

Received 2 April 2015 Accepted 7 April 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; carbamoylmethylphosphane oxide (CMPO); α -bromoketone; isopropoxydiphenylphosphane; C—H···O hydrogen bonds; C—H··· π interactions

CCDC references: 1058397; 1012828 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structures of 1-(4-chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one and 1-(diphenylphosphoryl)-3,3-dimethylbutan-2-one

Erin G. Leach,^a Alyssa A. Kulesza,^a Richard J. Staples^b and Shannon M. Biros^a*

^aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and ^bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA. *Correspondence e-mail: biross@gvsu.edu

The title compounds, $C_{20}H_{16}ClO_2P$, (I), and $C_{18}H_{21}O_2P$, (II), were synthesized *via* an Arbuzov reaction between an α -bromoketone and isopropoxydiphenylphosphane. In the crystals of both compounds, molecules are linked *via* bifurcated C-H···(O,O) hydrogen bonds, forming chains propagating along [100] for (I) and along [010] for (II). The chains are linked *via* C-H··· π interactions, leading to the formation of sheets lying parallel to (010) for (I) and (001) for (II). The absolute structure of compound (II) was determined by resonant scattering [Flack parameter = 0.088 (14)].

1. Chemical context

The luminescent properties of lanthanide metals continue to gain attention from researchers interested in the coordination chemistry of *f*-block elements. Direct excitation of lanthanides is difficult due to the parity forbidden *f*–*f* transitions required and relatively low molar absorptivities, but fortunately this excitation can be sensitized with an appropriate organic ligand. The ligand acts as an antenna by harvesting the excitation energy and transferring this energy to the metal emitting state (Weissman, 1942). The resulting emission bands have peak widths less than 10 nm, with a color characteristic of each lanthanide ion. As such, lanthanide metals have found uses in both material and biological applications (de Bettencourt-Dias, 2007; Thibon & Pierre, 2009; Eliseeva & Bünzli, 2010).

Recently, the carbamoylmethylphosphane oxide (CMPO) group has been shown to be an effective ligand for the sensitization of lanthanide luminescence (Sharova *et al.*, 2012; Rosario-Amorin *et al.*, 2013; Sartain *et al.*, 2015). We undertook this work to investigate the role of the aryl carbonyl group on the ability of the CMPO moiety to act as an antenna in this process. Tuning the structure of these organic ligands may be tantamount to potential improvements in the absorption, transfer, and emission of energy by the resultant lanthanide–ligand complex. We report herein on the synthesis and crystal structure of two new CMPO ligands.

research communications

A view of the molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

2. Structural commentary

The molecular structures of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. While compound (I) crystallized in the orthorhombic centrosymmetric space group *Pbca*, compound (II) crystallized in the chiral monoclinic space group $P2_1$. In compound (I), the two phenyl rings (C9–C14

Figure 2

A view of the molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg1 and Cg3 are the centroids of rings C3-C8 and C15-C20, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C14-H14\cdots O2^{i}$	0.95	2.30	3.1899 (19)	156
$C20-H20\cdots O2^{i}$	0.95	2.50	3.4487 (19)	176
$C5-H5\cdots Cg3^{ii}$	0.95	3.00	3.8873 (17)	156
$C13-H13\cdots Cg1^{i}$	0.95	2.90	3.5373 (19)	126
•				

Symmetry codes: (i) $x - \frac{1}{2}$, $y, -z + \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 2.

Table 2Hydrogen-bond geometry (Å, °) for (II).

Cg1 is the centroid of ring C7–C12.

0	0			
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots O2^{i}$ $C12-H12\cdots O2^{i}$ $C17-H17\cdots Cg1^{ii}$	0.99 0.95 0.95	2.19 2.53 2.80	3.176 (5) 3.373 (5) 3.721 (5)	176 148 164

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) x - 1, y, z.

and C15–C20) are inclined to one another by 75.53 (8)°, and to the chlorobenzene ring (C3–C8) by 47.98 (8) and 62.16 (8)°, respectively. Atom P1 has a distorted tetrahedral geometry with the C–P=O bond angles varying from 112.02 (7) to 114.35 (7)°, while the C–P–C angles vary from 105.04 (7) to 106.60 (7)°. The carbonyl group (C1=O1) and the phosphoryl group (P1=O2) are *anti* to one another, most probably to minimize unfavourable dipole–dipole interactions. In compound (II), the two phenyl rings (C7–C12 and C13–C18) are inclined to one another by 86.4 (2)°. Atom P1 also has a distorted tetrahedral geometry with the C–P=O bond angles varying from 111.47 (16) to 115.06 (16)°, while the C–P–C bond angles vary from 101.84 (15) to 109.21 (16)°. Here the carbonyl group (C1=O1) and the phosphoryl group (P1==O2) are *syn* to one another.

3. Supramolecular features

In the crystal of (I), the phosphoryl groups are aligned with the *a* axis, and as the individual molecules stack in this direction they appear to rotate around the chlorine atom that lies close to the twofold screw axis, creating a pinwheel arrangement of molecules (Fig. 3). The molecules are linked *via* bifurcated C-H···(O,O) hydrogen bonds, forming chains propagating along [100]; see Fig. 3 and Table 1. The chains are linked *via* C-H··· π interactions (Table 1), forming sheets lying parallel to (010).

Compound (II) packs in a similar arrangement to (I) in the solid state, although subtle differences result in the formation of a chiral crystal from an achiral compound (Fig. 4). For compound (II), the phosphoryl groups are again aligned in one direction (along the *b* axis), but in this case, the P1–C2 bond in the center of the molecule lies about a twofold screw axis and acts as the pivot point for the pinwheel arrangement rather than the terminal chlorine atom as seen in the crystal of

Figure 3

The crystal packing diagram of compound (I) (drawn as blue and orange sticks) viewed along: (a) the a axis (the Cl atoms are shown as dark grey dots); (b) the c axis; (c) along the b axis, with the bifurcated hydrogen bonds shown as dashed lines (see Table 1 for details). H atoms have been omitted for clarity in parts (a) and (b) and only those involved in hydrogen bonding are shown in part (c).

compound (I). The absence of an inversion center or mirror plane results in a chiral twist to the packing within this crystal. Here, molecules are also linked *via* bifurcated $C-H\cdots(O,O)$ hydrogen bonds, forming chains propagating along [010] (see Table 2 and Fig. 4) and the chains are linked *via* $C-H\cdots\pi$ interactions (Table 2), forming sheets parallel to (001).

4. Database Survey

The Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) contains 11 structures with a β -ketodiphenylphosphoryl moiety. Three of these

structures are related to the title compounds, but have either an alkyl group bonded to the keto function or branching at the α -carbon, *viz*. *E*-(5*SR*,6*SR*)-3,6-dimethyl-5-diphenylphosphinoyl-7-triphenylmethoxyhept-2-en-4-one acetone solvate (SUGWOG; Doyle *et al.*, 1993), anti-(2*S*,4*S*)-2-(*N*,*N*-dibenzylamino)-4-diphenylphosphinoyl-1-phenylpentan-3-one monohydrate (RIZCEI; O'Brien *et al.*, 1997) and (4*R*,5*R*)-4,5dihydroxy-1,5-diphenyl-2-(diphenylphosphinoyl)pentan-1one) (FODBUW: Boesen *et al.*, 2005). The last compound (FODBUW) crystallizes in a chiral space group (*P*2₁2₁2₁), as does compound (II). The phenyl rings of the diphenylphosphinoyl group in each of these three compounds are

Figure 4

The crystal packing diagram of compound (II) (drawn as purple and pink sticks) viewed along: (a) the b axis (the center of the P1–C1 bond that coincides with the twofold screw axis is denoted with a grey dot); (b) the a axis; (c) along the b axis with the bifurcated hydrogen bonds shown as dashed lines (see Table 2 for details). H atoms have been omitted for clarity in parts (a) and (b) and only those involved in hydrogen bonding are shown in (c).

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{20}H_{16}ClO_2P$	$C_{18}H_{21}O_{2}P$
M_r	354.75	300.32
Crystal system, space group	Orthorhombic, Pbca	Monoclinic, $P2_1$
Temperature (K)	173	173
a, b, c (Å)	11.7380 (2), 14.4453 (3), 19.9515 (3)	8.3416 (2), 10.5161 (2), 10.2790 (2)
α, β, γ (°)	90, 90, 90	90, 112.212 (1), 90
$V(\dot{A}^3)$	3382.95 (10)	834.77 (3)
Ζ	8	2
Radiation type	Cu Kα	Cu Kα
$\mu (\text{mm}^{-1})$	2.97	1.47
Crystal size (mm)	$0.36 \times 0.17 \times 0.13$	$0.43 \times 0.14 \times 0.08$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker SMART APEX CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.599, 0.754	0.631, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17900, 3297, 2880	7043, 3006, 2774
R _{int}	0.033	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.089, 1.04	0.042, 0.118, 1.13
No. of reflections	3297	3006
No. of parameters	217	193
No. of restraints	0	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.39	0.49, -0.38
Absolute structure	-	Flack x determined using 1090 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	_	0.088 (14)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

inclined to one another by ca 67.97, 73.25 and 68.24°, respectively, similar to the arrangement in compound (I).

5. Synthesis and crystallization

The title compounds, (I) and (II), were prepared following slightly modified literature procedures (Arnaud-Neu *et al.*, 1996; Schuster *et al.*, 2009) by the Arbuzov reaction of isopropoxydiphenylphosphane (Shintou *et al.*, 2003) with 2-bromo-4'-chloroacetophenone for (I) and 1-bromo-pinacolone for (II). For both compounds, crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a solution of the compound in CDCl₃.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed in calculated positions and refined as riding atoms: C-H =0.95–0.99 Å with $U_{iso}(H)=1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

We thank Grand Valley State University (Weldon Fund, OURS, CSCE) for financial support of this work. We are grateful to the NSF for financial support (REU-1062944) and NMR instrumentation (300 MHz Jeol, CCLI-0087655), as well as Pfizer, Inc. for the generous donation of a Varian Inova 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds. We also thank Professor James Krikke and Professor William Winchester (GVSU) for help with instrumentation.

References

- Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175–1182.
- Bettencourt-Dias, A. de (2007). Curr. Org. Chem. 11, 1460-1480.
- Boesen, T., Fox, D. J., Galloway, W., Pedersen, D. S., Tyzack, C. R. & Warren, S. (2005). Org. Biomol. Chem. 3, 630–637.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.

- Bruker (2013). *APEX2, SAINT, XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Doyle, M. J., Hall, D., Raithby, P. R., Skelton, N. & Warren, S. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 517–523.
- Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- O'Brien, P., Powell, H. R., Raithby, P. R. & Warren, S. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1031–1040.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

- Rosario-Amorin, D., Ouizem, S., Dickie, D. A., Wen, Y., Paine, R. T., Gao, J., Grey, J. K., de Bettencourt-Dias, A., Hay, B. P. & Delmau, L. H. (2013). *Inorg. Chem.* 52, 3063–3083.
- Sartain, H. T., McGraw, S. N., Lawrence, C. L., Werner, E. J. & Biros, S. M. (2015). *Inorg. Chim. Acta*, 426, 126–135.
- Schuster, E. M., Nisnevich, G., Botoshansky, M. & Gandelman, M. (2009). Organometallics, 28, 5025–5031.
- Sharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M. & Odinets, I. L. (2012). *Cent. Eur.* J. Chem. 10, 146–156.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shintou, T., Kikuchi, W. & Mukaiyama, T. (2003). Bull. Chem. Soc. Jpn, **76**, 1645–1667.
- Thibon, A. & Pierre, V. C. (2009). Anal. Bioanal. Chem. 394, 107-120.
- Weissman, S. I. (1942). J. Chem. Phys. 10, 214-217.

supporting information

Acta Cryst. (2015). E71, 523-527 [doi:10.1107/S2056989015006994]

Crystal structures of 1-(4-chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one and 1-(diphenylphosphoryl)-3,3-dimethylbutan-2-one

Erin G. Leach, Alyssa A. Kulesza, Richard J. Staples and Shannon M. Biros

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2013); cell refinement: *APEX2* and *SAINT* (Bruker, 2013); data reduction: *SAINT* and *XPREP* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *CrystalMaker* (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009; Bourhis *et al.*, 2015).

(I) 1-(4-Chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one

Crystal data	
$C_{20}H_{16}ClO_{2}P$ $M_{r} = 354.75$ Orthorhombic, <i>Pbca</i> $a = 11.7380 (2) \text{ Å}$ $b = 14.4453 (3) \text{ Å}$ $c = 19.9515 (3) \text{ Å}$ $V = 3382.95 (10) \text{ Å}^{3}$ $Z = 8$ $F(000) = 1472$	$D_x = 1.393 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9053 reflections $\theta = 4.4-72.0^{\circ}$ $\mu = 2.97 \text{ mm}^{-1}$ T = 173 K Needle, colourless $0.36 \times 0.17 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2013) $T_{\min} = 0.599, T_{\max} = 0.754$ 17900 measured reflections	3297 independent reflections 2880 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 72.2^{\circ}, \theta_{min} = 4.4^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -24 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.04 3297 reflections 217 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 1.0258P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.39$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.80844 (4)	0.25495 (3)	0.98830 (2)	0.04355 (14)	
P1	0.47545 (3)	0.53879 (3)	0.75031 (2)	0.02092 (11)	
01	0.33462 (10)	0.47690 (9)	0.89963 (6)	0.0366 (3)	
O2	0.60062 (9)	0.52376 (8)	0.75506 (6)	0.0292 (3)	
C1	0.40409 (13)	0.43971 (11)	0.86325 (8)	0.0257 (3)	
C2	0.38970 (12)	0.44712 (10)	0.78795 (7)	0.0243 (3)	
H2A	0.3084	0.4587	0.7777	0.029*	
H2B	0.4109	0.3873	0.7673	0.029*	
C3	0.50328 (13)	0.38850 (10)	0.89190 (7)	0.0252 (3)	
C4	0.51562 (14)	0.38806 (11)	0.96164 (8)	0.0293 (3)	
H4	0.4594	0.4170	0.9887	0.035*	
C5	0.60803 (15)	0.34632 (12)	0.99183 (8)	0.0328 (4)	
H5	0.6163	0.3468	1.0392	0.039*	
C6	0.68856 (14)	0.30356 (11)	0.95145 (9)	0.0314 (4)	
C7	0.67686 (14)	0.30005 (12)	0.88247 (9)	0.0324 (4)	
H7	0.7316	0.2685	0.8559	0.039*	
C8	0.58415 (14)	0.34315 (11)	0.85264 (8)	0.0289 (3)	
H8	0.5758	0.3417	0.8053	0.035*	
C9	0.42652 (13)	0.54676 (10)	0.66510(7)	0.0236 (3)	
C10	0.50496 (14)	0.57592 (12)	0.61691 (8)	0.0319 (4)	
H10	0.5815	0.5886	0.6293	0.038*	
C11	0.47052 (16)	0.58623 (13)	0.55074 (9)	0.0391 (4)	
H11	0.5234	0.6071	0.5180	0.047*	
C12	0.35988 (17)	0.56633 (13)	0.53235 (8)	0.0384 (4)	
H12	0.3372	0.5726	0.4869	0.046*	
C13	0.28230 (15)	0.53745 (12)	0.57968 (9)	0.0347 (4)	
H13	0.2063	0.5238	0.5667	0.042*	
C14	0.31441 (13)	0.52817 (11)	0.64629 (8)	0.0283 (3)	
H14	0.2603	0.5092	0.6789	0.034*	
C15	0.43163 (12)	0.64440 (10)	0.79158 (7)	0.0230 (3)	
C16	0.51476 (14)	0.70315 (11)	0.81674 (8)	0.0290 (3)	
H16	0.5927	0.6859	0.8143	0.035*	
C17	0.48423 (15)	0.78728 (12)	0.84549 (8)	0.0338 (4)	
H17	0.5413	0.8276	0.8624	0.041*	
C18	0.37069 (16)	0.81216 (12)	0.84948 (8)	0.0345 (4)	
H18	0.3498	0.8701	0.8683	0.041*	
C19	0.28765 (15)	0.75256 (12)	0.82598 (9)	0.0345 (4)	
H19	0.2097	0.7692	0.8299	0.041*	
C20	0.31663 (13)	0.66892 (11)	0.79674 (8)	0.0286 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20	0.2591	0.	6286	0.7803	0.034*	
Atomic of	displacement par	ameters (Ų)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0357 (2)	0.0428 (3)	0.0521 (3)	0.00128 (18)	-0.01410 (19)	0.00816 (19)
P1	0.0163 (2)	0.0199 (2)	0.0265 (2)	-0.00157 (13)	-0.00033 (13)	-0.00008 (13)
01	0.0337 (6)	0.0397 (7)	0.0364 (6)	0.0080 (5)	0.0075 (5)	-0.0014 (5)
O2	0.0181 (5)	0.0310 (6)	0.0386 (6)	-0.0002 (5)	-0.0015 (4)	0.0010 (5)
C1	0.0251 (7)	0.0207 (7)	0.0311 (8)	-0.0041 (6)	0.0033 (6)	-0.0002 (6)
C2	0.0215 (7)	0.0207 (7)	0.0307 (8)	-0.0029 (6)	-0.0001 (6)	0.0011 (6)
C3	0.0264 (7)	0.0203 (7)	0.0289 (7)	-0.0046 (6)	0.0017 (6)	0.0012 (6)
C4	0.0330 (8)	0.0259 (8)	0.0292 (8)	-0.0031 (7)	0.0059 (6)	0.0006 (6)
C5	0.0416 (9)	0.0299 (9)	0.0269 (8)	-0.0052 (7)	-0.0015 (7)	0.0036 (6)
C6	0.0291 (8)	0.0255 (8)	0.0395 (9)	-0.0037 (7)	-0.0057 (7)	0.0052 (7)
C7	0.0303 (8)	0.0305 (9)	0.0365 (9)	0.0029 (7)	0.0014 (7)	-0.0023 (7)
C8	0.0314 (8)	0.0279 (8)	0.0275 (7)	0.0008 (6)	-0.0002 (6)	-0.0012 (6)
C9	0.0231 (7)	0.0207 (7)	0.0269 (7)	-0.0003 (6)	0.0003 (6)	-0.0011 (5)
C10	0.0281 (8)	0.0333 (9)	0.0342 (8)	-0.0055 (7)	0.0053 (7)	-0.0028 (7)
C11	0.0454 (10)	0.0409 (10)	0.0310 (8)	-0.0048 (8)	0.0106 (7)	0.0015 (7)
C12	0.0508 (11)	0.0371 (10)	0.0273 (8)	0.0020 (8)	-0.0037 (7)	0.0012 (7)
C13	0.0328 (9)	0.0356 (10)	0.0357 (9)	-0.0013 (7)	-0.0088(7)	-0.0015 (7)
C14	0.0241 (8)	0.0299 (8)	0.0308 (8)	-0.0027 (6)	-0.0008 (6)	0.0011 (6)
C15	0.0242 (7)	0.0207 (7)	0.0240 (7)	-0.0016 (6)	0.0001 (6)	0.0007 (5)
C16	0.0277 (8)	0.0277 (8)	0.0315 (8)	-0.0037 (6)	-0.0027 (6)	-0.0001 (6)
C17	0.0440 (9)	0.0269 (9)	0.0307 (8)	-0.0075 (7)	-0.0060 (7)	-0.0030 (6)
C18	0.0511 (10)	0.0234 (8)	0.0291 (8)	0.0056 (7)	-0.0006 (7)	-0.0021 (6)
C19	0.0341 (9)	0.0302 (9)	0.0393 (9)	0.0088 (7)	0.0007 (7)	-0.0002 (7)
C20	0.0258 (7)	0.0256 (8)	0.0345 (8)	0.0008 (6)	-0.0026 (6)	0.0008 (6)

Geometric parameters (Å, °)

Cl1—C6	1.7360 (16)	C9—C14	1.395 (2)
P1—O2	1.4882 (11)	C10—H10	0.9500
P1—C2	1.8251 (15)	C10—C11	1.389 (2)
P1—C9	1.7982 (15)	C11—H11	0.9500
P1—C15	1.8083 (15)	C11—C12	1.380 (3)
01—C1	1.2168 (19)	C12—H12	0.9500
C1—C2	1.515 (2)	C12—C13	1.377 (3)
C1—C3	1.493 (2)	С13—Н13	0.9500
C2—H2A	0.9900	C13—C14	1.388 (2)
C2—H2B	0.9900	C14—H14	0.9500
C3—C4	1.399 (2)	C15—C16	1.387 (2)
C3—C8	1.394 (2)	C15—C20	1.399 (2)
C4—H4	0.9500	C16—H16	0.9500
C4—C5	1.380 (2)	C16—C17	1.391 (2)
С5—Н5	0.9500	C17—H17	0.9500
C5—C6	1.387 (2)	C17—C18	1.383 (3)

supporting information

C6—C7	1.384 (2)	C18—H18	0.9500
С7—Н7	0.9500	C18—C19	1.382 (3)
C7—C8	1.388 (2)	С19—Н19	0.9500
C8—H8	0.9500	C19—C20	1.384 (2)
C9—C10	1.396 (2)	C20—H20	0.9500
O2—P1—C2	114.35 (7)	C14—C9—C10	119.68 (14)
O2—P1—C9	112.64 (7)	С9—С10—Н10	120.2
O2—P1—C15	112.02 (7)	C11—C10—C9	119.67 (16)
C9—P1—C2	105.04 (7)	C11—C10—H10	120.2
C9—P1—C15	106.60 (7)	C10-C11-H11	119.9
C15—P1—C2	105.54 (7)	C12—C11—C10	120.30 (16)
O1—C1—C2	119.05 (14)	C12—C11—H11	119.9
O1—C1—C3	120.86 (14)	C11—C12—H12	119.9
C3—C1—C2	120.09 (13)	C13—C12—C11	120.22 (16)
P1—C2—H2A	108.9	C13—C12—H12	119.9
P1—C2—H2B	108.9	С12—С13—Н13	119.8
C1—C2—P1	113.43 (10)	C12—C13—C14	120.44 (16)
C1—C2—H2A	108.9	C14—C13—H13	119.8
C1—C2—H2B	108.9	C9—C14—H14	120.2
H2A-C2-H2B	107.7	C13—C14—C9	119.69 (15)
C4—C3—C1	117.63 (14)	C13—C14—H14	120.2
C8-C3-C1	123 27 (14)	C16—C15—P1	118 74 (12)
C8-C3-C4	119 09 (15)	C16-C15-C20	119.81 (15)
C3—C4—H4	119.4	C_{20} C_{15} P_{1}	121.42(12)
$C_5 - C_4 - C_3$	121 18 (15)	C_{15} C_{16} H_{16}	119.9
$C_5 - C_4 - H_4$	119.4	C_{15} C_{16} C_{17}	120.17(15)
C4—C5—H5	120.8	C17 - C16 - H16	119.9
C4 - C5 - C6	118 47 (15)	$C_{16} - C_{17} - H_{17}$	120.0
C6-C5-H5	120.8	C18 - C17 - C16	119.95 (15)
C_{5} C_{6} C_{11}	110 11 (13)	$C_{18} = C_{17} = C_{10}$	120.0
C_{7} C_{6} C_{11}	119.11(13) 110.12(13)	$C_{10} = C_{17} = H_{17}$	120.0
C7_C6_C5	119.12(15) 121.75(15)	$C_{10} = C_{18} = C_{17}$	120.1
$C_{1} = C_{0} = C_{3}$	121.75 (15)	$C_{10} = C_{10} = C_{17}$	119.00 (10)
$C_{0} = C_{1} = C_{1}$	120.4	$C_{19} = C_{10} = H_{10}$	120.1
$C_{0} - C_{7} - C_{8}$	119.20 (13)	С18 С10 С20	119.0
$C_{0} = C_{0} = H_{0}$	120.4	$C_{10} = C_{10} = C_{20}$	120.89 (10)
$C_3 = C_8 = C_2$	119.9	C15 C20 H20	119.0
$C_{}C_{-$	120.25 (15)	C13 - C20 - H20	120.4
$C_{1} = C_{8} = H_{8}$	119.9	C19 - C20 - C15	119.27 (15)
C10-C9-P1	117.37 (12)	C19—C20—H20	120.4
C14—C9—P1	122.92 (12)		
Cl1—C6—C7—C8	-176 61 (13)	C4—C5—C6—C11	177 30 (13)
P1-C9-C10-C11	-177.86(13)	C4-C5-C6-C7	-15(3)
P1C9C14C13	178 80 (13)	C_{5} C_{6} C_{7} C_{8}	2 2 (3)
P1C15C16C17	176 49 (12)	C6-C7-C8-C3	-0.7(3)
P1C15C20C19	-176.96(12)	$C_{8} - C_{3} - C_{4} - C_{5}$	22(2)
11 C13 - C20 - C13	170.70(12) 07.28(15)	$C_0 P_1 C_2 C_1$	(2) (2) (11)
01 - 01 - 02 - 11	1.20 (13)	07-11-02-01	1/0.37 (11)

O1—C1—C3—C4	-2.5 (2)	C9—P1—C15—C16	-117.67 (13)
O1—C1—C3—C8	178.73 (16)	C9—P1—C15—C20	60.42 (14)
O2—P1—C2—C1	65.44 (12)	C9-C10-C11-C12	-1.1 (3)
O2—P1—C9—C10	-25.46 (15)	C10-C9-C14-C13	1.0 (2)
O2—P1—C9—C14	156.68 (13)	C10-C11-C12-C13	1.0 (3)
O2—P1—C15—C16	5.96 (14)	C11—C12—C13—C14	0.1 (3)
O2—P1—C15—C20	-175.96 (12)	C12—C13—C14—C9	-1.1 (3)
C1—C3—C4—C5	-176.70 (15)	C14—C9—C10—C11	0.1 (2)
C1—C3—C8—C7	177.34 (15)	C15—P1—C2—C1	-58.14 (12)
C2—P1—C9—C10	-150.53 (13)	C15—P1—C9—C10	97.79 (13)
C2—P1—C9—C14	31.61 (15)	C15—P1—C9—C14	-80.08 (14)
C2—P1—C15—C16	130.99 (12)	C15-C16-C17-C18	0.5 (2)
C2—P1—C15—C20	-50.92 (14)	C16—C15—C20—C19	1.1 (2)
C2-C1-C3-C4	176.67 (14)	C16—C17—C18—C19	1.2 (3)
C2-C1-C3-C8	-2.1 (2)	C17—C18—C19—C20	-1.7 (3)
C3—C1—C2—P1	-81.86 (15)	C18—C19—C20—C15	0.6 (3)
C3—C4—C5—C6	-0.7 (2)	C20-C15-C16-C17	-1.6 (2)
C4—C3—C8—C7	-1.4 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of rings C3–C8 and C15–C20, respectively.

D—H···A	D—H	Н…А	D····A	D—H···A
C14—H14…O2 ⁱ	0.95	2.30	3.1899 (19)	156
C20—H20····O2 ⁱ	0.95	2.50	3.4487 (19)	176
С5—Н5…Сg3іі	0.95	3.00	3.8873 (17)	156
C13—H13···Cg1 ⁱ	0.95	2.90	3.5373 (19)	126

Symmetry codes: (i) x-1/2, y, -z+3/2; (ii) -x+1, -y+1, -z+2.

(II) 1-(Diphenylphosphoryl)-3,3-dimethylbutan-2-one

Crystal	data
---------	------

$C_{18}H_{21}O_{2}P$ $M_{r} = 300.32$ Monoclinic, $P2_{1}$ $a = 8.3416 (2) \text{ Å}$ $b = 10.5161 (2) \text{ Å}$ $c = 10.2790 (2) \text{ Å}$ $\beta = 112.212 (1)^{\circ}$ $V = 834 77 (3) \text{ Å}^{3}$	F(000) = 320 $D_x = 1.195 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 5567 reflections $\theta = 4.7-72.0^{\circ}$ $\mu = 1.47 \text{ mm}^{-1}$ T = 173 K Needle, colourless
Z=2	$0.43 \times 0.14 \times 0.08 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm ⁻¹ ω and φ scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2013) $T_{min} = 0.631$, $T_{max} = 0.754$ 7043 measured reflections 3006 independent reflections 2774 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$

$\theta_{\rm max} = 72.0^{\circ}, \ \theta_{\rm min} = 4.7^{\circ}$	$k = -12 \rightarrow 12$
$h = -9 \rightarrow 10$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0722P)^2]$
<i>S</i> = 1.13	where $P = (F_o^2 + 2F_c^2)/3$
3006 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
193 parameters	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack x determined using
direct methods	1090 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i>
	<i>al.</i> , 2013)
	Absolute structure parameter: 0.088 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.46337 (9)	0.13395 (7)	0.54974 (7)	0.0247 (2)
O1	0.2783 (3)	0.1230 (4)	0.2325 (3)	0.0450 (7)
O2	0.4313 (3)	0.2739 (3)	0.5441 (3)	0.0352 (6)
C1	0.4309 (5)	0.1015 (3)	0.2672 (3)	0.0328 (8)
C2	0.5430 (4)	0.0741 (4)	0.4198 (3)	0.0286 (7)
H2A	0.6592	0.1108	0.4399	0.034*
H2B	0.5572	-0.0192	0.4317	0.034*
C3	0.5199 (5)	0.0970 (4)	0.1613 (4)	0.0403 (9)
C4	0.3850 (8)	0.0965 (11)	0.0140 (5)	0.105 (4)
H4A	0.3118	0.0210	0.0006	0.157*
H4B	0.4422	0.0952	-0.0536	0.157*
H4C	0.3133	0.1731	-0.0008	0.157*
C5	0.6294 (11)	0.2154 (7)	0.1830 (7)	0.090 (3)
H5A	0.5596	0.2900	0.1842	0.135*
H5B	0.6712	0.2237	0.1062	0.135*
H5C	0.7284	0.2094	0.2726	0.135*
C6	0.6318 (9)	-0.0220 (7)	0.1848 (6)	0.0713 (17)
H6A	0.7288	-0.0159	0.2757	0.107*
H6B	0.6765	-0.0295	0.1096	0.107*
H6C	0.5619	-0.0970	0.1842	0.107*
C7	0.6358 (4)	0.0881 (4)	0.7129 (3)	0.0280 (7)
C8	0.7278 (5)	0.1814 (4)	0.8067 (4)	0.0400 (9)
H8	0.6982	0.2684	0.7865	0.048*
C9	0.8634 (5)	0.1477 (6)	0.9304 (4)	0.0518 (12)
Н9	0.9264	0.2117	0.9946	0.062*

C10	0.9069 (5)	0.0207 (5)	0.9603 (4)	0.0485 (11)	
H10	0.9994	-0.0023	1.0449	0.058*	
C11	0.8157 (5)	-0.0721 (5)	0.8669 (4)	0.0459 (10)	
H11	0.8455	-0.1590	0.8873	0.055*	
C12	0.6802 (4)	-0.0389 (4)	0.7431 (4)	0.0341 (8)	
H12	0.6178	-0.1031	0.6790	0.041*	
C13	0.2784 (4)	0.0408 (4)	0.5431 (3)	0.0270 (6)	
C14	0.2209 (5)	-0.0666 (4)	0.4600 (4)	0.0399 (9)	
H14	0.2786	-0.0945	0.4012	0.048*	
C15	0.0789 (6)	-0.1332 (5)	0.4632 (5)	0.0486 (11)	
H15	0.0387	-0.2059	0.4051	0.058*	
C16	-0.0046 (5)	-0.0952 (5)	0.5495 (5)	0.0462 (10)	
H16	-0.1014	-0.1416	0.5513	0.055*	
C17	0.0532 (5)	0.0105 (4)	0.6328 (4)	0.0422 (9)	
H17	-0.0035	0.0366	0.6930	0.051*	
C18	0.1936 (5)	0.0793 (4)	0.6298 (4)	0.0337 (7)	
H18	0.2320	0.1528	0.6870	0.040*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0238 (4)	0.0270 (4)	0.0251 (3)	-0.0011 (3)	0.0113 (3)	0.0003 (3)
O1	0.0312 (12)	0.068 (2)	0.0324 (11)	0.0044 (14)	0.0085 (10)	0.0033 (14)
O2	0.0398 (13)	0.0270 (14)	0.0428 (14)	0.0012 (10)	0.0200 (11)	0.0020 (10)
C1	0.0345 (17)	0.037 (2)	0.0268 (15)	-0.0019 (13)	0.0119 (13)	-0.0008 (13)
C2	0.0276 (15)	0.0364 (18)	0.0257 (15)	0.0004 (13)	0.0143 (12)	-0.0003 (13)
C3	0.043 (2)	0.054 (3)	0.0278 (16)	0.0021 (17)	0.0182 (16)	0.0016 (15)
C4	0.068 (3)	0.218 (12)	0.027 (2)	0.022 (5)	0.018 (2)	-0.004 (4)
C5	0.138 (6)	0.084 (5)	0.094 (5)	-0.045 (5)	0.096 (5)	-0.025 (4)
C6	0.092 (4)	0.080 (4)	0.067 (3)	0.029 (3)	0.059 (3)	0.011 (3)
C7	0.0222 (13)	0.0427 (18)	0.0212 (14)	-0.0043 (13)	0.0106 (12)	-0.0009 (12)
C8	0.0411 (19)	0.047 (2)	0.0348 (19)	-0.0138 (17)	0.0173 (16)	-0.0079 (15)
C9	0.0411 (19)	0.079 (3)	0.0333 (17)	-0.027 (2)	0.0120 (15)	-0.016 (2)
C10	0.0291 (17)	0.083 (3)	0.0281 (17)	-0.006(2)	0.0045 (14)	0.0044 (19)
C11	0.0315 (18)	0.063 (3)	0.038 (2)	0.0070 (18)	0.0082 (16)	0.0108 (19)
C12	0.0267 (16)	0.043 (2)	0.0292 (17)	-0.0013 (14)	0.0066 (14)	0.0005 (14)
C13	0.0200 (13)	0.0328 (16)	0.0276 (15)	0.0006 (12)	0.0083 (12)	0.0047 (13)
C14	0.0336 (18)	0.042 (2)	0.047 (2)	-0.0061 (16)	0.0181 (17)	-0.0107 (16)
C15	0.0392 (19)	0.041 (3)	0.065 (3)	-0.012 (2)	0.019 (2)	-0.0121 (19)
C16	0.0262 (16)	0.052 (2)	0.062 (3)	-0.0053 (18)	0.0184 (18)	0.011 (2)
C17	0.0314 (17)	0.057 (3)	0.044 (2)	0.0000 (17)	0.0216 (16)	0.0036 (18)
C18	0.0292 (16)	0.0431 (19)	0.0306 (16)	0.0007 (15)	0.0133 (14)	-0.0011 (14)

Geometric parameters (Å, °)

P1—O2	1.493 (3)	C7—C12	1.389 (6)
P1—C2	1.814 (3)	С8—Н8	0.9500
P1—C7	1.814 (3)	C8—C9	1.391 (6)

P1—C13	1.807 (3)	С9—Н9	0.9500
01—C1	1.207 (5)	C9—C10	1.387 (8)
C1—C2	1.520 (5)	C10—H10	0.9500
C1—C3	1.533 (5)	C10—C11	1.378 (7)
C2—H2A	0.9900	C11—H11	0.9500
C2—H2B	0.9900	C11—C12	1.390 (5)
C3—C4	1.507 (6)	С12—Н12	0.9500
C3—C5	1.509 (7)	C13—C14	1.388 (6)
C3—C6	1 525 (7)	C13—C18	1 391 (5)
C4—H4A	0.9800	C14—H14	0.9500
C4—H4B	0.9800	C14-C15	1 387 (6)
C4—H4C	0.9800	C15—H15	0.9500
C5—H5A	0.9800	C15-C16	1.378(7)
C5—H5B	0.9800	C16—H16	0.9500
C5—H5C	0.9800	C16-C17	1.375(7)
C6—H6A	0.9800	C17—H17	0.9500
C6 H6B	0.9800	C17 = C18	1.387(5)
C6—H6C	0.9800	C18_H18	0.9500
C7 $C8$	1 387 (5)		0.9500
07-08	1.567 (5)		
O2—P1—C2	115.06 (16)	H6B—C6—H6C	109.5
O2—P1—C7	111.47 (16)	C8—C7—P1	119.5 (3)
02 - P1 - C13	113.25 (15)	C8—C7—C12	119.6 (3)
C7—P1—C2	101.84 (15)	C12—C7—P1	120.9 (3)
$C_{13} = P_{1} = C_{2}$	109.21 (16)	C7—C8—H8	120.0
C13—P1—C7	104.98 (16)	C7—C8—C9	120.0 (4)
01	120.6 (3)	C9—C8—H8	120.0
01	122.4 (3)	С8—С9—Н9	119.9
C2-C1-C3	117.0 (3)	C10—C9—C8	120.1 (4)
P1—C2—H2A	108.3	C10—C9—H9	119.9
P1—C2—H2B	108.3	C9-C10-H10	120.1
C1C2P1	116.1 (2)	C11—C10—C9	119.9 (4)
C1-C2-H2A	108.3	C11—C10—H10	120.1
C1—C2—H2B	108.3	C10—C11—H11	119.9
$H_2A - C_2 - H_2B$	107.4	C10-C11-C12	120.2 (4)
C4-C3-C1	109.6 (4)	C12—C11—H11	119.9
C4—C3—C5	109.4 (6)	C7—C12—C11	120.1 (4)
C4-C3-C6	109.7 (5)	C7-C12-H12	1199
$C_{5}-C_{3}-C_{1}$	107.3(3)	$C_{11} - C_{12} - H_{12}$	119.9
C_{5} C_{3} C_{6}	110 7 (5)	C14 - C13 - P1	123.8 (3)
C6-C3-C1	110.1 (4)	C14-C13-C18	1194(3)
$C_3 - C_4 - H_4 A$	109 5	C18 - C13 - P1	1168(3)
C3-C4-H4B	109.5	C13—C14—H14	120.1
C3 - C4 - H4C	109.5	C15-C14-C13	119.7 (4)
H4A—C4—H4B	109.5	C15-C14-H14	120.1
H4A - C4 - H4C	109.5	C14—C15—H15	119.6
H4B - C4 - H4C	109.5	C16-C15-C14	1208(4)
C3—C5—H5A	109.5	C16—C15—H15	119.6

С3—С5—Н5В	109.5	C15—C16—H16	120.3
С3—С5—Н5С	109.5	C17—C16—C15	119.5 (4)
H5A—C5—H5B	109.5	C17—C16—H16	120.3
H5A—C5—H5C	109.5	C16—C17—H17	119.7
H5B—C5—H5C	109.5	C16—C17—C18	120.6 (4)
С3—С6—Н6А	109.5	C18—C17—H17	119.7
С3—С6—Н6В	109.5	C13—C18—H18	120.0
С3—С6—Н6С	109.5	C17—C18—C13	120.0 (4)
H6A—C6—H6B	109.5	C17—C18—H18	120.0
H6A—C6—H6C	109.5		
P1C7C8C9	-178.3 (3)	C3—C1—C2—P1	158.4 (3)
P1-C7-C12-C11	178.3 (3)	C7—P1—C2—C1	-177.5 (3)
P1-C13-C14-C15	179.1 (3)	C7—P1—C13—C14	-102.8 (3)
P1-C13-C18-C17	-178.4 (3)	C7—P1—C13—C18	75.6 (3)
O1-C1-C2-P1	-23.1 (5)	C7—C8—C9—C10	0.0 (6)
O1—C1—C3—C4	-11.3 (7)	C8—C7—C12—C11	0.3 (5)
O1—C1—C3—C5	107.4 (6)	C8—C9—C10—C11	0.1 (6)
O1—C1—C3—C6	-132.0 (5)	C9-C10-C11-C12	-0.1 (6)
O2—P1—C2—C1	-56.8 (3)	C10-C11-C12-C7	-0.1 (6)
O2—P1—C7—C8	-5.5 (3)	C12—C7—C8—C9	-0.2 (5)
O2—P1—C7—C12	176.4 (3)	C13—P1—C2—C1	71.8 (3)
O2—P1—C13—C14	135.4 (3)	C13—P1—C7—C8	-128.5 (3)
O2—P1—C13—C18	-46.2 (3)	C13—P1—C7—C12	53.5 (3)
C2—P1—C7—C8	117.7 (3)	C13—C14—C15—C16	-1.0 (7)
C2—P1—C7—C12	-60.4 (3)	C14—C13—C18—C17	0.0 (6)
C2—P1—C13—C14	5.8 (4)	C14—C15—C16—C17	0.3 (7)
C2—P1—C13—C18	-175.8 (3)	C15—C16—C17—C18	0.5 (7)
C2—C1—C3—C4	167.2 (5)	C16—C17—C18—C13	-0.7 (6)
C2—C1—C3—C5	-74.1 (5)	C18—C13—C14—C15	0.8 (6)
C2—C1—C3—C6	46.5 (5)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C7–C12.

D—H···A	<i>D</i> —Н	H···A	D···· A	<i>D</i> —H··· <i>A</i>
C2— $H2B$ ···O2 ⁱ	0.99	2.19	3.176 (5)	176
C12—H12···O2 ⁱ	0.95	2.53	3.373 (5)	148
С17—Н17…Сд1іі	0.95	2.80	3.721 (5)	164

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) *x*-1, *y*, *z*.