, 11].

These pathways are involved in the regulation of ovarian functions, including folliculogenesis,

luteogenesis, and steroidogenesis [12–15]. The presence of exosome-like vesicles was also

reported in follicular fluids of several other mammalian species, including human, bovine, and

pig [16–19]. The miRNA content in the exosome-like vesicles from human and bovine has

been studied [16, 17], and these miRNAs are known to target signaling pathways similar to

those targeted by equine vesicles. Therefore, these vesicles may play a critical role in the regula-

tion of ovarian functions via miRNA transfer [20].

In general, exosomes contain many other molecules aside from miRNAs, such as mRNAs,

that can be delivered and translated into proteins in recipient cells [2, 21, 22]. The exosome-

mediated transfer of mRNAs was first reported by Valadi and colleagues who demonstrated

that exosomes are capable of shuttling mRNAs between mast cells [2]. In addition, cancer-

derived exosomes carry matrix metalloproteinase 1 (MMP1) mRNA to induce apoptosis in

recipient mesothelial cells [21]. Exosomes can deliver the mRNA encoding Cre recombinase

to recipient cells to perform Cre-LoxP-mediated recombination in vivo and in vitro [22].

Therefore, mRNAs are also thought to be critical mediators of exosomal functions.

The miRNA contents of follicular exosome-like vesicles have been extensively character-

ized, and these studies provide an insight in the function of the vesicles during folliculogenesis

in mammals; however, no report has described the complete characterization of the mRNA

contents of exosome-like vesicles. Therefore, in the present study, we evaluated the characteris-

tics of transcriptomic profile of mRNA content in exosome-like vesicles from ovarian follicles

using pig as a model. The presence of the exosome-like vesicles in porcine follicular fluid (pFF)

has been previously reported [19]. As mural granulosa cells (MGCs) are one of the most abun-

dant cell types in ovarian follicles, the transcriptomic profile of the MGCs was also investigated

to test whether MGCs are the main producers of the follicular exosome-like vesicles.

Materials and methods

Collection of pFF and MGCs

Porcine ovaries of prepubertal gilts were collected at a commercial slaughterhouse (Tokyo Shi-

baura Zouki, Co., Ltd., Tokyo, Japan) and transported to our laboratory at approximately

37˚C in saline. pFF was collected from antral follicles (2–5 mm in diameter), as previously

reported [23]. Great care was taken to avoid contamination of the fluid with blood.

MGCs were collected from antral follicles (2–5 mm in diameter), as previously reported [19].

Isolation of exosome-like vesicles from pFF

The fraction containing exosome-like vesicles was isolated from pFF, as previously reported

[19]. In brief, pFF was first centrifuged at 2,000 ×g and 4˚C for 30 min, followed by another

step of centrifugation at 12,000 ×g and 4˚C for 45 min. The sample was filtered through a 0.22-

μm membrane (Merck Millipore, Darmstadt, Germany) to remove cells and debris. After the

filtration, the exosomal fraction was extracted using a Total Exosome Isolation (from serum)

reagent (Life Technologies, Inc. Carlsbad, CA, USA). The samples were immediately subjected

to the next procedure.

Transmission electron microscopy observations of the exosomal fraction

The exosomal fraction isolated from pFF was observed with a transmission electron micro-

scope (JEM-1010; JEOL, Tokyo, Japan) as previously reported [19].

mRNA transcriptome analysis of exosomes in porcine follicular fluid
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Western blotting analysis

Western blotting analysis was conducted as previously reported [19]. The primary antibodies

used were anti-HSC70 antibody (MAB2191; Abnova, Taipei, Taiwan), anti-CD63 antibody

(sc-5725; Santa Cruz Biotechnology, Texas, USA), and anti-CYCS antibody (sc-13156), and

the secondary antibodies used were horseradish peroxidase conjugated anti-rat IgG antibodies

(81–9520; Invitrogen) and anti-mouse IgG antibodies (115-035-044; Jackson ImmunoRe-

search, West Grove, PA, USA). Signals were visualized using an Immunostar LD Kit (Wako,

Tokyo, Japan) and the C-DiGit Blot Scanner and Image Studio for C-DiGit (LI-COR, Lincoln,

NE, USA) according to the manufacturer’s protocols.

RNA profiling using a bioanalyzer

Total RNA was extracted from the exosomal fraction and MGCs using a ReliaPrep Cell Mini-

prep System (Promega K.K., Tokyo, Japan). The total RNA profiles were visualized by using

an Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) with Agilent

RNA6000 Pico Kit (Agilent Technologies) according to the manufacturer’s protocols.

RNA sequencing with Illumina HiSeq platform

The total RNA was extracted from three biologically independent samples of the exosomal

fractions and MGCs, respectively, using a ReliaPrep Cell Miniprep System (Promega K.K.).

Library construction, quality control, and sequencing were performed by Filgen Inc. (Aichi,

Japan). A total amount of 3 μg of RNA per sample was used as an input material for the RNA

sample preparations. mRNA was purified from total RNA using poly-T oligo-attached mag-

netic beads. Sequencing libraries were generated using NEBNext Ultra RNA Library Prep Kit

for Illumina (NEB, USA). The library preparations were sequenced on an Illumina HiSeq plat-

form, and 150 base paired end reads were generated. The sequenced reads (raw reads) were

subjected to several quality checks. In this step, clean data (clean reads) were obtained by

removing reads containing adapter and poly-N (N represents the undetermined base) as well

as low quality reads from raw data. The filtering process was as follows: (1) Remove reads con-

taining adapters, (2) remove reads containing N> 10%, and (3) remove reads containing low-

quality (Q score� 5) base, which was over 50% of the total base. The data have been deposited

in the Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp, data set DRA008080).

All the downstream analyses were based on the clean data using CLC Genomics Work-

bench version 11.0.1 (QIAGEN K.K., Tokyo, Japan) with its default parameters. Clean reads

were trimmed to remove low-quality sequence (limit = 0.05) and ambiguous nucleotides

(maximal two nucleotides allowed). The proceeded reads were aligned with the Sscrofa11.1

porcine genome annotated with genes and transcripts and to generate the gene expression val-

ues in the normalized form of reads per kilobase per million mapped reads (RPKM) [24]. The

criteria used to determine the detected transcripts was an average RPKM value of more than

0.1 for three replicates.

Reverse-transcription and polymerase chain reaction (RT-PCR)

The total RNA was extracted from the exosomal fraction and MGCs using a ReliaPrep Cell

Miniprep System. Total RNA was reverse transcribed using a ReverTraAce qPCR Master Mix

with gDNA Remover (Toyobo, Osaka, Japan), and PCR was performed using a BIOTAQ

DNA polymerase (Bioline Ltd., London, UK). Samples were denatured for 2 min at 95˚C and

incubated for 35 cycles under the following conditions: 95˚C for 30 s, 55˚C for 30 s, and 72˚C

for 2 min, followed by the final elongation for 5 min at 72˚C. The PCR products were subjected
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to agarose gel electrophoresis. The PCR primers used were as follows: 5’-TTTTTCGCAACG
GGTTTGCC-3’ and 5’-TGTGACAGATTTTTGGTCAAGTTGT-3’ for eukaryotic translation

elongation factor 1 alpha 1 (EEF1A1; NM_001003662.1); 5’-GACTCCGCCTCTCAGCTATC-
3’ and 5’-GCTTGAGTGTGAGCCTTTCG-3’ for ferritin light chain (FTL;

NM_001244131.1).

RNA degradation analysis

2 μg/mL RNase A (NIPPON GENE Co., Ltd., Tokyo, Japan) and 2% Triton X-100 (Sigma-

Aldrich Japan K.K. Tokyo, Japan) was added into pFF, and incubated at 37˚C for 20 min. As a

control treatment, the equal volume of phosphate buffered saline (PBS) was added to pFF

instead of the reagent and incubated at 37˚C for 20 min. After the incubation, pFF was sub-

jected into the exosome-like vesicle isolation procedure, then RNA was extracted from the exo-

somal fractions as described above.

The effectiveness of RNase A treatment was examined by Real-time PCR reactions. Real-

time PCR reactions were performed using a THUNDERBIRD qPCR Mix (Toyobo) and an

ABI Step One Plus real-time PCR system (Applied Biosystems) according to the manufactur-

er’s protocols. The PCR primers used were as follows: 5’-ATGCGGTGGGATCGACAAAA-3’
and 5’-AGTTTGTCCAAGACCCAGGC-3’ for EEF1A1; 5’-GAAAATGCAAAACCAGCGCG-
3’ and 5’-CTTCCATAGCGTCCTGGGTT-3’ for FTL. To avoid false-positive signals, disso-

ciation-curve analyses were performed at the end of the analyses, and the PCR products were

subjected to agarose gel electrophoresis to confirm the single amplification and sizes of the

products.

Data analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformat-

ics resources was used for pathway analysis [25, 26]. Principal component analysis (PCA) was

performed using the CLC Genomics Workbench, with the data sets of porcine tissue transcrip-

tomes downloaded from NCBI GEO (S1 Table). The downloaded raw data were subjected to

the filtering procedure before using for PCA. In addition to literature, tissue specificity of tran-

scripts was investigated with PaGenBase [27] (http://bioinf.xmu.edu.cn/PaGenBase/index.jsp)

by referring to the data sets for human [28–34], as porcine data sets were unavailable.

All experiments were repeated at least three times. Statistical analyses were conducted using

Microsoft Excel (Microsoft) and the program Excel-Statistics (Social Survey Research Informa-

tion Co., Ltd., Tokyo, Japan). The Tukey-Kramer test was used for multiple comparisons. A P-

value < 0.05 was considered statistically significant.

Results

Validation of exosome-like vesicles in the exosomal fraction isolated from

pFF

To validate the detection of exosome-like vesicles in pFF, we performed the electron micros-

copy observation (TEM), western blotting analysis, and bioanalyzer analysis. TEM observation

demonstrated that round-shaped vesicles about 100 nm in diameter were observed in the exo-

somal fraction (Fig 1A). With western blotting analysis, well-known exosomal makers, CD63

molecule (CD63) and heat shock protein 70 (HSC70) [35], were detected in both the exosomal

fraction and MGCs. On the other hand, cytochrome C (CYCS) was readily detected in the

MGCs, but it was absent in the exosomal fraction, indicating that the exosomal fraction was

not contaminated with apoptotic bodies or cell debris (Fig 1B). In addition, bioanalyzer

mRNA transcriptome analysis of exosomes in porcine follicular fluid
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analysis demonstrated that the RNAs isolated from the exosomal fraction were enriched in

small RNAs, and the peaks of ribosomal RNAs were not observed (Fig 1C) [36]. Taken

together, we concluded that the exosomal fraction was enriched in exosome-like vesicles.

An overview of the RNA sequencing results

On an average, approximately 49 and 50 million reads were obtained from three independent

biological replicates of the exosomal fraction and MGCs. Of those, about 33 million (67.52%)

and 38 million (77.68%) paired reads were mapped to the porcine genome, respectively (S2

Table). Among the mapped fragments, approximately 7 million (43.17%) of the exosomal frac-

tion and 12 million (62.70%) of MGCs were mapped to exons of known porcine transcripts. A

total of 14,195 and 13,502 transcripts were detected in the exosomal fraction and MGCs,

Fig 1. Detection of exosome-like vesicles in the exosomal fraction isolated from pFF. (A) Representative

photograph of vesicles in the exosomal fraction isolated from pFF observed using transmission electron microscopy.

The scale bar indicates 100 nm. (B) Western blotting analysis for HSC70, CD63, and CYCS. MGC, mural granulosa

cell; Exo, exosomal fraction. (C) Representative electropherograms observed using bioanalyzer. FU, fluorescence

intensity units; nt, nucleotides.

https://doi.org/10.1371/journal.pone.0217760.g001
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respectively, at an RPKM threshold of more than 0.1. Detailed information of independent

samples is summarized in S2 Table.

Abundant mRNAs in the exosome-like vesicles of pFF

The top 30 annotated mRNAs in the exosomal fraction and MGCs are shown in Tables 1 and

2, respectively. EEF1A1 was the most abundant transcript in the exosomal fraction that also

showed high abundance in MGCs. While the transcripts encoding ribosomal proteins (ribo-

somal proteins of the large subunit [RPL] and ribosomal protein of the small subunit [RPS])

were preferentially detected in the exosomal fraction, these transcripts were less abundant in

MGCs. FAU, ubiquitin-like and ribosomal protein S30 fusion (FAU) and ubiquitin A-52 resi-

due ribosomal protein fusion product 1 (UBA52) detected in the exosomal fraction also encode

ribosomal protein-related products [37]. Therefore, the transcripts enriched in the follicular

exosome-like vesicles seemed to encode ribosomal proteins, consistent with the results

reported in human salivary exosomes [38].

Table 1. Top 30 most abundant mRNAs in exosome-like vesicles in pFF.

Gene symbol Ensemble ID RPKM

(Exosomal Fraction)

RPKM

(MGC)

EEF1A1 ENSSSCG00000004489 5,088.21 4,271.57

RPS27 ENSSSCG00000006558 4,345.22 2,565.47

RPL34 ENSSSCG00000003930 3,173.29 1,406.04

RPS7 ENSSSCG00000027353 2,684.54 1,086.50

RPS3 ENSSSCG00000014855 2,468.42 935.21

RPL13A ENSSSCG00000003166 2,411.18 909.15

RPS12 ENSSSCG00000004177 2,384.40 1,187.95

RPL31 ENSSSCG00000008170 2,326.62 921.19

RPS20 ENSSSCG00000006249 2,321.79 1,211.61

RPS23 ENSSSCG00000014133 2,297.01 1,073.43

RPS16 ENSSSCG00000020817 2,250.29 721.35

RPL18 ENSSSCG00000025928 2,163.01 857.09

RPS18 ENSSSCG00000001502 2,123.72 1,140.27

FTH1 ENSSSCG00000014540 2,101.05 1,120.50

UBA52 ENSSSCG00000013907 2,070.60 1,068.80

FAU ENSSSCG00000013002 2,051.53 791.49

RPL35 ENSSSCG00000005595 1,924.86 744.56

RPL34 ENSSSCG00000009146 1,918.96 726.29

RPL36 ENSSSCG00000030010 1,884.65 861.65

RPS28 ENSSSCG00000013597 1,873.97 853.43

RPLP1 ENSSSCG00000004970 1,824.04 1,038.76

RPLP2 ENSSSCG00000012842 1,821.14 809.35

RPL23A ENSSSCG00000017768 1,811.04 1,241.32

RPL13 ENSSSCG00000024974 1,785.49 578.25

RPS9 ENSSSCG00000029785 1,703.30 565.85

ACTG1 ENSSSCG00000028355 1,698.27 1,325.06

RPL17 ENSSSCG00000029642 1,689.39 690.23

FTL ENSSSCG00000003153 1,644.42 428.01

RPS25 ENSSSCG00000015103 1,615.55 1,034.76

RPL5 ENSSSCG00000006899 1,612.40 735.82

https://doi.org/10.1371/journal.pone.0217760.t001
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The other highly abundant mRNAs in the exosomal fraction were ferritin heavy chain 1

(FTH1), actin gamma 1 (ACTG1), and FTL, all of which also showed high expression in

MGCs. As for MGCs, cytochrome c oxidase 3 (COX3) was the most abundant mRNA, and

COX2 and COX1 were highly expressed. These COX transcripts were also detected in the exo-

somal fraction at a relatively high levels (RPKM of 980.54, 919.28, and 1248.76 for COX1,

COX2, and COX3, respectively).

Detection of full-length mRNAs in the exosome-like vesicles

We tested whether follicular exosome-like vesicles carry full-length mRNAs. As shown in Fig

2A, the bands with the expected sizes of EEF1A1 and FTL were detected in the exosomal frac-

tion by RT-PCR after the amplification of the regions between the first and the last exons of

these transcripts. In addition, the RNA sequencing results showed high coverage of all exons

of EEF1A1 and FTL transcripts (Fig 2B and 2C). Moreover, to confirm that these RNAs are

Table 2. Top 30 most abundant mRNAs in porcine MGCs.

Gene symbol Ensemble ID RPKM

(Exosomal Fraction)

RPKM (MGC)

COX3 ENSSSCG00000018082 1,248.76 5,485.29

COX2 ENSSSCG00000018078 919.28 4,994.62

EEF1A1 ENSSSCG00000004489 5,088.21 4,271.57

COX1 ENSSSCG00000018075 980.54 3,863.89

ATP6 ENSSSCG00000018081 861.08 3,401.24

RPS27 ENSSSCG00000006558 4,345.22 2,565.47

SERPINE2 ENSSSCG00000016233 239.34 2,449.40

INHA ENSSSCG00000020771 624.58 2,377.75

GPX3 ENSSSCG00000017092 1,097.51 2,221.39

RPS8 ENSSSCG00000003930 3,173.29 1,406.04

ACTG1 ENSSSCG00000028355 1,698.27 1,325.06

CYTB ENSSSCG00000018094 277.78 1,284.82

VIM ENSSSCG00000011033 1,254.67 1,281.73

RPL23A ENSSSCG00000017768 1,811.04 1,241.32

RPS20 ENSSSCG00000006249 2,321.79 1,211.61

RPS12 ENSSSCG00000004177 2,384.40 1,187.95

ACTB ENSSSCG00000007585 1,005.93 1,164.69

RPS18 ENSSSCG00000001502 2,123.72 1,140.27

INHBA ENSSSCG00000021865 96.79 1,135.76

FTH1 ENSSSCG00000014540 2,101.05 1,120.50

ENO1 ENSSSCG00000022343 758.20 1,111.73

RPS7 ENSSSCG00000027353 2,684.54 1,086.50

RPS23 ENSSSCG00000014133 2,297.01 1,073.43

UBA52 ENSSSCG00000013907 2,070.60 1,068.80

ND3 ENSSSCG00000018084 240.18 1,039.76

RPLP1 ENSSSCG00000004970 1,824.04 1,038.76

RPS25 ENSSSCG00000015103 1,615.55 1,034.76

CALR ENSSSCG00000013746 189.64 1,005.75

RPS29 ENSSSCG00000005003 944.30 978.18

RARRES1 ENSSSCG00000028623 116.73 970.41

https://doi.org/10.1371/journal.pone.0217760.t002
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confined within the vesicles, RNase A and detergent (Triton X-100) treatment of the vesicles

was performed. As shown Fig 2D, the Triton X-100 with RNase A treated group exhibited

significantly higher Ct value than the RNase A treated and control groups. On the other

hand, there were no significant differences between the control and RNase A-treated groups.

These results indicate that RNAs are confined within the vesicles and protected from exoge-

nous RNase activity. These results suggest that the follicular exosome-like vesicles contain

full-length mRNA, and therefore, the mRNAs transferred by the vesicles may be translated

into proteins and affect the biological processes of recipient cells as was reported previously

[2, 21].

Fig 2. Genomic view of EEF1A1 and FTL genes along with the representative RNA sequencing results of the

exosomal fragments and RNA degradation assay. (A) RT-PCR analyses for EEF1A1 and FTL. Marker,

electrophoresis marker; Exo, exosomal fraction; MGC, mural granulosa cells. (B) EEF1A1 and (C) FTL genes (upper

panels) are shown in exons (black squares) and introns (polygonal lines), and the representative RNA sequencing

results for each position in the genes are shown in a coverage graphs (lower panels). Arrowheads indicate positions of

PCR primers used for RT-PCR shown in (A). RNA degradation assay using RNase A and Triton X-100. pFF was

treated with RNase A (gray bars) with/without Triton X-100 (black bars) or PBS (control; white bars). The Ct values of

total RNA extracted from the exosomal fractions were compared among these groups. Values with different letters (a

and b) are significantly different (P<0.05) (n = 4).

https://doi.org/10.1371/journal.pone.0217760.g002
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Functional analysis of mRNAs in the exosome-like vesicles

Given that follicular exosome-like vesicles contain full-length mRNAs that may be translated

to affect biological processes in recipient cells, we performed the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses using DAVID (version 6.8) [25] and

evaluated the potential effects of the vesicle-transferred mRNAs on recipient cells. In this anal-

ysis, 11,304 transcripts were functionally annotated with DAVID. As shown in Fig 3, the

KEGG pathway analysis showed that the mRNA involved in “metabolic pathway”, “pathways

in cancer”, “phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3K)-protein kinase B (AKT)

signaling pathway”, “human T-lymphotropic virus (HTLV) infection”, “endocytosis”, and

“MAPK signaling pathway” were enriched in the fraction. Therefore, the follicular exosome-

like vesicles may affect these pathways in recipient cells.

Comparison of transcriptomes between the exosome-like vesicles and

MGCs

To examine the similarity of the mRNA profiles between exosome-like vesicles and MGCs,

PCA was conducted (Fig 4A). Aside from the mRNA profiles of exosome-like vesicles and

MGCs, those of various porcine tissues available from NCBI GEO database were used (S1

Table). As shown in Fig 3A, exosome-like vesicle samples were clustered considerably close to

Fig 3. KEGG pathway analysis on the mRNA profile of exosome-like vesicles. The top six pathways are shown. For each pathway, bar plots show the

counts of genes that belong to the pathway. Asterisk denotes the biological significance (P< 0.05).

https://doi.org/10.1371/journal.pone.0217760.g003
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those of MGCs and ovary samples than to other tissue samples. Moreover, the levels of tran-

scripts were well correlated between exosome-like vesicles and MGCs (R2 = 0.83) (Fig 4B).

Therefore, the mRNAs profile of exosome-like vesicles resembled that of MGCs, and MGCs

are likely to be the main source of follicular exosome-like vesicles. However, it is important to

note, several transcripts were exclusively detected in the exosomal fraction by RNA sequencing

(see below for detail), suggesting that some of the follicular exosome-like vesicles may be

secreted from cells other than MGCs.

Unique mRNAs contained in exosome-like vesicles

Although the mRNAs profile of the exosomal fraction resembled that of MGCs, it carried

mRNAs that were barely detectable in MGCs (Fig 4B). This observation suggests that the frac-

tion may contain vesicles secreted from the cells other than MGCs. To identify the potential

origin of follicular exosome-like vesicles other than MGCs, we focused on these transcripts.

We used strict criteria to identify such transcripts; i.e., mRNAs from exosomal fractions with

RPKM value > 10 and undetected in MGCs (RPKM < 0.1).

With this criteria, 14 mRNAs were identified as the unique transcripts in the exosomal frac-

tion (Table 3). Some of the mRNAs are known to be specifically expressed in organs/tissues,

including skeletal muscle, heart, liver, brain, and kidney [39–43]. These results suggest the pos-

sibility that a part of these exosome-like vesicles may be derived from non-ovarian organs/tis-

sues through blood stream.

Discussion

In this study, we performed the transcriptome analysis of the exosome-like vesicles in porcine

ovarian follicles and focused on mRNA profiles. While the miRNA contents in exosome-like

vesicles from ovarian follicles have been examined in detail [10, 16, 44–46], to the best of our

Fig 4. Comparisons of the mRNA profiles between exosome-like vesicles and mural granulosa cells (MGCs) in porcine follicles. (A) Principle

component analysis (PCA) of the mRNA profiles of the follicular exosome-like vesicles and MGCs together with other porcine organs (see S1 Table for

detail). (B) Scatter plot comparison of mRNA profiles of follicular exosome-like vesicles and MGCs.

https://doi.org/10.1371/journal.pone.0217760.g004
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knowledge, this is the first report to investigate the mRNA profiles of the exosome-like vesicles

in ovarian follicles. The present analysis revealed that these vesicles contain various mRNAs

which are enriched in those encoding ribosomal proteins. Moreover, bioinformatics analysis

demonstrated that mRNA involved in the biological pathways known to important for normal

follicular development were enriched in the exosome-like vesicles. While the majority of the

vesicles are likely to be secreted from MGCs, some of these vesicles originated from non-ovar-

ian organs/tissues. Therefore, the present study has unveiled several novel features of exo-

some-like vesicles in ovarian follicles by focusing on mRNA profiles.

The mRNAs detected in the follicular exosome-like vesicles are predicted to affect biological

pathways such as metabolic, PI3K-AKT, and MAPK signaling pathways in the recipient cells.

The precise control of the metabolic pathways such as lipid metabolism, glycolysis, and choles-

terol biosynthesis is critical for the normal development of follicles and oocytes [47–49]. The

PI3K-AKT signaling pathway is known be a critical regulator of quiescence, activation and

survival of primordial follicles [50], proliferation and differentiation of granulosa and thecal

cells [51], and meiotic maturation of oocytes [52]. Moreover, MAPK signaling pathway is

known to be involved in steroid genesis, and oocyte maturation [13, 53, 54]. Although further

studies which will test whether the transferred-mRNAs are translated into proteins in recipient

cells are warranted, exosome-like vesicles may be involved in the control for the normal devel-

opment of follicles and oocytes through the regulation of these pathways via mRNA transfer.

The promotive/supportive effects of exosome-like vesicles on the expansion of cumulus

cells have been reported in cows and pigs [18, 19]. As normal cumulus expansion requires the

activation of MAPK signaling pathway [54] and gastric cancer exosomes promote the tumor

cell proliferation via MAPK signaling pathway activation [55], exosome-like vesicles may exert

their effects on cumulus expansion through the transfer of mRNAs involved in the control of

MAPK signaling pathway.

Some unique transcripts in exosome-like vesicles and barely detectable in MGCs were iden-

tified. A possible explanation is that the exosome-like vesicles may be secreted not only from

MGCs but also from other ovarian cells such as oocytes, theca cells, ovarian interstitial cells,

and non-ovarian organs/tissues. This hypothesis may be supported by the detection of

CYP17A1mRNA, known to be highly expressed in theca cells, in the exosomal fraction

(RPKM = 4.23) but not in MGC samples (RPKM < 0.1). Oocyte-specific transcripts such as

Table 3. Unique mRNAs in exosome-like vesicles undetected in MGCs.

Gene name Ensemble ID Exosomal Fraction (RPKM) High expression tissue

LOC100628118 ENSSSCG00000025858 33.60 –

FXYD1 ENSSSCG00000021374 28.15 skeletal muscle, heart

A2M ENSSSCG00000000660 26.54 liver

VSNL1 ENSSSCG00000008615 21.48 brain

COL26A1 ENSSSCG00000007678 14.92 –

C1QTNF5 ENSSSCG00000024936 14.77 retina

LCN2 ENSSSCG00000005638 14.63 trachea, bone marrow, lung

CLDN5 ENSSSCG00000010123 13.07 lung

POU5F1 ENSSSCG00000001393 13.06 colon

ARX ENSSSCG00000020801 11.96 ovary

LOC100737651 ENSSSCG00000023783 11.06 –

LMCD1 ENSSSCG00000011538 11.00 skeletal muscle, lung

ADGRA2 ENSSSCG00000015825 10.72 small intestine, thymus, colon

UMOD ENSSSCG00000007859 10.09 kidney

https://doi.org/10.1371/journal.pone.0217760.t003

mRNA transcriptome analysis of exosomes in porcine follicular fluid

PLOS ONE | https://doi.org/10.1371/journal.pone.0217760 June 12, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0217760.t003
https://doi.org/10.1371/journal.pone.0217760


ZP2 and ZP3 were detected in the exosomal fraction (RPKM 0.30 and 3.22, respectively), sug-

gesting that the oocyte-derived exosomes may exist in the follicular fluid. This possibility is

supported by the presence of oocyte-derived vesicles within the perivitelline space of mouse

oocytes [56]. In addition, several mRNAs known to be expressed in non-ovarian organs/tissues

were detected in the exosomal fraction, suggestive of the presence of the vesicles from non-

ovarian organs/tissues. Another possible origin of exosome-like vesicles is that the vesicles

secreted during early periods of follicular development or gonadal stage may remain until the

formation of antral follicles. This hypothesis may be supported by the detection of POU5F1
(known as OCT4) (RPKM = 13.06), known to be expressed highly at the gonadal stage, in the

exosomal fraction. Further studies characterizing individual particles of follicular vesicles may

clarify these possibilities.

Although the present study suggests that a part of the exosome-like vesicles present in follic-

ular fluid may be supplied via blood from other organs/tissues, several questions remain to be

answered. First, great care was taken to prevent contamination of the follicular fluid sample

with blood, but the results of this study do not completely deny the possibility of contamina-

tion of our samples with blood. Second, the effects of exosome-like vesicles from other tissues

on ovarian function are yet undetermined. Recent studies have showed that the adipose tissue-

derived exosomes modulates insulin sensitivity in the liver and muscle tissues [57] and regulate

gene expression in the liver [58]. Thus, a similar mechanism may exist between the ovary and

other organ/tissues; i.e., non-ovarian organ-derived exosome may affect ovarian functions.

However, further studies testing this possibility are warranted.

In summary, this study identified the characteristics of the mRNA transcriptome of exo-

some-like vesicles from follicular fluids of pigs. Bioinformatics analyses demonstrated that the

mRNAs contained in the vesicles potentially modulate the signaling pathways involved in folli-

culogenesis. While most of exosome-like vesicles in the follicular fluid are likely to have origi-

nated from MGCs, our results suggest the presence of vesicles in the follicles from organs

other than ovaries. Further functional investigations based on these results may help us to

understand the physiological roles of exosome-transferred mRNAs in the regulation of ovarian

functions.
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