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ABSTRACT
Objectives We describe a hospital’s implementation of 
predictive models to optimise emergency response to the 
COVID-19 pandemic.
Methods We were tasked to construct and evaluate 
COVID-19 driven predictive models to identify possible 
planning and resource utilisation scenarios. We used 
system dynamics to derive a series of chain susceptible, 
infected and recovered (SIR) models. We then built a 
discrete event simulation using the system dynamics 
output and bootstrapped electronic medical record data to 
approximate the weekly effect of tuning surgical volume 
on hospital census. We evaluated performance via a model 
fit assessment and cross- model comparison.
Results We outlined the design and implementation 
of predictive models to support management decision 
making around areas impacted by COVID-19. The fit 
assessments indicated the models were most useful 
after 30 days from onset of local cases. We found our 
subreports were most accurate up to 7 days after model 
run.
Discusssion Our model allowed us to shape our 
health system’s executive policy response to implement 
a ‘hospital within a hospital’—one for patients with 
COVID-19 within a hospital able to care for the regular 
non- COVID-19 population. The surgical schedule is 
modified according to models that predict the number of 
new patients with Covid-19 who require admission. This 
enabled our hospital to coordinate resources to continue 
to support the community at large. Challenges included 
the need to frequently adjust or create new models to 
meet rapidly evolving requirements, communication, 
and adoption, and to coordinate the needs of multiple 
stakeholders. The model we created can be adapted to 
other health systems, provide a mechanism to predict local 
peaks in cases and inform hospital leadership regarding 
bed allocation, surgical volumes, staffing, and supplies one 
for COVID-19 patients within a hospital able to care for the 
regular non- COVID-19 population.
Conclusion Predictive models are essential tools in 
supporting decision making when coordinating clinical 
operations during a pandemic.

INTRODUCTION
COVID-19 was identified in December 2019 
as a case of pneumonia in Wuhan, China.1–3 
The WHO declared COVID-19 a pandemic 
on 11 March 2020 and called for coordinated 
mechanisms to support preparedness and 
response efforts across health sectors.4 Predic-
tive models can be effective support tools for a 
health system’s pandemic response.5 6 Suscep-
tible, infected and recovered (SIR) modelling 
is a technique commonly used in epidemics 
due to its relative simplicity and versatility.7 
Many published accounts of such models in 
COVID-19 literature involve similar inputs, 
including doubling time and census char-
acteristics of a local region or hospital,8 but 
most assume a static condition within the 
population and do not account for dynamics 
created by local government interventions 
and corresponding public behaviours.

The spread of COVID-19 is likely best 
described as a series of subepidemics instead 
of a single epidemic whose onset, trajectory 
and offset are influenced by local policy 
action, commonly referred to as ‘waves’.9 

Summary

What is already known?
 ► Susceptible, infected and recovered (SIR) models 
have been deployed to help hospital systems adjust 
to the COVID-19 pandemic.

What does this paper add?
 ► Refitting an SIR model at expected pandemic inflec-
tion points based on government ordinances is an 
effective way to produce a realistic, reliable estimate 
of projected volume in the form of subepidemics.

 ► Predictive modelling assists with maintaining safe 
levels of routine hospital activity including elective 
surgery.

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-4950-857X
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2020-100248&domain=pdf&date_stamp=2021-05-20


2 Warde PR, et al. BMJ Health Care Inform 2021;28:e100248. doi:10.1136/bmjhci-2020-100248

Open access 

Local policy action in our community consisted of peri-
odic implementation, enforcement and relaxation of 
emergency orders regarding universal masking and 
closure of businesses, schools, public spaces, etc.10 Here 
we present University of Miami simulation (UM- SIM), 
a reporting tool that is composed of a series of simula-
tions created using discrete event simulation (DES) and 
system dynamics (SD) theories applied to clinical opera-
tions in real time within a single urban academic health 
system.11 Using changes in emergency orders during the 
pandemic as key drivers of model inflection points, we 
also explain how the use of this reporting tool assisted 
our organisation with decisions relevant to deferrals and 
recommencement of elective surgical procedures. Finally, 
we provide comparison of our UM- SIM models to other 
commonly used simulation models.

METHODS
Setting, data sources and computation
University of Miami Hospitals and Clinics (UMHC) is an 
academic health system encompassing three acute care 
hospitals and over 140 outpatient care clinics, offering 
primary and specialty medical and surgical care. Prior 
to the onset of the pandemic, our hospitals combined 
consisted of 466 beds, 53 of which were designated 
as intensive care unit (ICU) beds. In response to the 
pandemic, we converted 188 medical/surgical rooms to 
negative pressure, of which 146 could be converted to 
ICU level of care. The surgical schedule was modified 
according to the number of COVID-19 cases projected to 
require hospital and ICU admission. Models summarised 
here were generated from data from 11 March 2020 to 
26 August 2020. UMHC uses UChart, an Epic electronic 
health record (Verona, Wisconsin; www. epic. com) to 
retrieve patient- level data. In addition, US Census data 
provided community demographic information,12 and 
Florida Department of Health (FDOH) COVID-19 case 
data supplied community prevalence.13 All computational 
techniques were completed using Python (2001–2020. 
Python Software Foundation).14–16

UM-SIM report
Our baseline (pre- emergency order) SIR model,7 a 
SD- based simulation model, incorporated the initial 
population of SIR patients, the infected population 
growth rate, median time to recovery and time period 
to model over. The model assumes that the reinfection 
rate is 0%.17 The initial infected population was the count 
of cases on 11 March (the start of the model) and the 
initial recovered population was zero. The median time 
to recovery was assumed to be 10 days.17

To model sequential subepidemics, we created a ‘chained’ 
series of SIR models triggered by the changes to local emer-
gency orders by Miami- Dade County; we modelled these 
as impacting the epidemic on 6 May and 10 June 2020, 10 
days after Miami- Dade Emergency Orders 21–40 and 24–20, 
respectively.18 Each subepidemic model defined the initial 

infected and recovered population based on the end output 
of the previous subepidemic model in sequence.14–16 The 
growth rate for each subepidemic was defined by running 
a logistic transformed linear regression on the cumulative 
cases up until the to- date maximum daily cases for each 
subepidemic. This approach resulted in growth rates that 
were adjusted at each model run until the true peak was 
met. Once the true peak was met, the growth rate became 
fixed for that subepidemic.

This Chained SIR Model was then used to create the 
county incidence, health system incidence, and hospital 
census subreports, which compose the UM- SIM report:

A county incidence subreport was created using FDOH 
daily positive case data and the Chained SIR Model to 
approximate the shape and volume of current and future 
positive cases. The county population estimates were 
defined by the Miami- Dade population that was obtained 
from US Census 2018 estimates17 multiplied by the Miami- 
Dade test positivity rate.

A health system incidence subreport was created using 
UMHC daily positive case data and the Chained SIR 
Model to approximate the shape and volume of current 
and future positive cases. The UMHC population esti-
mates were defined by county population estimates multi-
plied by UMHC’s baseline county market share (2.6%) to 
approximate our case load.19

A hospital census subreport was created using UMHC 
daily inpatient admission positive case data and the 
Chained SIR Model to approximate the shape and 
volume of current and future positive inpatient admis-
sions. The UMHC inpatient census population estimates 
were defined by the UMHC population estimates and our 
average COVID-19 admission rate of 19.5%. Weighted 
hospital length of stay (LOS) was calculated every time 
the report was run as the weighted average of UMHC’s 
inpatient non- ICU and ICU LOS among admitted 
patients year to date. Historical inpatient admissions and 
predicted inpatient admissions (provided by the subre-
port) are paired with weighted LOS to estimate daily 
census along the curve.

A surgical optimisation subreport was generated using 
DES techniques to run 50 simulations that lasted 30 days 
each. Scenarios were created by bootstrapping 6 months 
of historical patient data to approximate random patient 
inputs such as departmental flow, hospital LOS, interar-
rival time between admissions, interarrival time between 
surgeries, turnaround time between surgical cases, stay 
type (emergent, outpatient and inpatient), surgical 
specialty, any cancer diagnosis and rate of readmission. 
These relationships are illustrated in figure 1.

Model fit assessment
We performed an assessment of model fit of the county, 
health system and hospital census subreports using data 
generated throughout the pandemic by comparing actuals 
and estimated values. We used the coefficient of determina-
tion regression score function (R2), where 1 represents that 
the model retrospectively fits the correct number of cases.16

www.epic.com


3Warde PR, et al. BMJ Health Care Inform 2021;28:e100248. doi:10.1136/bmjhci-2020-100248

Open access

Cross-model comparison
We compared performance of the hospital census subre-
port with the Cleveland Clinic Florida’s Beyond Limits 
Model20 (an SIR model) and the University of Pennsylva-
nia’s CHIME Model V.1.1.5 (a modified SIR model).20 21 
Both external models had subreports for health system 
hospital census. These were executed on the run dates 
found in table 2 based on their corresponding published 
version at the run time, 17 April, 30 June, 7 July and 14 
July 2020, respectively. Assumptions used in applying 
these models are summarised in the online supplemental 
appendix. We devised a radar chart using Microsoft Excel 
(Microsoft Corporation, 2020) to depict differences 
between actual and predicted peak volume and dates at 
each individual run date. Radar charts were chosen due 
to lack of continuous data to perform an R2 analysis. We 
did not have any publicly available external models to 
compare against the county incidence or health system 
subreport.

Surgical optimisation assessment
We performed a qualitative assessment of actual surgical 
cases vs recommended surgical volume to determine our 
ability to meet recommendations.

RESULTS
Model fit assessment
Year- to- date estimates across all three subreports, as shown 
in table 1, were between an R2 of 0.67 and 0.89 after day 
30 of the start of the model (11 March) because sufficient 
data are available thereafter to calibrate models. Health 
system incidence subreports’ coefficient of determination for predictions up to day 20 were negative because of an 

unanticipated spike in cases at the start of the epidemic.

UM-SIM report and models
The UM- SIM report was shared daily with leadership 
in the form of colour- coded graphs seen in figure 2 in 
a slide deck. They were discussed in weekly COVID-19 
command and general staff meetings, biweekly projection 
emails, biweekly hospital leadership huddles, department 
meetings and through informal dissemination to front-
line staff. Feedback from operations and medical lead-
ership was collected and used to improve models over 
time. Improvement and changes to models were tracked 

Figure 1 Patient discrete event simulation (DES) process 
flow. ER, emergency room; ICU, intensive care unit; IP, 
inpatient (non- ICU); OR, operating room.

Table 1 Coefficients of determination (R2)

Prediction 
period

Coefficient of determination

County 
incidence

Health system 
incidence

Hospital 
census

Day 20 0.17 −0.81 0.80

Day 30 0.70 0.43 0.90

Day 40 0.76 0.47 0.94

Year to date 0.85 0.67 0.87

Figure 2 Composite of three University of Miami simulation 
(UM- SIM) models. (A) County incidence. (B) Health system 
incidence. (C) Hospital census projections.

https://dx.doi.org/10.1136/bmjhci-2020-100248
https://dx.doi.org/10.1136/bmjhci-2020-100248
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through a methodology change history with each itera-
tion as more data became available. Figure 2 and table 1 
summarise the three models, plotted according to the fit 
of final model estimates to historic actuals.

Cross-model comparison
We compared the UM- SIM model prediction of the 
hospital census subreports with estimates projected by 
the Beyond Limits and the CHIME models, summarised 
in table 2. Each of the subreports was run multiple times 
(17 April, 30 June, 7 July and 14 July 2020). The actual 
hospitalised census in subepidemic 1 peaked on 27 April 

2020, at 49, and subepidemic 2 peaked on 20 July 2020, 
at 150. Figure 3 illustrates the absolute percent difference 
in the predicted peak and the actual number of cases on 
predicted peak date for each of the three models over 
the various run dates for the two outcomes. UMHC expe-
rienced a peak of 150 cases on 20 July 2020. UM- SIM’s 
hospital census subreport, which was run on 7 July, 
predicted a peak census of 110 patients on 14 July 2020 
and produced the closest estimate of this true peak on 20 
July 2020. When looking at the UM- SIM hospital census 
subreport, we observed that volume projections were most 
accurate up to 7 days after model run. We also observed 
that the Beyond Limits Model had the lowest absolute 
difference in predicted peak and actual peak date.

Surgical optimisation assessment
Per table 3, we were only able to schedule enough cases 
to meet the surgical optimisation recommendations in 
June and July. We did not have enough patient demand 
in May, August and September (as of 15 September) to 
schedule enough cases to meet surgical optimisation 
recommendations.

DISCUSSION
The COVID-19 pandemic has created unique challenges, 
not only clinically, but from the perspective of hospital 
operations. The models described here, which can be 
adapted to other health systems, provide a mechanism to 
predict local peaks in cases and inform hospital leader-
ship regarding bed allocation, surgical volumes, staffing 
and supplies. Our UM- SIM models fit actual data reason-
ably well and performed better than publicly available 

Table 2 Model comparisons

Model

Actual 
peak 
date

Actual 
peak 
amount

Model 
run date

Predicted 
peak date

Predicted 
peak 
amount

Actual
amount on 
predicted 
peak

Difference 
in predicted 
peak and 
actual peak 
date

Absolute % 
Difference in 
predicted and 
actual amount on 
predicted peak 
date

BL 27 April 49 17 April 26 May 38 33 29 13

CHIME 16 May 256 33 19 87

UM- SIM 26 May 139 33 29 76

BL 20 July 150 30 June N/A N/A N/A N/A N/A

CHIME 29 July 574 119 9 79

UM- SIM 7 July 80 106 −13 33

BL 7 July 21 July 379 145 1 62

CHIME 1 August 540 119 12 78

UM- SIM 14 July 110 129 -6 17

BL 14 July 31 July 213 120 11 44

CHIME 5 August 510 93 16 82

UM- SIM 11 August 150 84 22 44

BL, Beyond Limits; CHIME, UPENN COVID Hospital Impact Model for Epidemics; UM- SIM, University of Miami simulation model.

Figure 3 Hospital census model comparison.* *This radar 
chart illustrates the results of hospital census across the two 
external models along with UM- SIM model based on the 
absolute per cent difference in predicted and actual hospital 
census on each model’s predicted peak date. The dates in 
the figure represent when the models were run. Predictions 
plotted closest to the centre represent higher accuracy of the 
model. UM- SIM, University of Miami simulation.
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models. In our hospital system, the model projections 
were used to inform three important hospital resource 
management issues: (1) the health system incidence 
subreport allowed the supply chain team to evaluate 
surge volume and adjust personal protective equipment 
allocation/procurement in real time; (2) the health 
system incidence subreport allowed anticipation of how 
many beds to allocate to patients with COVID-19 and how 
to flex our capacity of negative pressure rooms between 
ICU and medical/surgical; and (3) the hospital census 
subreport was used to maximise surgical case volume and 
minimise the risk of having scheduled more surgeries 
than available hospital beds.

The most important outcome of the collection of 
UM- SIM subreports was providing hospital leader-
ship with a roadmap to implement a ‘hospital within 
a hospital’—one for patients with COVID-19 within a 
hospital able to care for the regular non- COVID-19 popu-
lation. We test all patients with a reverse transcriptase PCR 
assay for COVID-19 on admission and separate patients 
into COVID-19 and non- COVID-19 floors. All wards can 
provide negative room pressure, as recommended by the 
United States Centers for Disease Control (CDC) in their 
guidelines for healthcare personnel on COVID-19 infec-
tion prevention and control. For elective procedures that 
have already been scheduled, priority should be given 
to cases for which a short LOS is anticipated, cases that 
have same- day discharges or time- sensitive surgeries in 
which patients are likely to have adverse outcomes from 
further delays. Scheduling surgeries at atypical times 
(eg, on weekends) and expediting throughput and 

efficiency (eg, using a dedicated discharge team) are crit-
ical to maintaining adequate operating room and ICU 
capacity. This ensures flexibility between medical- surgical 
wards and ICU use. The surgical schedule is modified 
according to models that predict the number of new 
patients with COVID-19 who require admission.22 The 
qualitative accuracy of the subreports made it possible 
to predict the number of beds needed for COVID-19 
along with the creation of a separate staffing model and 
ancillary support teams. The hospital was able to use the 
remaining units within the hospital to treat the acute care 
non- COVID-19 patients with a separate staffing model 
and ancillary support teams. Standard operating proce-
dures were created to establish rapid discharge teams that 
worked 7 days a week to maximise throughput in both the 
COVID-19 and acute care sections of the hospital. The 
hospital incidence subreport also helped predict the 
volume and timing of patients with COVID-19 coming 
to the emergency department. In response, we created a 
separate ED holding unit where admitted patients waited 
pending COVID-19 results. This prevented the hospital 
from having to board patients in the ED and provided 
a safe space for patients (thereby reducing in- hospital 
COVID-19 transmission) to wait while we readied beds in 
the appropriate sections of the hospital.

On 6 May, anticipating when governmental ordinances 
allowed elective surgeries to commence, the surgical opti-
misation subreport provided confidence to the leadership 
team to allow scheduling of the appropriate surgical cases 
in line with predicted capacity. This ensured delivery of 
needed surgical care in a timely manner and avoidance 

Table 3 Weekly surgical volume

Date

Outpatient Inpatient Total

Actual UM- SIM recs Actual UM- SIM recs Actual UM- SIM recs

April 3.4 Unavailable 9.8 Unavailable 13.2 Unavailable

May 8.8 12 19.0 24 27.8 36

June 13.2 12 23.5 24 36.7 36

July 26.3 27 19.8 17 46.0 44

7 July 27 5 32

14 July 27 16 43

21 July 27 16 43

23 July 27 16 43

28 July 27 25 52

30 July 27 25 52

August 15.8 22 24.0 30 39.8 57

3 August 22 30 52

10 August 22 30 52

17 August 22 30 52

24 August 22 30 52

31 August 22 30 52

September 10.3 22 20.8 35 31.1 57

UM- SIM, University of Miami simulation.
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of lost revenue. We also noted that we were not always 
able to meet the surgical optimisation recommendations 
due to a lack of patient demand. Lack of patient demand 
may be due to patient fears of seeking care and/or job 
loss that makes surgery unaffordable. Furthermore, 
decreased patient demand was potentially a result of 
patient self- delayed surgery. This is an area of risk from a 
hospital planning perspective because these delays could 
result in patients presenting later and requiring a higher 
level of care.23–30

LIMITATIONS
As with any model of COVID-19 disease burden, ours are 
limited by an incomplete understanding of the clinical 
course of the disease. For example, the UM- SIM model, 
which is a derivative of the SIR model, assumes no rein-
fection rate. Another limitation related to model assump-
tions is that, due to the pandemic, UMHC’s market share 
of patients in the Miami- Dade area may have changed 
when compared with baseline estimates. Additionally, 
prospective data collection was not done in a systematic 
manner that would enable robust performance evaluation 
since the primary goal of model development and testing 
was hospital operational planning and not academic 
research. Thus, additional data required for optimal 
comparison with other models (eg, data required for the 
Beyond Limits model was not collected on 30 June 2020) 
was not always available. Similarly, we could not quantita-
tively evaluate our surgical optimisation model’s perfor-
mance due to reductions in patient demand. Finally, our 
models do not account for social distancing and differ-
ential social mixing patterns due to their simplicity.31 32 
The CHIME model does account for social distancing; 
however, it only accounts for a single social distancing 
policy.21 Despite these limitations, the models proved 
invaluable in their ability to create rational plans for the 
health system to cope with the pandemic burden.33 They 
also helped leadership develop and adjust standard oper-
ating procedures and executive strategy.

CONCLUSION
The continuous utilisation and communication of our 
UM- SIM models enabled hospital operations personnel 
to provide appropriate threat- response remediation 
and support patient care; if we face subsequent waves of 
COVID-19 in the future, we expect their utility to remain. 
UM- SIM represents an example of how mechanistic 
modelling can be used at the health institution level to 
inform operational needs. This is in contrast with munic-
ipal, county and state models, which are able to inform 
more general public health interventions but have limited 
utility at the institution level, as pandemics are an aggre-
gate of epidemics, each of which is distinctly local. Predic-
tive modelling in this way can leverage data to support 
evidence- based decision making in a local context, when 
uncertainty is high and information is limited.
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