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Abstract
We report a longitudinal analysis of the immune response associated with a fatal case of COVID-19 in Europe. This patient
exhibited a rapid evolution towards multiorgan failure. SARS-CoV-2 was detected in multiple nasopharyngeal, blood, and
pleural samples, despite antiviral and immunomodulator treatment. Clinical evolution in the blood was marked by an increase
(2–3-fold) in differentiated effector T cells expressing exhaustion (PD-1) and senescence (CD57) markers, an expansion of
antibody-secreting cells, a 15-fold increase in γδ T cell and proliferating NK-cell populations, and the total disappearance of
monocytes, suggesting lung trafficking. In the serum, waves of a pro-inflammatory cytokine storm, Th1 and Th2 activation, and
markers of T cell exhaustion, apoptosis, cell cytotoxicity, and endothelial activation were observed until the fatal outcome. This
case underscores the need for well-designed studies to investigate complementary approaches to control viral replication, the
source of the hyperinflammatory status, and immunomodulation to target the pathophysiological response. The investigation was
conducted as part of an overall French clinical cohort assessing patients with COVID-19 and registered in clinicaltrials.gov under
the following number: NCT04262921.
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Introduction

First reported in December 2019 in China [1, 2], SARS-CoV-
2 (a beta coronavirus) can cause a respiratory syndrome that

manifests a clinical pathology resembling mild upper
respiratory-tract disease (common cold-like symptoms) and
occasionally severe lower respiratory-tract illness and extra-
pulmonary manifestations, leading to multiorgan failure and
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death. Such a severe clinical condition displayed by certain
patients affected with COVID-19 pneumonia is strongly rem-
iniscent of previous and recent epidemic cases of respiratory
failure associated with related coronaviruses, such as MERS-
CoV and SARS-CoV [3].

In more severe cases, infection can cause pneumonia, se-
vere acute respiratory syndrome, kidney failure, and even
death [3]. Death results from hypoxemic respiratory failure
in patients developing severe acute respiratory distress syn-
drome (ARDS) and is associated, in a substantial portion of
patients, with an inflammatory syndrome and cytokine storm
[4] that may originate from immune cells [5]. Severe and
critical COVID-19 pneumonia shares features with “cytokine
storms,” such as those seen in severe cytokine-release syn-
drome, which is characterized by fever, hypotension, and re-
spiratory insufficiency associated with elevated serum cyto-
kine levels, including those of IL-1 and IL-6, mostly produced
by myeloid cells [6]. Previous studies from SARS animal
models and infected humans have suggested the occurrence
of an aberrant host cytokine storm, resulting in an excessive
clinical manifestation that plays a critical role in disease se-
verity [7–9]. However, a precise description of the immune
mechanisms responsible for the pathophysiology and acute
mortality in COVID-19-infected patients is still unavailable.
Here, we provide a full description of a fatal case of COVID-
19 in Europe, including a chronological immune profile of the
patient, to aid the determination of the putative underlying
mechanisms of this deadly case and the identification of po-
tential therapeutic targets.

Materials and Methods

Patient and Procedures

We report data for a patient who was admitted to the Bichat
Claude Bernard ICU in early 2020. The investigation was con-
ducted as part of an overall French clinical cohort assessing
patients with COVID-19 and registered in clinicaltrials.gov
under the following number: NCT04262921. It was approved
by the French Ethics Committee and written informed consent
was obtained from each patient involved. We used the open-
source “Clinical Characterization Protocol for Severe Emerging
Infections” of the International Severe Acute Respiratory and
Emerging Infection Consortium (ISARIC), supported by the
World Health Organization (WHO), which has been updated
in response to COVID-19. We diagnosed SARS-CoV-2 by
semi-quantitative reverse-transcriptase polymerase chain reac-
tion (RT-PCR) on nasopharyngeal swabs in accordance with
WHO guidelines. Clinical, biological, and radiological data
were carefully recorded from computerized medical records as
previously described.We also collected information on the dates
of at-risk contact, the date of illness onset, and travel details in

France. Healthy donors were collected from the French Blood
Donors Organisation (Etablissement Français du sang (EFS)).
For phenotypic and luminex analyses, the 5 HD were 100%
men with a median age of 40 years interquartile range (IQR)
[29.5–47] and 40%men with a median age of 24 years IQR [21.
5–44.5], respectively. Among the 5 septic shock patients admit-
ted to the Bichat Claude Bernard ICU, 60% were males with a
median age of 58 years [45–68]. Two out of 5 patients experi-
enced pneumonia.

Virological Data

We assessed the viral load from various samples (upper and
lower respiratory tract, blood, urine and stool samples or rectal
swabs, if appropriate, conjunctiva, and pleural effusion) ac-
cording to the recommended protocols of ISARIC. RNA ex-
traction and real-time RT-PCR, primers and probes, high-
throughput virus sequencing, virus isolation, and virus titra-
tion have been described elsewhere [10].

Cell Phenotyping and Quantification of Serum
Analytes

PBMCs and serum samples were collected on days 14–16, 20,
22, and 24 after illness onset for evaluation of the various
immunogenicity endpoints. All tests were performed at the
Mondor Immunomonitoring Center, Vaccine Research
Institute, Henri Mondor Hospital, Créteil, France.

Immune cell phenotyping was performed with an LSRII
Fortessa 4-laser (488, 640, 561, and 405 nm) flow cytometer
(BD Biosciences) and FlowJo software version 9.9.6 (Tree
Star Inc.). CD4+ and CD8+ T cells were analyzed for
CD45RA and CCR7 expression to identify the naive, memo-
ry, and effector cell subsets, for co-expression of activation
(HLA-DR and CD38) and exhaustion/senescence (CD57and
PD1) markers. CD19+ B cell subsets were analyzed for the
CD21 and CD27markers. ASC (plasmablasts) were identified
as CD19+ cells expressing CD38 and CD27. We used CD16,
CD56, and Ki57 to identify NK-cell subsets. γδ T cells were
identified using an anti-TCR γδ antibody.

A total of 72 analytes were quantified in heat-inactivated
serum samples (see Fig. 3) by multiplex magnetic bead assays
or ELISA. Serum from five healthy donors and five patients
with septic shock sampled at D1 was also assayed as negative
and positive controls, respectively. Two LXSAHM-2 kits, one
for CD163 and ST2 and one for CD14 and LBP (R&D
Systems); one LXSAHM-19 kit for IL-21, IL-23, IL-31,
EGF, Flt-3 Ligand, Granzyme B, Granzyme A, IL-25, PD-
L1/B7-H1, TGF-α, Aggrecan, 4-1BB/CD137, Fas,
FasL,CCL-28, Chemerin, sCD40L, CXCL14, and Midkine
(R&D Systems); and the 48-Plex Bio-Plex Pro Human
Cytokines screening kit for IL-1β, IL-1rα, IL-2, IL-4, IL-5,
IL-6, IL-7, IL-8/CXCL8, IL-9, IL-10, IL-12 (p70), IL-13, IL-
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15, IL-17A/CTLA8, Basic FGF (FGF-2), Eotaxin/CCL11, G-
CSF, GM-CSF, IFN-γ, IP-10/CXCL10, MCP-1/CCL2, MIP-
1α/CCL3, MIP-1β/CCL4, PDGF-BB (PDGF-AB/BB),
RANTES/CCL5, TNF-α, VEFG (VEGF-A), IL-1a, IL-2Ra
(IL-2R), IL-3, IL-12 (p40), IL-16, IL-18, CTACK/CCL27,
GRO-a/CXCL1 (GRO), HGF, IFN-α2, LIF, MCP-3/CCL7,
M-CSF, MIF, MIG/CXCL9,b-NGF,SCF, SCGF-b,SDF-
1α,TNF-b/LTA, and TRAIL (BioRad) were used according
to the manufacturers’ recommendations and data were acquired
on a Bio-Plex 200 system™. FABP2/IFABP quantification
was performed with the Human Quantikine ELISA Kit (R&D
Systems), according to the manufacturers’ instructions.
Extrapolated concentration values were considered and the
out of range values were entered at the highest or lowest ex-
trapolated concentration. Expression values were standardized
for each cytokine across all displayed samples (centered around
the observed mean, with variance equal to 1). Hierarchical clus-
tering of the cytokines was computed using the Euclidean dis-
tance and Ward’s method [11] for all displayed samples.

Results

Patient

An 80-year-old male visited an emergency hospital department
in early 2020. His symptoms had commenced 3 days earlier
with fever and diarrhea (day 0) (Fig. 1). At entry, he presented
purulent sputum and dyspnea. He did not report any specific
exposure within the 14 days prior to the onset of symptoms.
Clinical examination revealed a temperature of 37.2 °C, oxygen
saturation of 88% while breathing ambient air, pulse of 65
beats/min, blood pressure of 132/82 mmHg, and respiratory
rate of 17 breaths/min. A medical examination suggested a
lower respiratory-tract infection. Routine blood tests showed
severe hypoxemia, with a PaO2 of 53 mmHg in ambient air,
requiring oxygen therapy with a nasal cannula (4 L/min), and
an elevated level of C-reactive protein of 124 mg/L. Kidney
function and hepatic tests were in the normal range. The general
biological data were previously reported [10]. Chest radiogra-
phy showed bilateral alveolar opacities.

As the patient did not fulfilled the current European Centre for
Disease Prevention andControl (ECDC) definition for a SARS2-
CoV infection (https://www.ecdc.europa.eu/en/case-definition-
and-european-surveillance-human-infection-novel-coronavirus-
2019-ncov) at the time of his admission to hospital, his case was
not immediately considered to be one of possible COVID-19
infection. Nonetheless, precautions to avoid airborne and contact
contamination were observed while awaiting a COVID-19 test
result. Community-acquired pneumonia was diagnosed and
treated with amoxicillin-clavulanate. Classic etiological agents
were ruled out by real-time multiplex PCR screening. On day
5, he developed a fever and acute respiratory failure and was

transferred to the ICU. He subsequently developed multiorgan
failure with ARDS, acute kidney injury, liver failure, and sepsis-
like shock and was consequently placed under protective me-
chanical ventilation and vasopressors on day 6 (Fig. 1). The
COVID-19 diagnosis was confirmed on day 7. Broad-spectrum
antibacterial and remdesivir were started and then adapted fol-
lowing identification of susceptible Acinetobacter baumannii
(Filmarraymultiplex PCR confirmed by tracheal aspirate culture)
and Aspergillus flavus (tracheal aspirate culture). On day 9,
Remdesivir was stopped and the patient required renal replace-
ment therapy. A CT-scan on day 10 showed bilateral pleuro-
pneumopathy, associating pleural effusion, alveolar condensa-
tions, ground glass opacity, and pulmonary cysts. Colitis and
cholecystitis were also diagnosed, leading to broadening of the
antimicrobial treatment.

SARS-CoV-2 shedding was detected throughout the
follow-up in all daily nasopharyngeal swabs collected from
day 7 to the patient’s death and also several times in blood and
pleural effusion samples but not in urine or rectal swabs. On
day 14, remdesivir was re-initiated. Although we found no
other superinfection, despite multiple investigations (Fig. 1),
the patient’s condition worsened. One dose (10 μg) of inter-
feron β-1a was administered on February 13 (day 23). The
patient died on day 24 from massive hemoptysis and uncon-
trolled multiorgan failure.

Kinetics of Immune and Inflammatory Responses

We longitudinally analyzed the blood immune response during
worsening of the clinical status and progression of the COVID-
19 infection. The frequency of naïve CD4+ and CD8+

(CD45RA+CCR7+) T cells was low on day 14 (24.2% and
6%, respectively) relative to that of five healthy donors (HD)
(Median [IQR] (42.9% [35.3–49.8] and 29.5% [13.4–45], re-
spectively) and remained so to the end of the follow-up. In con-
trast, the frequency of CD4+ and CD8+ (CCR7−CD45RA−) ef-
fector memory T cells was high on day 14 (51.7 and 28.6%,
respectively) relative to that of HD (28.2% [21.8–29.4] and
23.5% [11–26], for CD4+ and CD8+ T cells, respectively) and
peaked at day 24 (67.4% and 46.2%, respectively) (Fig. 2a).

The profile of the patient showed dramatically marked cell
activation relative toHD,with an expansion of CD38+HLA-DR+

CD8+ T cells during the follow-up. Activated CD8+ T cells
peaked on day 20 (27.5% and 0.6% [0.4–0.8], for the COVID-
19 patient andHD, respectively) (Fig. 2b). Similarly, the frequen-
cy of exhausted and senescent CD4+ and CD8+ T cells (PD-
1+CD57+) increased in the COVID-19 patient from day 14
(7.43 and 56.1%, respectively) throughout the follow-up,
peaking on day 24 for CD4+ T cells (25.3%) and day 22 for
CD8+ T cells (68.3%) and were dramatically higher than in the
HD (1.6% [0.6–6.3] and 18.4%, [14–36], respectively) (Fig. 2c).

We also explored the proportion ofγδ T cells among CD3+

T cells. The frequency ofγδ T cells was markedly high on day
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14 (92%), relative to that of the HD (6.2% [4–8.9]), lower on
day 15 (38.8%), and increased continuously from day 20 until
day 24 (83.4%). The phenotype of the γδ T cells was charac-
terized by high frequency of the marker CD16 but not the
inhibitory receptor NKG2A (83.4 and 1.4%, respectively) on
day 15 relative to that of HD (40.2% [17–52] and 33.7%
[24.5–50] for CD16 and NKG2A, respectively) which
persisted until death (Fig. 2d).

The phenotype of the B cells evolved significantly. The
frequency of activated memory (CD19+CD27+CD21−) B cells
and plasmablasts/antibody-secret ing cells (ASC)
(CD19+CD38+CD27+) peaked on day 20 (24.1 and 34.3%,
respectively) and was markedly higher than that in HD
(2.6% [2.1–3.8] and 0.32% [0.25–0.75], respectively), as
was that of exhausted CD19+CD27−CD21low/neg B cells
(21.5% versus 2.1% [1.2–4.4] in HD) (Fig. 2e).

The total NK cell frequency decreased from day 16 (10.3%)
to day 24 (3.6%) and remained lower than in HD (40.7% [40–
43]), with a much lower frequency of NK CD56dim cells than in
HD, with a nadir at day 14 (2.2%), associated with the total
absence of NK CD56bright cells (32% [28–36] and 1.7% [0.9–
3.8] in HD, respectively) (Fig. 2f). Remarkably, a high frequency
of differentiated CD56dim CD57+ NK cells was cycling (Ki67+)
on day 14 (15.6%), peaked on day 16 (60.3%), and then contin-
uously decreased to day 24 (7.37%) (Fig. 2g). The frequency of

NK cells expressing the inhibitory marker NKG2A markedly
increased from day 14 (8%) to day 16 (44.6%), peaked on day
20 (50.6%), and remained much higher than in HD (33% [27–
41]) (Fig. 2h).

Finally, an analysis of monocyte populations also showed
dramatic changes throughout the follow-up. The frequency of
classical CD14+CD16− monocytes steadily decreased from
day 16, through days 20 and 22, to day 24 (73.2, 29.8, 12.2,
5.7%, respectively), becoming much lower than in HD
(43.7% [31–56]). Strikingly, the frequency of intermediate
CD16+CD14+ and non-classical CD14−CD16+ monocytes
remained extremely low throughout the follow-up, with a na-
dir at day 15 (0.4 and 0.02% versus 4.4% [2.9–5.8] and 4%
[3.3–5.1] for HD, respectively) (Fig. 2i).

In addition, we longitudinally measured the levels of 72
analytes in the serum of the COVID-19 patient and compared
them with those of HD (n = 5) and patients with septic shock
(SS, n = 5). Most of these markers were found at much higher
levels than in HD and/or SS patients (Fig. 3). Moreover, re-
peated measurements allowed us to study the kinetics of the
various profiles.We detected a storm of pro-inflammatory and
Th1/Th2 factors on day 14 after onset, of which some tended
to decrease throughout the follow-up, while remaining higher
than in the HD and/or patients with SS (IFN-γ, MIP-1α, MIP-
1β, TGFα, MCP-1, TNF-α, IL-1α, β-NGF, Basic FGF,
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IFN-α2, IL-5, G-CSF), as well as a burst of Th1 cytokines
(IL-2, IL-3, IL-12 (p70)), Th2 cytokines (IL-4, IL-5, IL-6),
and an immune-modulator (IL-1RA). Some of these factors
persisted at a lower level on day 15 post-illness, but the profile
was significantly enriched by an increase in the level of other

markers (4-1BB/TNFRSF9/CD137, GM-CSF, Midkine, IL-
21, Flt-3 Ligand, CCL28, Fas Ligand/TNFSF6, IL-17E/IL-
25, IL-23, CD40 Ligand/TNFSF5, CXCL14/BRAK, IL-31,
Granzyme A, PD-L1/B7-H1) associated with T cell activa-
tion, exhaustion, and apoptosis. Of note, IL-1RA decreased
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dramatically from day 15 to day 22, contrasting with persis-
tently high levels of IL-1. On day 20, we observed a signifi-
cant increase in the level of biomarkers of cell cytotoxicity,
neutrophil chemotaxis, and endothelial activation (MIG,
VEGF, IL-7, Granzyme B, GRO-a, PDGF-BB, RANTES,
IL-8, IL-9, EGF). Interestingly, following the significant in-
crease in neutrophil chemotaxis markers (IL-8 and Gro-a) at
day 20, we observed a strong and rapid increase in neutrophil
counts in the blood from D21 to D23 (Supplementary
Table 1). On day 24 (death), after one dose of IFN-β 1a on
day 23, there was a dramatic increase in the level of several
cytokines, reflecting the activation of T cells, monocytes, and
inflammation (IL-2, IP-10, TRAIL, IL-17, IL-12(p70),
CD163, IL-12 (p40), IL-15, TNF-β, SDF-1a, LIF, IL-1β),
as well as an anti-inflammatory profile (IL-3, IL-4, IL-13,
IL-1RA) and that of a leaky gut (I-FABP).

Discussion

This report provides a dynamic overview of immune abnormal-
ities associated with the clinical outcome of a fatal case of
COVID-2019. The lack of knowledge of the pathophysiology
of this new infection, the severity of the cases, and the absence
of confirmed therapies have been critical challenges for all phy-
sicians and intensivists since the beginning of this year. In an
epidemic context, it is crucial to rapidly improve our under-
standing of the disease to better manage patients and to share
knowledge on the most severe cases and learn from them.

From a clinical prospective, the presentation of a COVID-
19 infection resembles a typical community-acquired severe
respiratory infection that occurs 1 week after the onset of non-
specific flu-like symptoms, but exhibiting a wider range of
severity than MERS-CoV and SARS-CoV-1 infections [12,
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13]. The reason for such marked heterogeneity in individual
sensitivity to COVID-19 and the potential roles of aging and
comorbidities, beyond their association with clinical worsen-
ing, are poorly understood. The patient described in this report
exhibited a rapid and fatal evolution towards multiorgan fail-
ure, with long and sustained persistence of SARS-CoV-2 na-
sopharyngeal shedding associated with viral RNA detection in
multiple blood and pleural effusion samples. Although neither
viral quantification nor the detection of infective virus was

performed in this case, its persistence is consistent with a
recent report suggesting that higher viral loads may be asso-
ciated with severe clinical outcomes [14].

As described for patients suffering from SARS, MERS, and
COVID-19, the case presented here exhibited persistent lym-
phopenia. Although this observation is commonly reported in
several severe viral illness [15], persistent lymphopenia 3 days
after ICU admission is associatedwith an increased risk of ICU-
acquired infection and is a predictive factor for increased 28-
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day mortality [5, 16]. Thus, a lymphocyte count performed
early after admission is a simple blood test that could be used
as a prognostic marker to possibly explain early co-infections in
severe viral infections. Moreover, a multicenter retrospective
study showed that lower lymphocyte counts and underlying
comorbidity, older age, and higher LDH levels at presentation
are independent high-risk factors for COVID-19 progression.
The authors developed the CALL score (comorbidity, age, lym-
phocyte count, and LDH level), which ranges from 4 to 13
points, with a cutoff value of 6 points. The positive and negative
predictive values were 50.7% (38.9–62.4%) and 98.5% (94.7–
99.8), respectively. Importantly, a lymphocyte count ≤ 1 × 109/
L is worth 3 points in the CALL score.

The data acquired during previous Coronavirus infections
(SARS and MERS-CoV) did not allow any conclusions to be
drawn concerning the pathophysiology of these infections.
However, the balance between viral factors and the host re-
sponse, when the latter is exacerbated, appears to be crucial in
the evolution of the clinical course of the disease and progno-
sis. The intensity of the inflammatory response may play a
role in the pathogenesis of SARS-CoV2, in particular in the
airways. An in-depth longitudinal analysis of the immune
profiles of our case showed dramatic alterations in the homeo-
stasis of all blood cell populations, reflecting severe distur-
bances in innate and adaptive immunity. Some are highly
compatible with an uncontrolled viral infection, as exempli-
fied by an increase (2–3-fold) of most differentiated effector
memory CD4+ and CD8+ T cells. Most of these cells
expressed characteristics of exhausted (high level and
frequency of PD-1) and senescent cells (CD57 marker).

Consistent with these observations and as previously re-
ported in one case with moderate COVID-19 infection [17],
we also show an expansion of ASC and exhausted memory B
cells. We did not assess the humoral response of our patient
because a validated serological test was not yet available. A
recent report has demonstrated the role of anti-spike IgG in

severe acute lung injury by skewing the inflammation-
resolving response bymacrophages in SARS-CoV-2macaque
models [18]. In this study, the presence of anti-spike IgG prior
to viral clearance abrogated the wound healing response and
promoted MCP-1 and IL-8 production and pro-inflammatory
monocyte/macrophage recruitment and accumulation. This
phenomenon has also been suspected in deadly SARS-CoV
infections. It would likely be informative to study the func-
tional profile of specific IgG in COVID-19-infected patients
with a rapid and severe clinical evolution.

Strikingly, we observed a dramatically high level of γδ T
cells throughout the clinical course of the disease, up to 15-
fold higher than in HD. γδ T cells were first described in the
lung and shown to make up 8 to 20% of CD3+ cells [19] and
play critical roles in anti-viral immune responses, tissue
healing, and epithelial cell maintenance [20]. This observation
is compatible with previous reports in convalescent health
workers infected with SARS-CoV-1, who exhibited an expan-
sion of Vγ9Vδ2 T cells able to inhibit SARS-CoV replication
and kill SARS-CoV-infected target cells [21]. In our patient,
the γδ T cells expressed activation markers (CD16) but only
low levels of the inhibitory receptor NKG2A, suggesting that
they may have exhibited a killing capacity. Analyses of the T
cell repertoire and functional profile of these cells need to be
performed in a larger cohort of patients.

Along with these T cell populations, NK cells and monocyte/
macrophages in the lung are at the first line of defense against
pathogens. These cells produce a large array of pro-inflammatory
cytokines. The high level of NK-cell proliferation and their dis-
appearance from the blood suggest trafficking to the lung, which
may contribute to lung-cell cytotoxicity. Three populations of
monocytes, CD14+CD16−, CD14+CD16+, and CD14−CD16+,
were at low or undetectable levels, also suggesting trafficking
to the lung [22]. CD14+ (CD16+/CD16−) cells have been shown
to be capable of producing IL-8, IL-6, TNF-α, and IL-1 after
activation, whereas CD14dim CD16+ cells represent a monocyte
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subset that patrols blood vessels and selectively detects virally
infected and damaged cells to produce pro-inflammatory cyto-
kines [23]. Wei et al. recently reported the presence of

inflammatory CD14+CD16+ monocytes, suggesting an exces-
sive activated immune response caused by pathogenic GM-
CSF+ Th1 cells, possibly linking them to the pulmonary

Fig. 3 Heatmap of standardized
biomarker expression in serum
throughout the infection. The
colors represent standardized
expression values centered
around the mean, with variance
equal to 1. Biomarker hierarchical
clustering was computed using
the Euclidean distance and
Ward’s method [11]. HD, healthy
donors (n = 5); SS, septic shock
(n = 5)
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immunopathology that leads to deleterious clinical manifesta-
tions after COVID-19 infections [24].

Although it may be speculative to draw conclusions from
serum cytokine profiles to interpret the pathophysiological phe-
nomena of the lung, the large number of factors analyzed and
their changes throughout the illness may provide crucial infor-
mation. First, we found elevated levels of certain biomarkers
already described as prognostic markers of severe disease. For
example, elevated levels of IL-2, IL-7, IL-10, G-CSF, IP-10,
MCP-1, MIP1-α, and TNF-α have been reported in SARS-
CoV-2 patients in intensive care [3]. Increased Th17, cytotoxic
markers [25], IL-6 [26], IP-10, MCP-3, and IL-1RA [27] also
appear to be associated with disease severity and fatal outcome
in SARS-CoV-2-infected patients. Our data significantly ex-
tend these observations by the longitudinal survey of these
changes. The various waves of markers suggest different
stages, from a pro-inflammatory cytokine storm and Th1 and
Th2 activation to T cell exhaustion, apoptosis, and cell cyto-
toxicity. It is difficult to correlate these features with clinical
worsening from a single case, but a careful follow-up of these
profiles in patients in ICUsmay help to identify new prognostic
markers or those of COVID-19 severity.

There is no currently validated antiviral treatment to control
such severe SARS-CoV-2 infections. However, experimental
drugs and drug combinations, such as hydroxychloroquine,
remdesivir, lopinavir-ritonavir, or a combination of lopinavir-
ritonavir and interferon-β-1b, are under investigation and may
be considered for compassionate use for severely ill patients.
Given the severity of the case, we tried various approaches, in-
cluding an antiviral therapy and an immune therapy. Remdesivir
did not accelerate the clearance of the virus from our patient.
Coronaviruses are able to inhibit the interferon signaling path-
ways, which are, like those of T cell-mediated immunity, re-
quired for viral clearance [28]. Animal models and case reports
suggest that the type-1 interferon-mediated response triggered by
MERS-CoV may limit the viral disease to the lung and prevent
systemic dissemination and viremia [29, 30]. It is impossible to
draw any conclusion on the effect of IFN-β in our case. Of note,
we observed a dramatic decrease of IL-1RA from day 15 to day
22, contrasting with the persistence of high IL-1α and β expres-
sion. This discordant expression profile contrasts with prelimi-
nary observations in less critically ill patients (personal data).
Although these observations were limited, the role of IL-1 as a
pro-inflammatory cytokine and leukocyte migratory factor is
very well known, suggesting the potential interest of IL-1RA in
COVID-19 infection. Importantly, we found significantly higher
expression of secreted IL-6, as have others, especially in ICU
patients [24], underscoring the rationale for testing anti-IL-6 or
anti-IL-6R antibodies in severely ill COVID-19 patients.

Our observations suffered from several serious limitations.
First, we did not sample the patient at the very early phase of the
disease. In addition, we only explored peripheral blood.
Immune abnormalities of the other organs of the lymphoid

compartments require further study. Finally, the lack of age-
matched controls due to the advanced age of the patient
(80 years old) and age restriction for blood donation is an im-
portant limitation of our study. Therefore, it could not be ex-
cluded that some of our observations were effects of aging on
the immune system. However, many of the abnormalities ob-
served in this single case study are dramatically abnormal as
compared with normal reference values. We believe that this
case report supports the worldwide effort to repurpose several
marketed drugs and immunomodulators to reduce the inflam-
matory reaction and pathophysiology caused by the virus [31].
First, it clearly shows that the immune alterations are dynamic.
In the first phase, the innate immune system, driven by mono-
cytes, macrophages, and Tγδ lymphocytes, is activated and
leads to T lymphocyte exhaustion. The activation of B lympho-
cytes then contributes to a substantial humoral response.
Finally, we observed endothelial activation. Overall, this indi-
vidual case also underscores the need to combine two comple-
mentary approaches to limit the severity of the disease: to con-
trol viral replication with an antiviral, with the aim to limit the
source of hyperinflammation, and to potentiate this effect using
a specific immune modulator that targets the cytokine storm as
a trigger of the pathophysiological response. These interven-
tions should be evaluated in well-designed studies. This longi-
tudinal analysis may help to determine the timing of such inter-
ventions and provide tools for the clinical follow-up of patients.
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