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A B S T R A C T   

The high levels of mercury toxicity in humans make it necessary to monitor mercury levels in 
food, pharmaceuticals, and the environment to minimize human exposure. Between June 2020 
and October 2021, researchers collected 240 fish samples from different locations along the 
Yemeni coast to evaluate mercury contamination. The Direct Mercury Analyzer was used to 
determine the concentration of mercury in each sample. To ensure method accuracy, a series of 
triplicate mercury concentration analyses were conducted. The samples ranged from 2 to 100 ng 
to determine linearity and repeatability i.e., within-day variation. The results showed a high level 
of precision, with a correlation coefficient of 0.9990 and a repeatability of 1.34 %–5.62 % RSD 
range. The method was also highly accurate, as the mercury recovery results from the contami-
nated fish samples ranged from 96.77 % to 105.14 %. The limits of detection and quantitation of 
mercury were 0.0015 ppm and 0.0049 ppm, respectively. This allowed the method to detect trace 
amounts of mercury in fish meat. Mercury concentration in the 240 fish samples did not exceed 
the FDA, but below the 0.5 ppm specified limit of YSMO.   

1. Introduction 

Mercury is a global contaminant and a very hazardous element due to its accumulative and persistent nature in the environment 
and living organisms [1,2]. Mercury, on the other hand, is of great interest since it is widely utilized in industry for the manufacturing 
of chemicals, insecticides, electrical apparatus, paints, amalgam tooth fillings, and so on [3]. As a result, mercury concentrations vary 
across the environment, including air, water, soil, and living organisms [4]. The relative toxicity of mercury is determined by its 
chemical form, and for methylmercury being one of the most poisonous compounds causing irreversible damage to the nervous system 
[5,6]. 

Human exposure to mono methylmercury (MMHg), the predominant form of mercury in fish due to biomagnification in the marine 
food chain, is primarily through fish intake [6,7]. The presence of mercury in fish can be especially dangerous for pregnant women, 
nursing mothers, and small children [4]. Several investigations have shown that organic mercury can enter the placenta and damage 
the fetus by disrupting the blood-brain barrier [8]. 

Mercury exposure causes a variety of symptoms, including impaired vision and hearing, dizziness, vomiting, headache, muscle 
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weakness, allergies, a weakened immune, brain damage, and death [9]. Mercury and heavy metal bioaccumulation in fish muscle is 
determined by various characteristics such as size, age, sex, lipid content, and the depth of the fish habitat, making its measurement 
problematic in environmental studies [10–12]. 

Mercury was determined using various analytical techniques such as UV vis spectrometry [13], inductively coupled plasma mass 
spectrometry (ICP-MS) [14,15], inductively coupled plasma atomic emission spectrometry (ICP-AES) [4,16], neutron activation 
analysis (NAA) [17], and cold vapor atomic absorption spectrometry (CVAAS), with the latter being the most commonly used for 
measuring mercury in fish tissue [18]. Some of these methods are either too expensive such as ICP-MS or require tedious sample 
pretreatment to detect trace levels of Hg in biological matrices such as GC and CV- AAS. 

Literature studies revealed data about mercury in fish samples. In Persian Gluf, mercury in parrotfish (Scarus ghobban) was 
0.07254 ± 0.0020 ppm using FAAS [19]. Determination of mercury in pompano (Trachinotus carolinus) and palometa (Trachinotus 
goodei) samples in Brazil [20]. In Vietnam, mercury in Whipfin silver biddy (Gerres filamentosus Cuv.) and Flathead grey mullet 
(Mugil cephalus L.) was 0.097 ppm using cold vapor atomic absorption spectrometry [21]. 

In California, mercury of 0.14 ppm in dolphinfish (Coryphaena hippurus) was observed [22]. In California (2020), mercury 
concentration in Haemulopsis elongates and Pomadasys macracanthu samples were 3.748 ppm and 0.574 ppm using CV-AAS [23]. 
Maryam Ravanbakhsh et al., 2020 respectively found mercury of 3.15 ± 0.474 and 0.486 ± 0.116 ppm in Johnius Belangerii (C) and 
Cynoglossus Arel in Persian Gluf [24]. In North Sulawesi, mercury in Yellowfin tuna (Thunnus albacares) and Indian mackerel 
(Rastrelliger kanagurta) were 0.6754 ppm and 0.73784 ppm using MA-3000 [25]. In Arabian Gulf, Nuray Alizada et al., 2020, found 
Hg of 0.04–0.18 ppm in Indian anchovy (Stolephorus indicus) using Varian SpectrAA 220 FS [26]. In California, mercury in striped 
marlin Kajikia audax and blue marlin Makaira nigricans samples was measured [27]. In France,(Antoine Minet et al., 2022), studied 
mercury in cuttlefish Sepia officinalis [28]. In Thailand, DMA was used to determine mercury in Barracuda (Sphyraena putnamae) and 
found to be 0.00958 -0.314 ppm [29]. 

Direct mercury analyzers, such as the DMA-80, have recently acquired favor for total Hg measurement because of their ability to 
successfully analyze mercury in both liquid and solid matrices, high sample throughput, and comparatively low detection limits and 
cost [30–32]. The DMA-80 analysis of Hg involves thermal decomposition followed by gold amalgamation and detection using atomic 
absorption spectrometry. Moreover, DMA-80 does not require a sample preparation step prior to mercury determination, which saves 
time and money. 

The Republic of Yemen, which occupies the southeastern to southernmost tip of the Arabian Peninsula, has a coastline that 
stretches over 2500 km. These extensive coastal waters are bordered by two bodies of water with vastly distinct marine ecosystems: the 
Red Sea and the Gulf of Aden. The Red Sea is a mild and salty body of water, whereas the Gulf of Aden is cooler and less salty. This 
variation in environmental conditions enables a great diversity of fish species to flourish, with a recent report indicating that over 733 
species of fish inhabit just the eastern part of the Gulf of Aden (the Socotra Archipelago) [33]. 

A survey of the scientific literature revealed a scarcity of studies on the mercury contamination of Yemeni fish species. The data in 
these publications is limited in terms of fish species analyzed and fishing sites covered, prompting more comprehensive research [7]. 
Thus, the current study’s goal is to conduct a more comprehensive study to determine total mercury concentrations in Yemeni fish, in 
which a large number of fishing sites on both the Red Sea and the Gulf of Aden are surveyed and more fish species are analyzed, to 
provide a preliminary database of mercury pollution in Yemeni fish. 

2. Materials and methods 

2.1. Reagents and materials 

The mercury standard solution 1000 mg/L in 10 % HNO3 was purchased from PerkinElmer, USA. Hydrochloric acid 37 % w/w 
(extra pure reagent grade, ACS) was from Aldrich, Spain. Deionized water was produced in the lab with a resistivity of 18.2 μΩ.cm 
using Direct Q3-Millipore - USA. 

2.2. Instrument 

The Dual-cell Direct Mercury Analyzer DMA-80 (Milestone, Waltham, Sorisole, Italy) fish sample analyzer, which is based on the 
theory of atomic absorption spectrometry, was used to determine the total mercury amounts in fish samples. A silicon UV photode-
tector and a dual spectrophotometer cell are included with the DMA-80. The combustion and carrier gas were produced using a high- 
purity air compressor located in Milestone, Italy. To prevent contamination, nickel sample boats were pre-cleaned by rinsing them with 
deionized water, dried, and then heated in a furnace for 2 min to 650 ◦C. Following US-EPA Method 7473 [34], the DMA-80 analytical 
technique and settings were used. 

2.3. Preparation of mercury standard solutions 

From the stock solution of 1000 ppm mercury, intermediate standard solutions of 1 and 10 ppm were made. The intermediate 
solutions were diluted appropriately to create working standard solutions of 0.01–0.2 ppm. A 2 % HCl solution was used to stabilize 
each mercury standard solution. 
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2.4. Sampling sites, Sample collection and preparation 

The samples were taken from Yemen’s different fishing ports on the Arabian Sea and Red Sea coasts. The study protocol was 
approved by the animal ethics committee of Biological Science, Sana’a University (ethical code: BAHSS102). Sampling locations are 
given in Fig. 1. Every sample was collected between June 2020 and October 2021. The present investigation adhered to the guidelines 
of sampling, sample preservation, and transportation established by the Minamata Convention and other reputable organizations, 
including the WHO and EPA-US [35]. The time, place, and species of the fish samples collections were noted down. Additionally, the 
length of each fish was measured, and the fish samples were then placed in polyethylene bags and kept in a deep freezer for the use. The 
fish samples were sent straight to the lab and washed with tap water to ensure cleanliness. 

Fish tissue samples were chopped into tiny bits using a knife, and then pulverized to create a smooth, uniform paste. For analysis, 
0.2 g was weighed straight into the nickel boat using an analytical balance. The sample was dried at 200 ◦C for 90 s inside the DMA-80. 
After that, the temperature in the furnace was raised to 650 ◦C and left for 120 s, allowing the sample to break down. The mercury 
vapors were then delivered to the catalyst tube, where all forms of mercury in the sample were converted to elemental mercury. The 
elemental mercury was then conveyed as vapor to the gold amalgamator, where it was quantitatively trapped, by the carrier gas at a 
flow rate of 120 mL min− 1. The atomic absorption spectrophotometer was used to detect the absorption intensity at a wavelength of 
253.65 nm after a mercury particle was released into it. Finally, the DMA-80 was flushed through, and the mean of three consecutive 
readings of an empty sample boat was taken prior to each batch of sample analysis to ensure boat cleanness [34]. The Easy Doc 
program integrated the resulting mercury peak height (Milestone Inc., Bergamo, Italy), and the total mercury content was reported in 
ppm. 

The 240 fish samples examined in this project belonged to the following 31 fish families: Gerreidae, Carangidae, Mugilidae, Por-
tunidae, Lutijanidae, Polyodontidae, Coryphaenidae, Sciaenidae, Hemiramphidae, Clupeidae, Scombridae, Synodontidae, Engraulidae, 
Penaeidae, Haemulidae, Sarranidae, Salmonidae, Lethrinidae, Archarhinidae, Sphyraenidae, Poeciitidae, Ariidae, Morontidae, Serraniidae, 
Rachycentridae, Noctuidae, Scaridae, Tetraodonidae, Sepidae, Istiophoridae, and Xiphidae. As shown in Table 4. 

2.5. Spiked samples preparation 

To verify the accuracy of our analysis method, 0.2 g of homogenized fish sample muscle was placed into a sample boat and spiked 
with 10, 25, 50, 100, 250, and 500 μL of a 0.1 ppm standard solution of mercury followed by DMA analysis. The difference between the 
spiked and unspiked concentrations was used to compute the recovery. 

2.6. Validation study 

The method of analysis’ validation study parameters, which included linearity, precision, accuracy, limits of detection, and 
quantification, were evaluated. 

Fig. 1. Republic of Yemen Map showing fish sampling sites.  
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3. Results and discussion 

3.1. Method validation 

3.1.1. Linearity 
The method linearity was evaluated by the analysis of eight different concentrations of mercury standard. The correlation coef-

ficient (R2) determination was calculated using the least-square analysis. The method’s linearity was evaluated by plotting detector 
response absorbance (A) versus mercuric spiked concentrations that ranged from 2 to 100 ng as shown in Fig. 2. The correlation 
coefficient of the method as shown in Fig. 2 reached 0.9990. 

3.1.2. Precision (repeatability) 
The assessment of the method’s precision was conducted by means of an intra-day repeatability analysis. On the same day, actual 

samples were analyzed in triplicate and the relative standard deviation was computed. The method’s RSD ranged between 1.34 % and 
5.62 % as shown in Table 1. This was within the acceptable range specified by the AOAC for the peer-verified method [36]. However, 
M. Augelli (2007) reported % RSD of 11 [37], whereas J. Calderon (2013) reported %RSD less than 12.3 [38]. 

3.1.3. Accuracy (recovery) 
To conduct the accuracy assays, six separate analyses were carried out in triplicate on fish samples spiked with various amounts of 

mercury standards ranging from 0.1 to 1 ppm. The recovery percentages, as presented in Table 2, varied from 96.77 % to 105.14 %. 
Additionally, the range of predicted bias values, from 0.32 % to 5.14 %, fell within the permissible percent of RSD range for the peer- 
verified technique as set by the AOAC [36]. These results indicated the high method’s accuracy for the total mercury determination in 
fish samples. These results are in good agreement with that reported by A. Shah (2012) % R (99–100.1) [39], D. Benjamin (2013) % R 

Fig. 2. Method Calibration curve of Mercury Standards.  

Table 1 
Precision results of mercury analysis.  

Spiked Amount of Hg (ng) Detector response (Measured Amount of Hg))(A) Average (A) SD %RSD 

Replicate 1 Replicate 2 Replicate 3 

2 0.00212 0.0019 0.00197 0.002 0.0001 5.62 
5 0.00498 0.00503 0.00471 0.00491 0.0002 3.45 
10 0.00997 0.01026 0.01 0.01007 0.0002 1.61 
20 0.01951 0.01944 0.02068 0.01987 0.0007 3.50 
40 0.03974 0.03847 0.04101 0.03974 0.0013 3.20 
60 0.05605 0.05411 0.05545 0.0552 0.0010 1.80 
80 0.07646 0.07723 0.07512 0.07627 0.0011 1.40 
100 0.09147 0.09269 0.09394 0.0927 0.0012 1.34  

Table 2 
Recoveries for mercury in fish samples.  

No. Hg (ng) in unspiked 
sample 

The volume of 0.1 ppm Hg Std. 
(μl) added 

Added Hg amount 
(ng) 

Analyzed amount (ng), 
(n = 3) 

Recovered amount of 
Hg (ng) 

%R %Bias 

1 11.542 10 1 12.5934 1.0514 105.14 5.14 
2 11.542 25 2.5 14.1267 2.5847 103.39 3.39 
3 11.542 50 5 16.5259 4.9839 99.68 − 0.32 
4 11.542 100 10 21.6275 10.0855 100.86 0.86 
5 11.542 250 25 36.2372 24.6952 98.78 − 1.22 
6 11.542 500 50 59.9275 48.3855 96.77 − 3.23  
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= 99 % [40], and in (2018) A. Badamchi %R (94–108) [4]. 

4. Limits of detection (LOD) and limits of quantification (LOQ) 

Using the slop (S) and RSD values of the calibration curve shown in Fig. 2, the limit of detection (LOD) and limit of quantitation 

Table 3 
Fish samples results.  

# English Name Sciences Name Family Length 
(cm) 

No. of 
Fish 

Average 
(ppm) 

Concentration Range, 
ppm 

1 Whipfin silver 
biddy 

Gerre filamentosus GERREIDAE 31–54 2 0.0212 (0.0165–0.0259) 

2 Arabi Valamugil seheli MUGILIDAE 32–38 5 0.0410 (0.02231–0.0674) 
3 Abumakas Porturus pelagicus PORTUNIDAE 22 2 0.0459 (0.0249–0.0668) 
4 Gambri Penaeus japonicus PENAEIDAE 10–15 10 0.0463 (0.0114–0.0998) 
5 Snappers Lutjanidae LUTJANIDAE 41–43 2 0.0475 (0.0220–0.0729) 
6 Paddlefish Polyden spathula POLYODONTIDAE 41–43 2 0.0535 (0.0485–0.0584) 
7 Bagha Rastrelliger barchysoma SCOMBRIDAE 22–34 6 0.0544 (0.0113–0.1136) 
8 Common dolphin 

fish 
Coryphaena lippurus CORYPHAENIDAE 69–70 2 0.0627 (0.0551–0.0702) 

9 Kurdoll Johnius carultta SCIAENIDAE 30 2 0.0630 (0.0610–0.0651) 
10 Black baned 

grafish 
Hemiramphus far HEMIRAMPHIDAE 23–30 2 0.0640 (0.0245–0.1034) 

11 Sabarii Megalaspis cordyla CARANGIDAE 23–34 9 0.0645 (0.0291–0.1271) 
12 Rain bow sardine Dussumieria acuta CLUPEIDAE 22 2 0.0694 (0.0690–0.0697) 
13 Blubberlip snapper Lutjanw rivulatus LUTJANIDAE 33–35 2 0.0714 (0.0687–0.0740) 
14 Batabet Scomber japonicus SCOMBRIDAE 24–31 2 0.0723 (0.0294–0.1151) 
15 Rosy goatfish Perupeneus rubescens MUGILIDAE 27–33 5 0.0732 (0.0494–0.1114) 
16 Brushtooth lizard Saurida undosquamis SYNODONTIDAE 34–38 5 0.0788 (0.0352–0.1012) 
17 Indian anchovy Stolephorus indicus ENGRAULIDAE 3–4 4 0.0804 (0.0755–0.0857) 
18 Indian Mackerel Rastrelliger kanagurta SCOMBRIDAE 28–33 3 0.0811 (0.0605–0.0993) 
19 Johns snapper Lutjanus johni LUTJANIDAE 31–56 4 0.0867 (0.0530–0.1403) 
20 Salmon Salmo SAIMONIDAE 32–39 7 0.0873 (0.0453–0.1356) 
21 Grey snapper Lutjanus griseus LUTJANIDAE 39–45 2 0.0877 (0.0753–0.1001) 
22 Baiad Whitefin trevally CARANGIDAE 26–58 15 0.0894 (0.0353–0.1792) 
23 Antak Nempiterus japonicus LUTJANIDAE 42–45 3 0.0949 (0.0702–0.1294) 
24 Hadas Plectrohynchus gaterinus HAEMULIDAE 32–45 3 0.0991 (0.0644–0.1176) 
25 Arabian scad Decapterus macarellus CAESIONIDAE 24–31 2 0.1006 (0.0911–0.1101) 
26 Gahash Lethrinselongatus LETHRINIDAE 29–55 11 0.1027 (0.0502–0.1754) 
27 Epinephelus Epinphelus tukula SARRANIDAE 70–75 2 0.1094 (0.1046–0.1141) 
28 King fish Scomberomorus caralla SCOMBRIDAE 33–39 2 0.1129 (0.0831–0.1427) 
29 Derak Scomberomorus gutatus SCOMBRIDAE 97–160 5 0.1559 (0.0639–0.1608) 
30 Walad Rhizoprionodomacutus ARCHARHINIDAE 39–40 2 0.1261 (0.0728–0.1794) 
31 Double spotted Scomberoides CARANGIDAE 52–73 4 0.1272 (0.0958–0.1562) 
32 Kud Sphraena putnamiae SPHYRAENIDAE 30–46 6 0.1435 (0.0744–0.2043) 
33 Affinis fish Gambusia affinis POECIITIDAE 25 2 0.1511 (0.1435–0.1586) 
34 Xiphias Xiphias gladius NOCTUIDAE 80–95 4 0.1645 (0.1450–0.1829) 
35 Dogtooth tuna Gymnosada unicolor SCOMBRIDAE 94–98 2 0.1821 (0.1594–0.2049) 
36 Palometa Trachinotus goodei CARANGIDAE 39–43 2 0.1839 (0.1639–0.2038) 
37 Nakim Plectrohynchus 

flaromculatus 
HAEMULIDAE 36–47 4 0.1908 (0.0969–0.2661) 

38 Sakhlah Rachycentron candum RACHYCENTRIDAE 95–140 11 0.1973 (0.1053–0.3433) 
39 Striped bass fish Striped bass MORONIDAE 28–37 4 0.1988 (0.1065–0.2793) 
40 Giant catfish Ariusthalassinus ARIIDAE 27–42 5 0.201 (0.1063–0.2873) 
41 Parrot fish Chlorurus SCARIDAE 28–38 6 0.2058 (0.1339–0.2648) 
42 Frigate tuna Auxithazard SCOMBRIDAE 56–58 2 0.2368 (0.1829–0.2906) 
43 Barracudas Sphyraena obtusata SPHYRAENIDAE 60–65 2 0.2563 (0.2299–0.2826) 
44 Kashar Cephalispachy centron SERRANIIDAE 37–119 6 0.02641 (0.1093–0.4598) 
45 Harab Alectis ciliaris CARANGIDAE 38–93 4 0.2904 (0.1743–0.4494) 
46 Logtail tuna Thunnus tonggol SCOMBRIDAE 94–96 2 0.3153 (0.3001–0.3305) 
47 Thamad Thunnus abacares SCOMBRIDAE 143–195 14 0.3604 (0.2891–0.5458) 
48 blowfish White spotted puffer TETRAODONIDAE 49–78 6 0.3992 (0.3381–0.5298) 
49 Cuttlefish Sepia parshadi SEPIIDAE 29–38 2 0.4008 (0.3178–0.4837) 
50 Wahoo Acanthocy biumsolandri SCOMBRIDAE 114 2 0.4600 (0.4520–0.4680) 
51 Darob Scomberoides 

commersonianus 
CARANGIDAE 113–116 2 0.6906 (0.6099–0.7712) 

52 Spottail shark Carchartiinus sorrah CARANGIDAE 84–127 15 0.7140 (0.4138–1.1860) 
53 Sandar shark Carcharhinus plumbcus ARCHARHINIDAE 107–135 3 0.7159 (0.5998–0.9220) 
54 Anbaria Makaira indica ISTIOPHORIDAE 178–192 3 0.8053 (0.7045–0.8602) 
55 Sword fish Xiphias gladius XIPHIDAE 200 2 1.3348 (1.300–1.3691)  
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(LOQ) were calculated using the following equations:  

LOD = 3× SD/S                                                                                                                                                                       (1)  

LOQ = 10 × SD/S                                                                                                                                                                    (2) 

The computed LOD and LOQ values were 0.0015 ppm and 0.0049 ppm, respectively, but that LOD of S. A. Peterson (2007) was 
0.0024 ppm [41]. 

4.1. Fish samples results 

The present validated method was utilized to analyze 240 fish samples collected from various Yemeni fishing ports along the 
Arabian Sea and Red Sea coasts; the resulting data were depicted in Table 3, and visually represented as a histogram in Fig. 3. The data 
revealed that two samples out of 240 samples exceeded the YSMO current permissible limit for mercury in fish (0.5 ppm) [42]. The five 
samples were of the mercury (0.6906 ppm–1.3348 ppm) range. 

As shown in Table 4, variation in Hg contamination also exists within the same family of fish. The computed T-test values, with a 95 
% confidence limit (P < 0.05), revealed a significant difference in the total mercury concentration between Carangidae species from 
the Arabian Sea and the Red Sea. Nevertheless, a T-test was conducted to compare the mean Hg content in fish species of six other fish 
families in both the Arabian Sea and the Red Sea. However, the results did not reveal significant differences in the mean mercury 
content among the species. In general, the amount of total mercury in the 240 fish samples tested in our work ranged between (0.0212 
ppm) and (1.3348 ppm). 

This variation is expected due to various factors including, the type of fish, their age, size, and locations [10,11]. Previous reports 
revealed a variation of mercury amount in the Yemeni fish within the range of from 0.002 to 0.099 ppm [7,8,43]. 

5. Conclusion 

240 Samples of fish Mercury concentrations were determined by using a Direct Mercury Analyzer (DMA-80). This method was fast, 
easy, simple, and rapid. The method showed high linearity. The results were reported as % RSD, reflecting high precession of the 
method. Recoveries of mercury from spiked real samples were highly accurate and appropriate methods were used. The levels of 

Table 4 
Statistical analysis of mean Hg among fish families.   

Arabian n Average Red n Average T cal 95 % 

1 MUGILIDAE 7 0.0568 MUGILIDAE 3 0.0578 0.9559 
2 LUTJANIDAE 6 0.0825 LUTJANIDAE 7 0.0785 0.8349 
3 CARANGIDAE 22 0.1688 CARANGIDAE 29 0.4254 0.0018 
4 SCOMBRIDAE 23 0.2627 SCOMBRIDAE 17 0.1713 0.057 
5 SPHYRAENIDAE 2 0.1440 SPHYRAENIDAE 6 0.181 0.5409 
6 TETRAODONIDAE 2 0.4940 TETRAODONIDAE 4 0.3518 0.1475 
7 RACHYCENTRIDAE 3 0.2701 RACHYCENTRIDAE 8 0.17 0.1648  

Fig. 3. Mercury concentration of the Yemeni fish samples.  
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mercuric concentration in the analyzed fish samples were found to be below the legal limits in YSMO. The fish samples in the Yemeni 
coast should be analyzed more often. This study improves the baseline data and information about the mercury concentration in the 
Yemeni fish. 
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