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Patients who have lost limb control ability, such as upper limb amputation and high

paraplegia, are usually unable to take care of themselves. Establishing a natural, stable,

and comfortable human-computer interface (HCI) for controlling rehabilitation assistance

robots and other controllable equipments will solve a lot of their troubles. In this

study, a complete limbs-free face-computer interface (FCI) framework based on facial

electromyography (fEMG) including offline analysis and online control of mechanical

equipments was proposed. Six facial movements related to eyebrows, eyes, and mouth

were used in this FCI. In the offline stage, 12 models, eight types of features, and three

different feature combination methods for model inputing were studied and compared

in detail. In the online stage, four well-designed sessions were introduced to control

a robotic arm to complete drinking water task in three ways (by touch screen, by

fEMG with and without audio feedback) for verification and performance comparison

of proposed FCI framework. Three features and one model with an average offline

recognition accuracy of 95.3%, a maximum of 98.8%, and a minimum of 91.4% were

selected for use in online scenarios. In contrast, the way with audio feedback performed

better than that without audio feedback. All subjects completed the drinking task in a

few minutes with FCI. The average and smallest time difference between touch screen

and fEMG under audio feedback were only 1.24 and 0.37 min, respectively.

Keywords: face-computer interface, facial electromyography, facial movements, robotic arm control online,

rehabilitation assistance robot

1. INTRODUCTION

Patients with paralysis and amputation are usually accompanied by loss of limb motor function.
Particularly, for the patients with upper limb amputation, high paraplegia, or muscle weakness, it is
hard to take care of themselves due to the loss of partial or total motor functions of hands or feet. In
order to restore the patient’s lost limb function or assist them for daily activities such as eating and
drinking, artificial hands, exoskeletons, robotic arms, smart wheelchairs and other assistive robots

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.692562
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.692562&domain=pdf&date_stamp=2021-07-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhangdaohui@sia.cn
mailto:zhaoxingang@sia.cn
https://doi.org/10.3389/fnbot.2021.692562
https://www.frontiersin.org/articles/10.3389/fnbot.2021.692562/full


Zhu et al. Face-Computer Interface (FCI) With fEMG

have emerged (Wu et al., 2018; Kaur, 2021). How to establish
a natural, efficient and stable human-computer interface (HCI)
has become a difficult and hot point in the research of
interactive control of rehabilitation aids (Mussa-Ivaldi et al.,
2013; Venkatakrishnan et al., 2014; Gordleeva et al., 2020; Xiong
et al., 2021).

Traditional HCI methods such as those based on buttons,
joysticks, or touch screen are usually no longer applicable due
to lack of limb function in the above-mentioned situations.
In order to solve these problems and optimize the HCI of
rehabilitation and assistive machines, many researchers have
begun to study HCI based on human physiological signals
such as electroencephalogram (EEG), surface electromyography
(sEMG), electrooculography (EOG), and so on (Shin et al., 2017;
Ding et al., 2019; Zhang et al., 2019; Gordleeva et al., 2020;
Li et al., 2020). Compared with lower recognition accuracy or
need additional stimulation for EEG-based HCI (such as motor
imagery and steady state visual evoked potential) (Lin et al., 2016;
Chu et al., 2018) and relative fewer recognizable intentions for
EOG-based HCI (Bastos-Filho et al., 2014; He and Li, 2017) or
hybrid gaze-brain machine interface (Li et al., 2017; Krausz et al.,
2020; Zeng et al., 2020), EMG-based HCI has been widely used
in the field of neurorehabilitation with the advantage of higher
accuracy and stability, especially for decoding motor intentions
of the limb with EMG (Ding et al., 2015; Hussain et al., 2016;
Zhang et al., 2019). However, intent recognition based on limb
EMG is still facing a huge challenge due to the abnormal signal
in the absence of limb function (Jaramillo-Yánez et al., 2020;
Xiong et al., 2021). Hence, instead of limb EMG, a novel intention
recognition method based on facial electromyography (fEMG)
and the HCI based on fEMG have been paid attention and partly
researched (Hamedi et al., 2011; Tamura et al., 2012; Bastos-Filho
et al., 2014; Nam et al., 2014; Inzelberg et al., 2018; Kapur et al.,
2018, 2020).

There are manymuscles on the human face, which can control
different parts of the face to produce many different movements
or expressions, such as eyebrows, eyes, lips, teeth, and so on.
Thus, rich information can be decoded from fEMG signals
(Hamedi et al., 2013; Inzelberg et al., 2018). Hamedi et al. (2011)
recognize movement intentions from fEMG, and a total of 11
facial movements were recognized through electrodes attached
to the forehead, with an accuracy rate of over 90%. In their work,
a multipurpose interface was suggested that can support 2–11
control commands that could be applied to various HMI systems.

Abbreviations: Base: FCI, face-computer interface; fEMG, facial

electromyography; HCI, human-computer interface. Facial movements: LEb,

lift eyebrows; LEBO, left eye blink once; REBO, right eye blink once; Bk, bick;

TML, tilt mouth to left; TMR, tilt mouth to right. Models: LR, logistic regression;

NB, Naive Bayes; DT, decision tree; SVM, support vector machines with Linear

Kernel; MLP, multilayer perceptron; Ridge, ridge classifier; RF, random forest;

QDA, quadratic discriminant analysis; Ada, Ada boost; GBC, gradient boosting

classifier; LDA, linear discriminant analysis; LGBM, light gradient boosting

machine Features: MAV, mean absolute value; RMS, root mean square; MC,

mean changes; MAC, mean absolute changes; MAX, maximum value; ZC, zero

crossings; VAR, variance; ARC, auto regression coefficient. Feature combinations:

SF, single-feature; AF, all-features. Online control: VB, control by virtual buttons;

E-AF, control by fEMG with audio feedback; E-NAF, Control by fEMG without

audio feedback.

Kapur et al. (2020, 2018) developed a portable and wearable
device to collect EMG signals around the mouth and neck.
More than 10 speech or silent voice commands were recognized
from the collected EMG signal. Lu and Zhou (2019) used three
electrodes to collect fEMG around the mouth to recognize five
movements and used them to control the cursor on the computer
to complete functions such as drawing and typing. Cler and Stepp
(2015) developed a system using fEMG typing, and the system’s
typing ITR reached 105.1 bits/min. Nam et al. (2014) integrated
multiple signals such as EOG and fEMG to control a humanoid
robot. Zhang et al. (2020) controlled a two-degree-of-freedom (2-
DOF) prosthesis based on fEMG. Bastos-Filho et al. (2014) and
Tamura et al. (2012) used fEMG to control the movements of
a wheelchair.

Although there have been some studies on the use of fEMG to
recognize intentions to realize HCI, there are still many unsolved
problems in this field. First of all, most of the current researches
are only based on an organ of the human face, such as the actions
of the mouth only or the movements of the eyes only (Hamedi
et al., 2011; Lu and Zhou, 2019). Therefore, the performance of
fusion of forehead, eyes, mouth, and other parts needs further
research. What’s more, the facial muscles are neither intertwined
like the muscles that control the fingers of the forearm, nor are
they independent of each other like the muscles of the upper
arm and thigh. There are few research on which features and
models are suitable for fEMG classification and recognition. In
addition, most of the existing researches only control cursors or
mobile robots (Tamura et al., 2012; Bastos-Filho et al., 2014; Nam
et al., 2014; Cler and Stepp, 2015), and there are few researches
using fEMG to control interactive device with human such as
robotic arms. In particular, there is a lack of experiments to
control the robotic arm to assist users in completing daily tasks
such as eating or drinking based on fEMG. What’s more, most
of the existing studies only have visual feedback, and lack other
feedback methods such as auditory feedback.

In order to solve these problems, we conducted detailed
research and experiments. In this study, a complete face-
computer interface (FCI) framework based on fEMG including
offline analysis and online control of mechanical equipments
was proposed. This is a limbs-free method, thus patients can
use it to control prostheses, exoskeletons, robotic arms, and
computers to take care of themselves and communicate with
the world. Healthy people can also use it as a third way of
interaction, for example, when controlling an intelligent robotic
arm, they can use it as a third hand. In our research, six facial
movements related to eyebrows, eyes, and mouth were used in
FCI. In order to select better models and features for online
FCI, 12 models, eight ways of calculating features, and three
different feature combination input methods for the model were
compared in detail in the offline stage. In the online stage, four
well-designed sessions were designed to control a robotic arm
to complete drinking water task in three ways (by touch screen,
by fEMG with, and without audio feedback) for verification
and performance comparison of proposed FCI framework. To
our best of knowledge, this is the first study of using fEMG to
control a robotic arm to complete a drinking experiment with
audiovisual feedback.
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FIGURE 1 | The frame of the face-computer interface (FCI).

In summary, the main contributions and highlights of this
research are as follows: (1) A complete Face-Computer Interface
(FCI) framework based on fEMG has been proposed. At the same
time, the effectiveness of FCI has been proven through well-
designed experiments. (2) The performance of frames with and
without audio feedback was compared. (3) Multiple models and
features were carefully compared and analyzed to select the best
model and features suitable for FCI.

The rest of this article would introduces the concept of the FCI
framework first, and then six facial movements, eight features,
12 models and three different feature combination methods for
model inputing were explained immediately after. The offline
data acquisition with its analysis and four online experiment
sessions to complete drinking water task based on different ways
were written in detail after that. Detailed experimental results and
discussion were introduced at the end.

2. METHODS

2.1. Frame of FCI
As shown in Figure 1, the purpose of the FCI framework is to use
fEMG for online control of specificmachines such as exoskeleton,
prosthetic hand, robotic arm, computer application, and so on.
The fEMG is acquired by some electrodes attached on human’s
face. Then fEMG signals will go through offline preprocessing,
feature extraction, and model selection to determine the
appropriate features and model for online control stage. After a
suitable online model is selected, fEMG will undergo the same
filtering and other preprocessing as when offline. The commands
or signals output by the model are used to control the machine
which is a robotic arm with a soft grip in our research. As usual,
subjects can watch the movement of the controlled device in real
time to provide visual feedback. In addition, we have also added a
voice broadcast of the output commands of the model to provide
more feedback information to the users.

2.2. Facial Movements
For the purpose to study FCI based on fEMG in this paper,
almost the entire facial areas are involved as the research object,

FIGURE 2 | Illustration of facial movements. From left to right and from top to

bottom are Lift Eyebrows (LEb), Left Eye Blink Once (LEBO) slowly, Right Eye

Blink Once (REBO) slowly, Bick (Bk), Tilt Mouth to Left (TML), and Tilt Mouth to

Right (TMR).

including the forehead area related to eyebrows movements, the
area around the eyes related to eyelid actions, and the area related
to mouth movements. In order to make the selected actions
can be performed by most participants, six movements selected
elaborately are used for research. As shown in Figure 2, those
movements include Lift Eyebrows (LEb), Left Eye Blink Once
(LEBO) slowly, Right Eye Blink Once (REBO) slowly, Bick (Bk),
Tilt Mouth to Left (TML), Tilt Mouth to Right (TMR), and REST
of course. The LEb requires participants to raise the left and right
eyebrows at the same time. The Bk is like simulating stationary
chewing a hard food. Subjects need to consciously blink the
corresponding eye slowly (close corresponding eye for more than
hundreds of milliseconds) when doing the LEBO or the REBO
movements. Participants can choose to shift only the corner of
the mouth to the left or both the corner of the mouth and the
mandible to the left according to their personal habits when
performing the TML. Actually, the requirement for performing
the TMR is same as the TML. And the REST requires participants
relaxation and doing nothing.

2.3. Features and Models
In order to determine a more suitable model and features for
on-line control machines in FCI frame, 12 models and eight
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FIGURE 3 | Different combinations of channels, features, and models. (A)

Using single feature (SF) as model input. (B) Using all features (AF) as model

input. (C) Using elected features (EF) as model input.

types of feature were compared in detail, respectively. The 12
models are {Logistic Regression (LR), Naive Bayes (NB), Decision
Tree (DT), Support Vector Machines (SVM) with Linear Kernel,
Multilayer Perceptron (MLP), Ridge Classifier (Ridge), Random
Forest (RF), Quadratic Discriminant Analysis (QDA), Ada Boost
(Ada), Gradient Boosting Classifier (GBC), Linear Discriminant
Analysis (LDA), Light Gradient Boosting Machine (LGBM)}
(VanderPlas, 2016; Jaramillo-Yánez et al., 2020). Furthermore, as
shown in Figure 3, three different feature combination methods
for model inputing were analyzed in detail, which are Single-
Feature (SF) per channel, All-Features (AF), Elected-Features
(EF). Notably, the features in EF were selected according to the
order of performance of SF.

Assume that xi is the i-th point in an EMG signal with N
points. The calculation method of each feature is as follows
(Roberto and Dario, 2016; Jaramillo-Yánez et al., 2020).

(1) Mean absolute value, MAV

MAV =
1

N

N
∑

i=1

|xi|

(2) Root mean square, RMS

RMS =

√

√

√

√

1

N

N
∑

i=1

x2i

(3) Mean changes, MC

MC =
1

N

N−1
∑

i=1

(xi+1 − xi)

(4) Mean absolute changes, MAC

MAC =
1

N

N−1
∑

i=1

|xi+1 − xi|

(5) Maximum value, MAX

MAX = max(xi), i = 1, 2, ...,N

(6) Zero crossings, ZC

ZC =

N−1
∑

i=1

sgn(−xixi+1)

Where the sgn(ζ ) represents the sign of ζ

sgn(ζ ) =

{

1 ζ > 0

0 other

(7) Variance, VAR

VAR =
1

N − 1

N−1
∑

i=1

(xi − x̄)2

(8) Auto regression coefficient, ARC

xi =

p
∑

k=1

akxi−k + ei

Where the coefficients ak are the features. The p is the order of
ARC which is three in this study.

3. EXPERIMENT

3.1. Subjects and Devices
A total of seven healthy subjects (2 females, 26.2 ± 5.2 years
old) participated in all experiments in this study. And it
was reviewed and approved by the Ethical Committee of the
Shenyang Institute of Automation. Before starting all processes
such as data collection and robotic arm control, all subjects were
informed in detail of all experimental procedures and possible
dangers, and signed an informed consent form.

Four main types of hardware devices [a fEMG collector, a
robotic arm, a personal computer (PC), and a high-speed router]
were used in this study. The NeusenW64 (Neuracle Co., Ltd,
China) with a maximum of 64 unipolar channels (or 32 channels
of bipolar electrodes) and maximum of 2,000 Hz sampling rate
was used for the acquisition of fEMG. The fEMG collector used
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TABLE 1 | Correspondence of electrode numbers, positions, muscles, movements, and commands.

Numbers Positions Muscles Movements Commands

1 Forehead Frontal muscle LEb Positive direction

2 Left eye corner Left orbicularis oculi LEBO Y axis (forward or back)

3 Right eye corner Right orbicularis oculi REBO X axis (left or right)

4 Masseter skin Masseter Bk Negative direction

5 Left corner of mouth Left risorius TML Gripper (open or close)

6 Right corner of mouth Right risorius TMR Z axis (up or down)

FIGURE 4 | Waveform diagram of a round in data acquisition. The black

dotted lines indicate the action prompt.

wifi to transmit data to the PC in real time through a high-
speed wireless router. The PC containing with 64-bit Windows-
10 system and Python3.7 programming environment was used
for all data acquisition, data analysis, intent recognition model
training, and control of the robotic arm (Elfin, Han’s Robot Co.,
Ltd, China) with a soft gripper.

All fEMG acquisition processes used 1,000 Hz sampling rate
to acquire signals. After the original signal was acquired, the
signals used for further analysis were preprocessed by IIR notch
filtering to remove power frequency interference and 10–450 Hz
second-order bandpass Butterworth filtering.

3.2. fEMG Acquisition for Offline Analysis
3.2.1. Electrodes Configuration
In order to collect the fEMG signals corresponding to different
actions, six monopolar electrodes were attached to different parts
of the human face. The labels, positions, and corresponding
muscles of all electrodes are shown in the Table 1. The No. 1
electrode was placed on forehead for acquainting fEMG signals
when LEb being performed. Electrodes No. 2 and No. 3 were
placed on the extended corners of the left and right eyes,
respectively to collect the fEMG signals generated by the actions
of LEBO and REBO. When the subjects clenched their teeth,
the position of the masseter muscle would be obviously raised,
and the No. 4 electrode was placed on the corresponding raised
part of the left face. Electrodes No. 5 and No. 6 were placed

on the left and right corners of the mouth to collect the fEMG
signals generated by the actions of TML and TMR, respectively.
In order to balance the electrical field of the left face and the right
face, two short-circuited reference electrodes were placed on the
mastoid behind the left and right ears. The ground electrode was
placed behind the right ear and next to the reference electrode.
All electrodes are ordinary disposable electrodes with conductive
paste. Before applying the electrodes, the subject’s face was wiped
with alcohol and waited for it to dry. Each numbered electrode
was placed according to the structural features of the human face,
such as the corners of the eyes, the edge of the mandible, the
corners of the mouth, etc., to prevent large positional deviations
from the collection of different sessions.

3.2.2. Acquisition Paradigm
For the six actions {LEb, LEBO, REBO, Bk, TML, TMR} defined
in Figure 2, each subject participated in 25 rounds of data
collection, and each action was collected once in a round. In
order to familiarize the subjects with the collection process and
maintain the consistency of their actions, the first 5 rounds
were used as adaptive training. The next 20 rounds were for the
formal collection of fEMG data. In the entire collection process,
each action was executed 25 times in total, of which the fEMG
signals generated by the last 20 actions were regarded as valid
signals. After the first five rounds of adaptive training were
completed, the subjects had 3 min of rest and then started the
formal collection. During each round of collection, the order of
appearance of the six actions was random. There was a 5 s rest
between the two actions, and each action lasted about 3 s. Before
a action was executed, the name prompt and voice prompt of
the action were given by screen and a speaker at the same time.
Participants rested for 1 min after each round. After the formal
collection of 10 rounds, the subjects rested for 5 min and then
performed the next 10 rounds of collection. The entire collection
time lasted∼1 h.

3.2.3. Offline Data Analysis and Processing
Figure 4 shows a demo of a round of waveform in data
acquisition and Figure 5 shows a demo of waveform comparison
between different actions and channels. It can be seen from the
waveform that the fEMG signal corresponding to each action
has an obvious difference. The signal amplitudes from LEBO
and REBO are obviously smaller than those of the other actions,
while the amplitude from Bk is the largest, followed by LEb.
Thus, we cannot simply identify the action category from the
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FIGURE 5 | Waveform comparison between different actions and channels. In the figure, the waveform in the solid red frame is the main channel signal corresponding

to the action, and the waveform in the purple dashed frame is redundant signal collected by other channels. (A) Ch-1 LEb, (B) Ch-2 LEBO, (C) Ch-3 REBO, (D) Ch-4

Bk, (E) Ch-5 TML, (F) Ch-6 TMR.

amplitude of each signal because of the mutual influence between
the channels as shown in Figure 5. In the Figure 5, the waveform
in the solid red frame is the main channel signal corresponding
to each action, and the waveform in the purple dashed frame is
redundant signal collected by other channels. The action Bk has
an effect on almost all channels, while the LEb has almost no
effect on other channels. Almost all channels have an influence
from actions that are not their counterparts. Ch-1 is affected by
REBO because it is attached to the above of the right eye, and of
course it is also affected by Bk. Ch-2 is affected by Bk and TML
and similarly Ch-3 is affected by Bk and TMR. Ch-4 is affected by
TML for Ch-4 is attached at left face. Ch-5 and Ch-6 are the least
affected, but are also partially affected by Bk.

Since the intent could not be easily identified from fEMG
signal, the features andmodels mentioned in the third subsection
of the second section were used to identify the action category
and were analyzed in detail at offline. A 200 ms sliding window
with a 50ms sliding interval containing fEMG signals was used to
calculate each feature. For each channel of each action, the signal
between 1,500 and 2,650 ms after the prompt was divided into
20 samples. Similarly, the 350 ms signal from 350 ms before each
prompt to the prompt moment was divided into four samples.
In this way, for a round of collecting 6 actions, there were 20
samples for each movement and 24 samples for REST. To sum
up, there were actually 2,880 samples for each participant (2,880
= 20 rounds ∗ 20 samples of each round ∗ 6 actions+ 20 rounds
∗ 24 REST samples of each round). Five-fold cross-validation was

used to analyze the performance of each model for each subject.
For each cross-validation, 80% of the data (2,304 samples = 6
actions * 320 samples for each action + 384 samples for REST)
was used for training, and the remaining 20%(576 samples) was
used for testing. In other words, 320 samples of each action were
used for training in each cross-validation, and the remaining 80
samples were used to test the performance of trained model.

3.3. Control Robotic Arm Online
In order to simulate the scenario where FCI is used in the
environment of lack of limb function, a water drinking task was
carefully designed. Participants were required to complete the
task of using fEMG to control the robotic arm to drink water
for themselves during the online control period. A six-degree-of-
freedom robotic arm was controlled in this phase and Figure 6

shows the details of this scene. A soft gripper mounted on the
end of the robotic arm was used to grab the object as shown in
Figures 6A,B. The soft gripper was driven by a dynamic driving
manner so as not to damage the object while grasping the object.
A drinking glass with a diameter of 7.5 cm and a height of 13 cm
with a straw was used for the drinking experiment.

In the experiment, the robotic arm can be controlled in two
ways. One of them is to control through the teach pendant which
has a touch screen. On the touch screen of the teach pendant,
when the robot arm is controlled in manual control mode, a
virtual button interface that can control the motion of the robot
arm is presented as shown in Figure 6C. One can control the
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FIGURE 6 | Online control of robotic arm through fEMG. (A) A snapshot of the online control of the robotic arm to drink water. The robotic arm body and its

coordinate system, the soft gripper, fEMG electrodes, earphone for audio feedback, amplifier, PC, etc. are marked. (B) A photo of the soft gripper before grabbing the

cup. (C) Virtual button interface for manipulating the robotic arm.

movements of the robotic arm corresponding to the function of
virtual button by pressing and holding the virtual button on the
touch screen. Another way to control the robotic arm is through
the FCI method proposed in this paper.

During the whole experiment, the robotic arm works under
the position control mode of Cartesian space. The three-
dimensional orthogonal Cartesian coordinate system is shown
in Figure 6. In this research, the external application sends eight
commands to the robotic arm through the API of the robotic arm
system. These eight commands are {moving to the positive of X-
axis, moving to the negative of X-axis, moving to the positive of
Y-axis, moving to the negative of Y-axis, moving to the positive
of Z-axis, moving to the negative of Z-axis, closing gripper, and
opening gripper}. These eight commands correspond one-to-one
with the virtual buttons labeled 1–8 in Figure 6C. When the
robotic arm is working, the operator only needs to pay attention
to the direction of movement of the claw at the end of the
manipulator, and does not need to pay attention to the joint
space of the manipulator. The mapping from Cartesian space
to joint space is done by the manipulator API. For the safety
of operation, the end of the robot arm runs at a lower speed of
3 cm/s during the movement. In this experiment, the working
space of the gripper is limited to a cuboid space with a range
of [20, 120] cm of X-axis, [−70, 100] cm of Y-axis, and [5, 120]
cm of Z-axis. The projection of the working space at the end of
the robotic arm on the X-Y plane is restricted to not exceed the
desktop as shown in Figure 6A, except for the side parallel to X-
axis at positive direction of Y-axis, which can exceed 30 cm so
that the water cup can be sent to the subject’s mouth.

As the subjects were naive for controlling robotic arm, the
experiment was divided into four sessions. Subjects participated
in different sessions for 4 consecutive days, and each session

took from 1 to 2 h. The first session was for participants to
familiarize themselves with the robotic arm and its control
process. In the second session, the participants used virtual
buttons to operate the robotic arm to complete the task of
drinking water. In the third and fourth sessions, subjects used FCI
to complete the task of drinking water with and without audio
feedback, respectively.

3.3.1. Session #1-Familiar With the Robotic Arm
In this session, participants’ goal was to understand the
movement of the end of the manipulator in the robotic arm
workspace and then use virtual buttons to control the gripper
of the robotic arm for single-axis movement. A professional
robotic arm engineer explained to each participant the working
space of the robotic arm and the uniaxial movement of the
end of the robotic arm in the Cartesian coordinate system.
In this process, participants did not need to understand the
working principle of the robotic arm such as joint angle,
joint space, kinematics, etc., but only need to know that the
gripper can move along the three axes in Cartesian space.
They even did not need to know the concept of Cartesian
space. The instructor explained to them as follows: “The gripper
will move forward when this button (−Y) is pressed. And
the gripper will move to the left when this button (+X) is
pressed. After that button (Close) is pressed, the gripper will
close...” After understanding the operating mode of the end of
the robotic arm, the subjects used eight virtual buttons on the
touch screen to control the direction, opening or closing of
the gripper. Each participant was asked to run every control
command 10–15 times in order to become familiar with the
movement of the gripper. For each subject, this session lasts
about 1 h.
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FIGURE 7 | Online control flow chart base on FCI. In the figure, the black, bold, and italicized words are the main variables, and the red part is the robotic arm control

and voice broadcast.

3.3.2. Session #2-Complete Drinking Task Based on

Virtual Buttons
In this session, subjects were asked to use virtual buttons to
control the movement of gripper to complete drinking task 10
times. In each drinking task, as shown in Figure 6, the cup
was placed on a 30∗15 cm rectangular saucer. The center of
the saucer was fixed at the position (x: 90, y: 45, z: 0) cm of
the robotic arm coordinate system. In order to ensure that the
subjects were controlled based on their actual location rather than
remembering repeated paths, in each task, the position of the
cup on the saucer and the initial position of the gripper were
random. At the same time, in order to eliminate the difference
in experimental performance caused by randomness, the random
range of the position of the cup and the gripper was restricted
rather than completely random, and each participant conducts
at least 10 experiments in each session. The initial position of
the gripper was (x: xi, y: -45, z: zi)cm, i = 1, 2, 3, ..., 10, in each
drinking task. The xi was randomly generated from [20, 120] cm
and zi was randomly generated from [5, 120] cm. The subject sat
in the direction of the positive Y-axis and was asked to use virtual
buttons to control the gripper to complete the task of drinking
water. A water drinking task can be divided into three stages: (1)
the gripper wasmoved from a random initial position to the place
where the water cup was placed; (2) the water cup was picked up
and moved to the subject’s mouth; (3) the subject was asked to
drink a small amount of water and then controlled the robotic
arm to place the water cup back to the saucer. The time spent on
each task was recorded when the gripper started to move, and
stopped when the water cup was put back on the saucer. The
subjects needed to complete 10 repeated drinking tasks during
this session and there was a 2 min rest period between each task,

during which the experiment assistant would reset the water cup
and the gripper to the initial position.

3.3.3. Session #3 and #4-Complete Drinking Task

Based on FCI
In this two sessions, participants used fEMG instead of virtual
buttons to control gripper to complete the task. Except for
the change of the command input interface, the other settings
remained the same as in the second session. The models and
features selected during the offline phase were used here. Before
this two sessions started, in order to eliminate the difference
between the different sessions, the subjects were asked to collect
five additional rounds of fEMG data to update the model with the
initial parameters trained in the offline phase. When fEMG was
used as a control method, six facial movements weremapped into
eight commands corresponding to eight gripper movements. As
shown in Table 1 and Figure 7, each manipulator motion control
goes through two stages. The first stage is to use four actions
to select one of the four axes (3 coordinate axes and hand grip
to open or close). Then, in the second stage, the remaining two
actions will be used to select the direction of movement. For the
direction of movement of the claw, the first action selected which
axis to move along, and the next second action selected to move
in the positive or negative direction of that axis. The first actions
{REBO, LEBO, TMR}, respectively indicate the selected X, Y, or
Z axis. LEb represents the positive direction of the corresponding
axis and Bk represents the negative direction. The first action only
needs a short duration of about 1 s to ensure that the model can
be recognized, but LEb or Bk needs to hold on when the gripper
is running. When the action stops, the gripper also stops moving
accordingly. For the opening or closing of the gripper, the first
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TABLE 2 | Broadcast contents in audio feedback after the first action or the

second action is recognized.

First movement Broadcast content Second

movement

Broadcast content

REBO Left or right
LEb Left

Bk Right

LEBO Forward or back
LEb Back

Bk Forward

TMR Up or down
LEb Up

Bk Down

TML Gripper
LEb Close

Bk Open

facial movement must be TML. When the second action is Bk, it
means closing the gripper and the opposite LEb means opening
the gripper. When controlling the opening and closing of the
gripper, both the first action and the second action only need to
last for a short time. After completing the command, the open
and closed state of the gripper will be self-locking. In order to
prevent the water cup from being erroneously released at high
altitude, the gripper opening and closing control is only valid
when the gripper is directly above the desktop and the coordinate
value of the z-axis is <10 cm. Throughout whole process, the
second action {LEb or Bk} is valid only if it is started within 5
s after the first action is successfully recognized or the last non-
resting action is itself, otherwise it is invalid and ignored. In
Figure 7, when the variable State is 0, it means that it is currently
in the first stage; when it is 1, it means that it has entered the
second stage from the first stage; and when it is 2, it indicates the
state where the second stage continues.

In the third and fourth sessions, the subjects were required
to complete drinking task 10 times as in the second part. In
these two sessions, the subjects had three attempts to familiarize
themselves with the commands of fEMG before starting the task.
The difference between the third session and the fourth session is
that the third session has a earphone to provide audio feedback
to the subjects, while the fourth session has no audio feedback.
The audio feedback in the third session mainly announces
the intention of the participants after the action recognition.
Participants can confirm whether the recognition results are
consistent with their own intentions according to the broadcast
content in order to adjust the control strategy in time. The
content of the broadcast is the upcoming or ongoing movement
of the gripper, as shown in Table 2, and he corresponding intent
direction is shown in Figure 6A.

4. RESULTS

4.1. Offline Performance
Figure 8 shows the average accuracy of all subjects in different
models with single-feature (SF). It can be seen from the result
that themaximum accuracy of classifiers {LR, NB, SVM,MLP, RF,
QDA, Ada, GBC, LGBM} exceeds 90% when using SF as input.
Features {MAV, RMS, MAC, MAX, VAR} performed well on

FIGURE 8 | Comparison of the average accuracy of all subjects in different

models with single-feature (SF).

FIGURE 9 | The features calculation time and the average accuracy of the

GBC model under feature reduction process. The abscissa represents the

performance when the eight features are removed one by one in the order of

{MC, ZC, ARC, WAV, MAX, VAR, RMS, MAC}.

multiple classifiers. The features used in the online phase require
less time for feature calculation and high recognition accuracy.
In order to select the feature set that meets this condition, the
average accuracy of all models when a single feature is used as the
model input is sorted as {MC, ZC, ARC,WAV, MAX, VAR, RMS,
MAC} from low to high. Figure 9 shows the calculation time and
the average accuracy of the GBC model under feature reduction
process when the eight features are removed one by one in the
order of {MC, ZC, ARC, WAV, MAX, VAR, RMS, MAC}. It can
be seen from the figure that as the features decrease, the accuracy
and calculation time are also decreasing. However, the degree of
accuracy decrease in the early stage is small, and the decrease
rate increases in the later stage, and its inflection point appears
when there are only three features left and the calculation time
is already small enough at this time. Therefore, features {VAR,
RMS, MAC} are used as EF here.

Comparison of the average accuracy of all subjects between SF,
AF, and EF is shown in Figure 10. For SF, the maximum accuracy
rate of each model are selected first across different single-feature
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FIGURE 10 | Comparison of the average accuracy of all subjects in different

combinations of features. The result is the average of all subjects, and the

standard deviation is indicated in the figure. SF: The maximum accuracy rate

of each model are selected first across different single-feature (SF) for per

single subject, and then the average value of the selected maximum is

calculated across all subjects. AF: Performance when using all features. EF:

Elected features, here are RMS, MAC, and VAR.

(SF) for per single subject, and then the average value of the
selected maximum is calculated across all subjects. The t-test was
used to analyze the difference between SF and AF, and all p-values
were <0.01 for all models, which indicates that the performance
of SF and AF is significantly different. But there is no statistically
significant difference between EF and AF. In other words, the
difference between EF and AF is not obvious. When using AF as
the model input, there are nine models {LR, NB, SVM, MLP, RF,
QDA, Ada, GBC, LGBM } with an average accuracy of more than
95% on all subjects. Among them, the accuracy of 6 models {LR,
NB, MLP, QDA, Ada, GBC, LGBM} still exceeds 95% when using
EF {RMS, MAC, VAR}. When using AF, the accuracy of QDA
is the largest among all models, which is 96.7%. The next one
comes from GBC, which is 96.3%. When using EF, the accuracy
of MLP is the largest among all models, which is 95.9%. The
next one is also from GBC, which is 95.3%. It can be seen that
the difference between the best performance when using AF and
EF is small, not more than one percentage point. At the same
time, the smallest standard deviation of the accuracy comes from
GBC in all models. This indicates that GBC has the most stable
performance. As a result, GBC with EF input was selected for
online testing. When using the EF features{RMS, MAC, VAR} as
the input of the GBC model, the average value of the five cross-
validation for each participant is shown in Figure 11D. Among
them, the accuracy of subject S6 was the highest with 98.8%.

4.2. Online Control Robotic Arm
The performance of different subjects using different methods to
control the robotic arm to complete the task of drinking water
online is shown in Figure 11. The time spent by seven subjects

using virtual buttons to control the robotic arm to complete the
task ranges from 1.79 to 6.62 min. Where the mean is 3.26 min,
and the median is 3.02 min. The ranges of the time of using
FCI with audio and without feedback are [1.93, 7.9] and [2.18,
9.55] min, respectively. Where the means are 4.5 and 5.72 min,
and the medians are 4.13 and 5.60 min. In terms of mean and
variance, the performance using virtual buttons as the control
method is better than fEMG control with audio feedback, and
the performance without audio feedback is the worst. For these
three cases, the pairwise permutation test was used to analyze
their statistical significance. Ten thousand permutation tests were
carried out for each condition of each subject, and the p-value is
shown inTable 3. As can be seen from the table, for the control by
virtual buttons or by fEMG with audio feedback, the significance
of the difference between each subject is quite different. S6 has
no statistical difference, S1, S2, and S3 have a certain difference,
while the difference of S4, S5, and S7 is very significant. Therefore,
statistically speaking, there are some differences between virtual
buttons and fEMGwith audio feedback, but the overall difference
is not very significant. For the control by fEMG with and without
audio feedback, the p-values of all subjects are <0.001, indicating
that the difference between this two cases is very statistically
significant. The average time of each participant in the 10 tasks
is marked in Figure 11D. It can be seen that there is no order
of magnitude difference in the time consumed by virtual buttons
and fEMGwith audio feedback. The average gap between the two
is 1.24 min. The biggest gap comes from the subject S7, which
is 2.1 min, and the smallest difference is only 0.37 min which is
from S6.

5. DISCUSSION

This study performed offline analysis and online experiment
respectively based on the proposed FCI. In the offline stage, 12
models and eight ways of calculating features were compared in
detail. A total of seven participants performed 25 rounds of fEMG
signal acquisition for six facial movements, and each generated
20 rounds of valid signals. It can be seen from the offline analysis
results that the selected action has good recognizability under the
studied model and features. As shown in Figures 10, 11D, when
the EF features {RMS, MAC, VAR} were selected as the model
input, the maximum recognition accuracy among the seven
participants reached 98.8%, and the minimum reached 91.4%. In
the feature calculationmethods studied, the time domain features
were mainly compared without the frequency domain features.
Because the main purpose of comparing features is to select some
good features for online use, and these features selected usually
require fast and stable calculations. When calculating features
related to the frequency domain, the speed is usually slower than
that in the time domain. Moreover, it can be seen from the offline
and online results that the recognition accuracy and efficiency are
sufficient based on EF features {RMS,MAC, VAR} or even a single
feature only.

In order to verify the effectiveness of the proposed FCI, an
experiment to control a robotic arm was designed. During the
online control of the robotic arm, four progressive sessions were
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FIGURE 11 | The performance of different subjects using different methods to control the robotic arm to complete the task of drinking water online. (A) Control by

virtual buttons (VB). (B) Control by fEMG with audio feedback (E-AF). (C) Control by fEMG without audio feedback (E-NAF). (D) Performance on different subjects. The

bars represent the average time-consuming of 10 online tasks, and the broken line represents the average recognition accuracy (ACC) of 5 cross-validation using

Gradient Boosting Classifier (GBC) with elected features (EF) {RMS, MAC, VAR} as input when offline.

TABLE 3 | In the online phase, the p-value of the three-way pairwise permutation test statistical analysis.

Pair S1 S2 S3 S4 S5 S6 S7

VB & E-AF 0.0015 0.019 0.008 0.0002 0.0004 0.28 <0.0001

VB & E-NAF All <0.0001

E-AF & E-NAF 0.0003 0.0005 0.0007 <0.0001 <0.0001 0.0003 0.0004

Among them, VB, control by virtual buttons; E-AF, control by fEMG with audio feedback; E-NAF, control by fEMG without audio feedback.

carefully designed. In the experiment, in order to reduce the
burden on the participants and keep FCI close to the daily habits
of most people, participants only learned the motion control of
the gripper without having to understand the working principle
of the robotic arm too much. This way is as natural as people
controlling arbitrary objects to move in three-dimensional space
in normal life. Subjects first used the virtual buttons on the touch
screen to control the gripper to perform the task of drinking
water, and then used FCI to control the robotic arm. A total
of six facial actions from almost entire face in the online phase
were used to map to the eight movements commands of the
grippers of end at robotic arm. When the virtual buttons, fEMG
with audio feedback and fEMG without audio feedback were
used to control the hand grips, the performance on the virtual
buttons was the best, which was reasonable and expected. Using
the button control method is just a benchmark, or even an upper

limit that can be reached at present. This method is only suitable
for scenarios where hand functions are available. In the case of
lack of limb functions, this method cannot continue to be used.
In contrast, the FCI method with relatively poor performance but
not very large gap is more suitable for disabled people.

It can be seen from the results of the online stage that the
movements recognition accuracy is not the only factor that affects
the performance of the experiment. There are many factors that
affect the performance of the online control stage. These factors
include: (1) the accuracy of intention recognition; (2) whether
the feedback information is sufficient, such as whether there is
voice feedback; (3) whether the actions of the participants are
consistent with their intentions; (4) the participant’s reaction
speed, such as the time it takes to correct the movement or
recognition error; (5) the participant’s path planning and control
strategy for themovement of the gripper (Nam et al., 2014; Zhang
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et al., 2020). As shown in Figure 11, the accuracy rate from
subjects S3, S5, or s2 was lower than that from S4, but in the
online process, the former performed better than the latter. S6
had the highest accuracy rate reached 98.8%, but his (/her) time-
consuming performance was not the best, slightly inferior to S2.
Similarly, the accuracy of S7 was the lowest, but the performance
of online control was not the worst. There is a trend that the more
time the subjects spend based on virtual buttons, the more time
they spend based on FCI. The performance of subjects S1, S2, and
S6 under using FCI was even higher than that of subjects S3, S4,
and S5 from using virtual buttons. Therefore, if the time subjects
take to use the buttons to control the robotic arm to complete
the task of drinking water is acceptable, then the time spent using
FCI should also be within an acceptable range.

For fEMG-based FCI, the method with audio feedback
performed better than that without audio feedback. When there
is audio feedback, not only did the participants spend less time
to complete the task, but their performance was also more stable.
It can be seen from Figures 11B,C that, when there is no audio
feedback, the time spent on 10 tasks fluctuates more severely.
Figure 11D also shows the standard deviation of the time it takes
on different task trials. It can also be seen that the standard
deviation when there is no voice feedback is larger than when
there is voice feedback.

FCI based on fEMG has some inherent disadvantages, such
as the need to attached electrodes on the subject’s face, this
may not be accepted by some people. However, this requirement
is more suitable than EEG-based HCI that requires EEG caps
and conductive paste. In addition, like other HCI based on
physiological signals, FCI based on fEMG also requires additional
signal acquisition for model training. And fatigue caused by long-
term continuous use will reduce performance without a lot of
corresponding exercise. Compared with a button-based HCI, FCI
based on fEMG also has some advantages. One of the advantages
is that the user can keep his eyes on the movement of the object to
be controlled without leaving it when using FCI. However, when
using HCI that is operated by hand based on buttons or joysticks,
the subjects often need to shift their attention to their hands first
when switching commands, and the sight of the subjects even
jumped back and forth between the hand and the object to be
controlled sometimes.

6. CONCLUSION

A complete FCI framework based on fEMG including offline
analysis and online control of mechanical equipments was
proposed. In the offline stage, 12models, eight ways of calculating
features, and three ways of feature input were studied and
compared in detail. The three EF features {RMS, MAC, VAR} and

the GBCmodel with an average offline recognition rate of 95.3%,
a maximum of 98.8%, and a minimum of 91.4% were selected
for use in online scenarios. Four well-designed sessions were
designed for online verification and performance comparison
of FCI. In the online phase, seven subjects were required to
use virtual buttons, fEMG with and without audio feedback to
control the gripper at the end of the robotic arm to complete the
drinking experiment. In contrast, the way with audio feedback
performed better than the way without audio feedback. There
is no order of magnitude difference in the time consumed by
virtual buttons and fEMG with audio feedback. The average gap
between the two is only 1.24 min, and the smallest difference is
only 0.37 min. The effectiveness and applicability of the proposed
FCI framework has been proven.
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