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Abstract: The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1
negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G >T at position
1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide
chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of poly-
cythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is
associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune
response. JAK2V617F clones induce an inflammatory immune response and lead to a process of
immunothrombosis. Recent research has shown great interest in trying to understand the mecha-
nisms associated with JAK2V617F signaling and activation of cellular and molecular responses that
progressively contribute to the development of inflammatory and vascular conditions in association
with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main
genetic, hematological and immunological findings that are linked to JAK2 variant signaling in
chronic myeloproliferative neoplasms.

Keywords: JAK2V617F signaling; myeloproliferative neoplasms; clonal hematopoiesis; hemostasis;
immunothrombosis; immune response

1. Introduction

Chronic myeloproliferative neoplasms (MPNs) are clonal pathologies of hematopoietic
stem cells [1], which are characterized by medullar hyperplasia and an accumulation of
elements of the myeloid series, and present progressive and effective maturation [2], though
without affecting the maturation and differentiation process of the erythroid, granulocytic
and megakaryocytic lineage [3]. These changes lead to peripheral blood leukocytosis,
increased erythrocyte mass, thrombocytosis and, in more severe cases, medullary fibrosis
or leukemic transformation [2].

The first studies on MPNs date from 1845, starting with the description of the first
case of chronic myeloid leukemia [4]. Since then, several scholars have engaged in the
analysis of the molecular mechanism of chronic myeloproliferative neoplasms, and have
determined the semiological aspects of these hematological diseases by observing the signs,
symptoms and clinical findings of the investigated patients [5–7].

This clinical view gained a new ally in 1960 with the discovery of the Philadelphia
chromosome, which was the first association between a chromosomal abnormality and

Biomolecules 2022, 12, 291. https://doi.org/10.3390/biom12020291 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12020291
https://doi.org/10.3390/biom12020291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-2677-8246
https://orcid.org/0000-0001-5639-7041
https://orcid.org/0000-0003-3121-6667
https://orcid.org/0000-0003-3125-580X
https://doi.org/10.3390/biom12020291
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12020291?type=check_update&version=2


Biomolecules 2022, 12, 291 2 of 18

an oncological disease to be described in the history of medicine [3,4,8,9]. Since this
discovery, the history of MPNs shows them to enter the era of genetics, during which more
studies began to be developed and genetic research gained further space in the diagnosis
of MPNs (Figure 1).
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BCR/ABL genetic rearrangement.

Thus, with the discoveries of molecular mechanisms involved in MPNs, the World
Health Organization (WHO) determined clinical and laboratory parameters for establish-
ing the diagnosis of these diseases and the WHO, according to its last review in 2016,
classifies chronic myeloid neoplasms according to the presence or absence of the Philadel-
phia chromosome (BCR/ABL1 fusion gene) [10,11]. In the BCR/ABL1 positive MPN
classification, chronic myeloid leukemia (CML) is responsible for 15–20% of leukemias
worldwide, with an incidence of 1–2/100,000. CML is characterized by the presence of a
left shift in granulocytes that results in the identification of less than 20% of the blasts in
peripheral blood [4,10].

Unlike CML (single BCR/ABL1 positive entity, according to the WHO), diseases
belonging to the group of BCR/ABL1 negative MPNs have been described, including poly-
cythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), chronic
neutrophilic leukemia (CNL), chronic eosinophilic leukemia (CEL) and unclassifiable
myeloproliferative neoplasms [10,11]. However, polycythemia vera, essential thrombo-
cythemia and primary myelofibrosis are the most frequent diseases in this group [10,12,13],
with PMF having the worst prognosis of the three myeloproliferative disorders [12,14].
Similar to CML, in the BCR/ABL1 negative MPNs, criteria are established based on genetic,
hematologic and clinical findings, which are organized in the form of major and minor
criteria for the diagnosis of PV, ET and PMF, as shown in Table 1.

Among the major criteria of BCR/ABL1 negative MPN, the presence of variants
in driver genes stands out, as well as the Janus kinase 2 gene (JAK2—HGNC: 6192),
the thrombopoietin receptor gene (MPL—HGNC: 7217) and the calreticulin gene (CALR
—HGNC: 1455). Variations in these genes, classified as driver mutations, are determinant
in the clinical phenotype observed in MPNs and result in constitutive activation of in-
tracellular signaling pathways [12,19] (Figure 2). Generally, these genomic variations are
considered mutually exclusive between BCR/ABL1 negative entities, and their absence
does not exclude their diagnosis [10]. However, two variants can be found in the same
individual, probably from different neoplastic subclones and those that are often associated
with disease progression [19,21].

These driver mutations usually arise again; however, 7% of cases involve familial
aggregation, with autosomal dominant inheritance and incomplete penetrance, and a 5 to
7-fold increased risk for first-degree relatives of the patient with the disease, a risk that may
involve the same or different myeloproliferative neoplasms [22–24]. Although JAK2V617F
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is linked to autosomal dominant inheritance, most cases of familial inheritance are not
associated with JAK2 gene variants [25]. Nonetheless, mutations in the EPOR, VHL, EPAS1,
HIF and EGLN gene have been found in cases of congenital familial polycythemia [26].

Table 1. Diagnosis criteria for classic BCR/ABL1 negative chronic myeloproliferative neoplasms.

Neoplasm Clinical Description Major Diagnostic Criteria Minor Diagnostic Criteria

PV

Exacerbated increase in
erythrocyte mass (total red blood

cell count). Generally, both
genders are diagnosed in the 6th
or 7th decade of life [11]. Annual

global incidence is
0.3–1.5/100,000 and survival rate

is 15 years [2].

• Hb: >16.5 g/dL for men (or Hct:
>49%), >16.0 g/dL for women (or
Hct: >48% women), or >25%
increase in red cell mass [2];

• Bone marrow biopsy demonstrates
panmyelosis with pleomorphic
mature megakaryocytes;

• Presence of the JAK2V617F
mutation or mutations in exon 12 of
the JAK2 gene.

• Reduced serum
erythropoietin
concentration [10].

ET

Increased platelet count with
megakaryocytic hyperplasia.
Annual global incidence is

1.03–2.5/100,000 and diagnosis
usually occurs in the 6th decade

of life [15,16].
Together with PV, it presents high

risks of hemorrhagic and
thrombotic episodes [3,12,17,18].

• Platelet count ≥450 × 103/mm3;
• Hyperproliferation of

megakaryocytes (some of them
hyperlobulated, and observed in
bone marrow biopsy);

• Mild increase in granulopoiesis and
erythropoiesis;

• Absence of criteria for PV, CML
and PMF;

• Presence of mutations in the JAK2
gene (JAK2V617F), CARL, MPL.

• Presence of clonal marker or
absence of evidence of
reactive thrombocytosis [10].

PMF

Indolent clinical course and has
worse prognosis. Patients show
increased megakaryopoiesis and
extramedullary hematopoiesis

[2,3,19,20]
It has an annual global incidence
of 1.5–2.0/100,000, and generally
affects individuals over 60 to 70

years of age.

Pre-fibrotic phase:
• Exacerbated proliferation of the

megakaryocytic and granulocytic
lineage, absence of reticulin fibrosis
>1, decreased erythropoiesis and
medullary hypercellularity for the
patient’s age;

• Absence of criteria for CML, PV and
ET;

• Presence of mutations in the CALR
gene, JAK2 (JAK2V617F) or MPL or
other clonal marker.

Pre-fibrotic phase:

• Anemia with no known
cause;

• Leukocytosis 11 × 103/mm3

• Palpable splenomegaly;
• Increased lactic

dehydrogenase.

Fibrotic phase:
• Megakaryocytic proliferation and

atypia, accompanied by grade 2 or 3
reticulin and/or collagen fibrosis;

• Does not meet the criteria for PV, ET,
CML, MDS or other myeloid
neoplasms;

• Presence of mutations in the CALR,
JAK2 (JAK2V617F) or MPL gene or
absence of reactive fibrosis.

Fibrotic phase:

• Anemia with no known
cause;

• Leukocytosis
11 × 103/mm3;

• Palpable splenomegaly;
• Increased lactic

dehydrogenase
• Leukoerythroblastosis.

MPN: myeloproliferative neoplasms; PV: polycythemia vera; ET: essential thrombocythemia; PMF: primary
myelofibrosis; Hb; hemoglobin; Ht: hematocrit; CML: chronic myeloid leukemia; MPL: thrombopoietin receptor
gene; CALR: calreticulin gene.
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Thus, some determining factors associated with driver mutations should be considered,
such as mutations (somatic or germline) that are less specific for MPNs, gender, frequency
of the allelic variant and order of acquisition of mutations [27]. In ET and PMF, 12% of
patients do not have any of the driver mutations and are called triple-negative. However,
whole-exome sequencing analyses have identified mutations in the JAK2 and MPL genes
that have a high rate of leukemic transformation in these patients [28].

Among the driver mutations, the JAK2V617F variant is the most frequent in triggering
PV, ET and PMF [10], which are considered to be a major criterion in polycythemia vera,
essential thrombocythemia and primary myelofibrosis [5,29–31]. The JAK2V617F variant
presents a frequency that is greater than 95% in individuals with PV, and frequency is from
55% to 65% in individuals with ET and PMF, respectively [32] The presence of JAK2V617F
causes aberrant signaling of the JAK/STAT pathway, which is an intracellular pathway that
is involved in several biological processes, such as hematopoiesis, immune response and
activation of other intracellular signaling pathways. Thus, the understanding of JAK2V617F
signaling mechanisms and the main cells involved in immunothrombosis may provide a
basis for the development of immunotherapeutic strategies in myeloproliferative disorders.

The constitutive signaling of JAK2V617F is linked to high expression of molecules
that are related to the inflammatory response, immune dysregulation and manifestation of
inflammatory states [33–35], which is a finding that currently constitutes research targets.
Cytokines related to natural immunity are the most expressed in chronic myeloprolifer-
ative neoplasms, and are detected even in the medullary stroma [34]. This suggests that
inflammation is related to bone marrow stromal initiation, which promotes medullary
fibrosis and clonal expansion [35]. In peripheral blood, the interaction between JAK2V617F
positive hematopoietic cells, endothelium and immunological molecules enhances the im-
munothrombosis mechanism, thus constituting an independent and unfavorable prognostic
factor in the survival of patients with MPNs [36].

As such, the understanding of the JAK2V617F signaling mechanisms and the main cells
involved in immunothrombosis may provide a basis for the development of immunothera-
peutic strategies in myeloproliferative disorders. Therefore, in this review, we describe the
JAK2V617F variant and its implications for genomic instability and immune dysregulation,
as well as its relationship to the onset of chronic inflammation through cellular mechanisms.
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2. JAK2V617F: Genetic Implication in Signaling Pathways

In 2005, the molecular basis of chronic myeloproliferative diseases was described,
with the JAK2V617F variant (dbSNP ID: rs77375493) characterized by a transversion-type
base substitution at nucleotide 1849 (1849G > T) of exon 14 of the JAK2 gene encoding a
valine through a phenylalanine at position 617 (V617F) [37–39]. Metabolically, this genetic
alteration leads to a gain-of-function mutation in JAK2, a cytoplasmic tyrosine kinase with a
central role in the signal transduction of hematopoietic growth factor receptors [40,41]. This
change occurs in the pseudokinase domain of JAK2, interrupting the auto-inhibitory effect,
and resulting in constitutive phosphorylation, which generates hyper phosphorylation,
deregulates cellular signals downstream of the JAK2/STAT5 signaling pathway (Figure 3),
interferes with the correct signaling of erythropoietin (EPO) receptors, granulocyte colony
stimulating factor (G-CSF), granulocyte–monocyte colony stimulating factor (GM-CSF)
and thrombopoietin (TPO), and also increases cell proliferation and resistance to apoptosis
[ClinVar ID: NM_004972.3 (JAK2): c.1849G > T (p. V617F))] [3,41,42].
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Figure 3. JAK/STAT signaling pathway. In the absence of cytokines, the JAK protein remains inactive
in regions close to the intracellular domains of the receptor. When a cytokine binds to a receptor,
JAK proteins and intracellular domains of the receptor are phosphorylated, activating and recruiting
STAT proteins, which dimerize and translocate to the nucleus to initiate the transcription process
of genes involved in cell proliferation. In addition to the activation of the JAK/STAT pathway,
there is an interconnection with other intracellular signaling pathways, among the most prominent
are the Ras/Raf/MAPK pathway and the PI3K pathway; the latter manifesting interconnection
with JAK1 proteins, which indirectly activate the NFkB pathway, the transcriptional factors that
activate the production of cytokines (among them CXCL12, IL-6, IL-8, IL-9, TNF-α and CCL3) and the
growth factors identified in the inflammatory profile of individuals with chronic myeloproliferative
neoplasms. JAK: Janus kinase protein; STAT: signal transducers and activators of transcription;
MAPK: mitogen-activated protein kinase; PI3K: phosphoinositol kinase 3; JAK1: Janus kinase class
1 protein; NFkB: light chain nuclear factor B-cell kappa; CXCL12: chemokine 12 with CXC motif;
IL-6: interleukin 6; IL-8: interleukin 8; IL-9: interleukin 9; TNF-α: tumor necrosis factor alpha; CCL3:
chemokine ligand 3.



Biomolecules 2022, 12, 291 6 of 18

Analysis of germline cells, such as buccal cells, T cells or both, in cases of familial
clustering of myeloproliferative disorders, show absence of the variant allele. In this
scenario, the JAK2V617F variant is not the first event that leads to disease [22,40,43]. The
46/1 haplotype is a 280 Kb long region of chromosome 9p that includes three genes,
including JAK2. The part called “GGCC” corresponds to the four main polymorphisms of
this haplotype (rs3780367, rs10974944, rs12343867 and rs1159782) that start in intron 10 and
end in intron 15 of the JAK2 gene [44,45] (Figure 4). These four variants are in complete
linkage disequilibrium, and are inherited together [44,46]. This haplotype is described
as one of those responsible for the processes that precede the acquisition of JAK2V617F,
increasing the mutation rate of the JAK2 locus and the probability of acquiring mutations
with selective advantage, which is the case of JAK2V617F and which, in turn, causes clonal
myeloproliferative disorders [31,45–48].
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Figure 4. Characterization of the 46/1 haplotype without JAK2 gene. The haplotype, also called
GGCC, is altered by four variants located in intron 10 (rs3780367: T > G), intron 12 (rs10974944: C > G),
intron 14 (rs12343867: T > C) and intron 15 (rs1159782: T > C). It is believed that the presence of this
haplotype conditions an increase in the mutation rate of the gene locus in question, thus resulting in
the emergence of mutations with a selective advantage, as in the case of JAK2V617F.

It is still unclear how the same mutation is associated with three different disease phe-
notypes. Possible explanations include inter-individual differences in genetic background,
acquisition of additional genetic alterations or in the target cell for transformation [43].
Thus, JAK2V617F may even compromise the functionality of cell lines that integrate the
hematopoietic and inflammatory processes.

3. Implications of the JAK2V617F Variant in Positive Cells and Immunothrombosis

Recent studies have described the relationship between the mechanisms and immune
responses expressed by cells involved in the innate and adaptive immune system (neu-
trophils, monocytes, macrophages, lymphocytes, endothelial cells and platelets) with impor-
tant molecules of hemostasis, which is a phenomenon currently called immunothrombosis.
The immunothrombosis process is multifactorial, generally mediated by hypercellularity,
and causes changes in plasma proteins that are important in the process of hemostasis and
activation of endothelial molecules, adhesion product and cell function [49–51]. Hyper-
cellularity in peripheral blood is a result of the constitutive activation of the JAK2/STAT5
pathway, which increases blood viscosity through cell–cell–endothelial interaction, and
even forms plasma complexes [49–53]. Thus, the characteristic leukocytosis, erythrocytosis
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and thrombocytosis in patients with MPNs not only reflect quantitative alterations in
hematopoiesis, but also qualitative alterations in the immune response and hemostasis,
through the expression of molecules that favor the activated prothrombotic phenotype [50].
It has been well described in the literature that vascular complications of arterial or venous
type affect up to one third of individuals with MPNs and constitute one of the main causes
of mortality in these individuals [51,52,54–56], especially in ET [53].

JAK/STAT pathway activation is involved in the inflammatory response by directly
interconnecting with other intracellular signaling pathways involved in cytokine produc-
tion. Di Rosa et al. [57] demonstrated that CD34+ cells from individuals with PMF showed
dysregulated activation of the JAK2/STAT1 pathway and significant activation of genes
involved in the IFN-γ pathway (IFN-γ, IRF1 and IFNGR2) compared to healthy individuals,
and noted that IFN I and II have been described as mediators of antitumor immunity
through activation of the PI3K/AKT/mTOR pathway, which, in turn, activates the NFkB
pathway and promotes antigen presentation and cytokine secretion [56].

On the other hand, the action of programmed death protein (PD-1), mediated by IFN-γ
expression, which is vital in the tumor recognition process, is dysregulated in patients with
MPNs, indicating that JAK2V617F positive hematopoietic cells from individuals with MPNs
express the PD-L1 ligand, which is a mechanism that blocks the action of Th lymphocytes
and contributes to the immune escape of neoplastic cells [58,59]. At the same time, this
results in JAK2/STAT3 signaling up to three times greater than normal, which is a fact that
is linked to tumor progression associated with inflammation [55]. The experimental murine
assay carried out by Prestipino et al. [60] demonstrated oncogenic activity of JAK2 with
consequent phosphorylation of STAT3 and STAT5 that facilitates the promotion of PD-L1
activity in JAK2V617F positive cells and affects the cell progression cycle of T cells, which is
a finding associated with more advanced states of MPNs.

In PMF, there is an altered regulation of T cells, which is determined by the significant
activation of CD8+ T lymphocytes, and this finding is linked to the activation of HLA
class I molecules, chronic inflammation and immune dysregulation, thus favoring the
activation of fibroblasts and contributing to the progression of medullary fibrosis and
cytopenias [54]. Interestingly, the constitutive activation of JAK2V617F not only produces
alterations in the cellular immune response through classical pathways, it also favors the
indirect activation of hypoxia inducible factors (HIF) and erythropoietin (EPO) secretion
through the NFkB pathway, generating an hypoxic state of variable severity that favors
tissue atrophy and production of erythroid progenitors, an event that contributes to the
production of pro-inflammatory cytokines in peripheral blood [58].

Therefore, JAK2V617F complexly deregulates intercellular signaling through activa-
tion of cytokine production and interruption of homeostasis and cytotoxicity of immune
cells [48]. Immune dysregulation in individuals with MPNs is confirmed by high con-
centrations of IL-6, IL-8, GM-CSF, HGF, VEGF, b-FGF and TGF-β in medullary stromal
cells and increased production of IL-6, IL-8, IL-9, CCL3, CCL4 and TNF-α in peripheral
blood cells [59].

The inflammatory picture is related to the excess of cytokines (generally type I IFN and be-
longing to the IL-6 family), a product of the constitutive signaling of the JAK2/STAT5/STAT3
pathway, which directly activates other intracellular signaling pathways committed to the pro-
duction of pro-inflammatory cytokines [28]. PI3K, MAPK, NFkB and HIF1-α pathways induce
tumorigenesis [31] and expression of mediator mechanisms of inflammation in neutrophils,
monocytes, macrophages, lymphocytes and platelets [60] (Figure 5).

3.1. Neutrophils

Neutrophils constitute a large percentage of leukocytes in peripheral blood and are in-
volved in immune response processes against antigens. Neutrophils from individuals with
MPNs have abundant basal amounts of reactive oxygen species (ROS), especially in patients
with PMF, which are induced by JAK2-dependent ERK signaling and constitutive phos-
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phorylation, producing NADPH oxidase and neutrophil activation by myeloperoxidase
expression [61].
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Figure 5. Immunothrombosis involves the participation of hematopoietic cells and immune system
cells. JAK2V617F positive neutrophils express CD11b on the cell surface and secrete enzymes such as
MPO, cathepsin G and elastase. The release of cathepsin G and elastase activates CCL5/PF4 signaling
in JAK2V617F positive platelets, which is an interaction that creates positive feedback between
platelets and neutrophils, and favors the production of IL-6 and ROS. Free cathepsin and elastase
inhibit the function of antithrombin and plasma TFPI, contributing to the thrombotic phenotype.
Unmutated neutrophils are activated by the action of ROS, which recruit and activate monocytes with
PSGL-1 expression and inactive tissue factor. Both cells manifest rolling and endothelial adhesion
by binding adhesion molecules expressed in endothelial cells (ICAM1, VCAM1, P-selectin, CCL2
and FXII). Simultaneously, endothelial cells are activated by the action of ROS, releasing vWF and
collagen, thus forming a platelet–monocyte–neutrophil interaction, which favors the discharge of
genetic and protein material from the neutrophil, starting with NETosis. This brings with it the
expression of IL-8 and activation of TLR4/TLR2 in platelets, a fact that allows the expression of
receptor glycoproteins and, therefore, platelet aggregation. In NETosis, erythrocytes are recruited and
release hemoglobin and increase ROS production. The complement system is active in response to
activation of immune cells, especially through the action of C3 and C5, which induces signaling from
JAK2V617F positive monocytes and non-mutated monocytes. JAK2V617F positive monocytes express
PD-1L, which immediately activates PD-1 in JAK2V617F lymphocytes, a mechanism responsible for
the evasion of the immune response described in chronic myeloproliferative neoplasms. Recruitment
and activation of immune and hematopoietic cells benefits the conversion of fibrinogen into fibrin,
giving rise to thrombus formation, the main factor involved in vascular complications described in
myeloproliferative neoplasms. MPO: myeloperoxidase; CCL5: chemokine ligand 5; PF4: platelet
factor 4; IL-6: interleukin 6; ROS: reactive oxygen species; TFPI: plasma tissue factor inhibitor; PSGL-1:
P-selectin ligand 1; ICAM-1: intercellular adhesion molecules 1; VCAM-1: vascular cell adhesion
molecule 1; CCL2: chemokine ligand 2; FXII: factor XII; vWF: Von Willebrand factor; IL-8: interleukin
8; TLR2/TLR4: Toll-like receptor 2/4; C3: complement component 3; C5: complement component 5;
PD-1: programmed death protein; PD-L1: programmed death protein ligand 1.

The activation and recruitment of leukocytes contributes to the formation of neu-
trophil extracellular traps (NETs), which are networks made up of genetic material and
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protein derived from neutrophils, and which favor cell activation, production of reactive
oxygen species, platelet activation and aggregation and endothelial damage [62]. Activated
neutrophils express CD11b on the cell surface and secrete elastase and myeloperoxidase,
which favors the chemotaxis of neutrophils, monocytes and macrophages and facilitates
endothelial adhesion [63–66]. Simultaneously, the expression of β1 and β2 integrins in
recruited neutrophils is favored, and glycoproteins are expressed by interconnection of the
JAK/STAT pathway with Rap1-GT-Pasa, which have affinity for vascular cell adhesion
molecules (VCAM-1) and for intercellular adhesion molecules (ICAM-1) expressed by
endothelial cells [67–70], thus enhancing endothelial adhesion. Likewise, expression of
P-selectin ligand 1 (PSGL-1) and cell adhesion molecule type 1 (MAC-1) in neutrophils
contributes to the release of cathepsin G (a neutrophilic degradative enzyme important in
the elimination of pathogens and in the degradation of components in inflammatory sites),
which, together with elastase, determines a positive feedback through the expression of
CCL5 and platelet factor 4 (PF4) in platelets, stimulating the expression of P-selectin and
GPIba in platelets and favoring the thrombogenesis process [52].

An interesting finding is that both elastase and cathepsin G block the tissue factor
pathway inhibitor (TFPI) and antithrombin (AT), which are two potent natural anticoagu-
lants, and this contributes to the activation of the proteinase 4 receptor (PAR4) pathway in
platelets, Von Willebrand factor exposure and initiation of the coagulation cascade [51,71].

Thus, neutrophil activation allows the release of DNA-histone complexes (especially
H3 and H4) that induce the production of NETs and platelet activation via NF-kB and
TLR2 and TLR4 function [67], with a consequent expression of GPaIIb3 contributing to
platelet aggregation and formation of thrombin in the extrinsic pathway [68]. Histone-
MPO complexes have also been found in the plasma of individuals with MPNs and to be
associated with high levels of LDH [61]. As such, NETosis plays a crucial role in tumor
expansion in MPNs by enhancing immunothrombosis and activating hemostasis, thus
forming a repetitive cycle [66].

Since we now know about the active participation of neutrophils in the process
of immunothrombosis in MPNs, there has been great interest in identifying neutrophil
subtypes involved in this mechanism. Tumor-associated neutrophils (TANs), also classified
as PMN-MDSCs, can be subdivided into N1 (neutrophils with anti-tumor action) and N2
(neutrophils with pro-tumor action) [68,72,73], both in human and murine models, and
are found in circulation and in the microenvironment of patients with tumorigenic and
inflammatory conditions [70]. TANs directly contribute to the angiogenesis process through
significant release of ROS and consequent formation of NETs through expression of CD11b
and elastase [71].

The presence of TANs is also documented in processes of infiltration, invasion and
metastasis of solid tumors, such as melanoma, advanced gastric carcinoma, infantile brain
tumor [72] and even in cases of acute pancreatitis [74–77]. In these types of tumors, TANs
are sensitive to microenvironmental signals caused by the secretion of CXCL1, CXCL2,
TNF-α, IFN-γ and IL-8 [70], which favors local invasion, functional overexpression of
neutrophils and functional suppression of T lymphocytes. However, the role of TANs
in hematologic malignancies has been sparsely described. In 2019, the study by Podaza
and Risnik [78] aimed to detect TANs in individuals with chronic lymphocytic leukemia
(CLL) and found that the proportion of TANs in patients with CLL was greater, with high
concentrations of IL-8, an important molecule in the induction of NETs. Unfortunately,
due to the scarce description of surface markers in this classification of neutrophils, the
research does not discriminate the TAN (N1/N2) phenotypes found, which are defined by
the production capacity of ROS and NETs. Nonetheless, some recent studies have aimed to
describe the phenotyping of these neutrophil subpopulations to better characterize them,
especially their role in hematological diseases.
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3.2. Platelets

Platelet activation and dysfunctionality is a well-described phenomenon in thrombotic
and hemorrhagic processes in patients with MPNs, and it is worth mentioning that some
platelet markers, such as P-selectin, CD41L, β-thromboglobulin, PF4 and platelet-derived
growth factor (PDFG), have been detected in high concentrations in the plasma of individu-
als with ET and PV [52,54], which are biomarkers associated with thrombotic complications.
The expression of these markers induces a hemostatic response through exposure and
activation of tissue factor (a product of endothelial damage), directly activating the extrinsic
pathway of the coagulation cascade and consequent fibrin production. In this process,
activated platelets expose negatively charged phospholipids that confer proteolytic reaction
of coagulation factors, acting as mediators between coagulation and inflammation through
activation of the complement cascade, especially of C3 and C5 molecules [66].

Interestingly, patients with MPNs can also manifest high basal levels of phosphatidylser-
ine in the platelet membrane, which in turn develops a pro-coagulant function, and which
is a finding that demonstrates that platelets are the central target in the development of vas-
cular and inflammatory complications in MPNs [75]. Thus, the presence of the JAK2V617F
mutation could potentiate platelet activation and contribute to persistent thrombosis in
these patients.

On the other hand, the constant circulation of complexes and activation of platelet
proteins can expose molecules derived from endothelial cells, favoring endothelial activa-
tion and damage through TLR-4 signaling in platelets [76]. As such, endothelial activation
is promoted by high levels of reactive oxygen species, which are released by neoplastic
platelet–neutrophil complexes that lead to exposure of Von Willebrand factor, collagen,
platelet–endothelial cell adhesion molecules (PECAM), E-selectins and thrombomodulin,
as well as CD40L (an important tissue factor inducer), which are all molecules that favor
endothelial adhesion and are directly involved in the activated thrombotic picture [75,79].
In the active process of hemostasis, the expression of some biomarkers, such as thrombin,
D-D, FVIII, fibrinogen, CD40L and platelet integrins, is detected; that, together with tissue
factor, protein S, protein C, Von Willebrand factor and P-selectins, favors the perpetuation
of active hemostasis, cell adhesion and recruitment of leukocytes and erythrocytes [76].
Although platelets form complexes with neutrophils, platelet–monocyte aggregates have
also been found, especially in patients with ET [77].

The interaction between platelets and endothelial cells most likely contributes to the
production of soluble selectins and the reduction of nitric oxide (a consequence of high
levels of reactive oxygen species and MPO), which benefits the laminar vessel reduction
and vascular obstruction [51,80]. Poisson et al. [81] provide confirmation of this, in which
endothelial cells showed a dysfunction of the nitric oxide pathway, the cause of the ac-
cumulation of microvesicles derived from MPO-carrying erythrocytes, which increased
endothelial oxidative stress and compromised the vascular response to vasoconstrictors.
This implies a possible participation of erythrocytes in this process. Therefore, in hematopoi-
etic cells, oxidative stress and chronic inflammation status is favored by the vicious cycle of
biomacromolecule production that contributes to genomic instability, mutation acquisition,
tissue damage and acute leukemia transformation [82,83].

On the other hand, hemorrhagic conditions can also be presented in patients with
MPNs, and are linked to increased platelet consumption (product of thrombogenesis) due
to the absence of a connection with high molecular weight multimers of the Von Willebrand
factor and dysfunctionality of platelet-dense granules [84]. However, hemorrhagic compli-
cations are more often described in individuals with PMF and PV, compared to those with
ET [85]. An important finding about this is that individuals with mutated ASXL1-PMF
have a poor prognosis and a high risk of complications in hemostasis [86]. Unfortunately, a
relationship between mutations in ASXL1 and the development of bleeding disorders in
patients with PMF has not yet been established.

Matsuura et al. [87] observed a significant reduction of platelet-dense granules in
JAK2V617F positive platelets, suggesting that hyperactivation in JAK2 affects the devel-
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opment of an ensemble of these granules in platelets in the thrombopoiesis process. As a
result, the role that JAK2 signaling plays in the control of dense granules in platelets has
never been reported.

3.3. Monocytes

Monocytes play an important role in the process of immunothrombosis, which is also
an independent and unfavorable prognostic factor in the survival of patients with PV and
PMF, since they are mediators of inflammation, thrombosis and medullary fibrosis due to
the secretion of high concentrations of cytokines and the presentation of an unbalanced
response to IL-10. In the bone marrow, the pro-inflammatory cytokine signaling promotes
the interaction between malignant clone and stromal cells, which stimulates osteoclasto-
genesis in the endosteal niche and causes the emergence of fibrocyte clones involved in
the induction of medullary fibrosis in PMF [36]. This mechanism is promoted through cell
cycle dysregulation in fibroblasts, and accelerates the mal-differentiation process so that it
loses the ability to repair hematopoietic tissue (may be a product of the oxidative stress)
and contributes to marrow fibrosis [88].

By using single-cell RNA-seq, Leimkuhler et al. [89] demonstrated that transcriptomics
of mesenchymal stromal cells of primary myelofibrosis patients show loss of hematopoietic
niche support, decreased multipotent progenitor status cell, upregulated JAK/STAT and
TGF-β signaling and upregulation of extracellular matrix proteins like collagen.

Indirectly, monocyte activation is determined by exposure to pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), thus
providing exposure to tissue factor and CD25 and benefiting activation of proteins with
procoagulant action and NFkB signaling [90].

On the other hand, monocyte activation may be favored by the expression and binding
of PSGL-1 to platelet P-selectin, favoring the expression of inflammatory cytokines [71].
Therefore, platelet–monocyte interaction induces a pro-inflammatory phenotype through
the expression of CD147, PSGL-1, EP1/EP2 and COX-2 as well as the activation of integrins
that contribute to endothelial adhesion and monocyte recruitment [91]. Confirmation of this
is found in the study by Wei Wang et al. [52], in which JAK2V617F positive macrophages
manifested a high expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α), nitric
oxide synthase (iNOS), ligand-2 chemokine (CCL2) and activation of the MAPK pathway,
and they noted that monocytes showed remarkably distinct rolling and cell adhesion when
compared to wild-type cells.

It is important to mention that macrophages are subdivided into type M1 and type
M2, that both cell subtypes are activated by the NFkB signaling pathway, and that they
have cellular functions similar to N1 and N2, respectively [92]. M2 is the largest component
in neoplastic tissues, and directly contributes to the tumor environment, proliferation,
angiogenesis and release of cytokines that lead to neoplastic expansion [93]. However,
M2 has been sub-classified into M2a, M2b and M2c; though it is worth noting that mono-
cyte/macrophage accumulation of M2b can promote growth, invasion and recurrence of
cancers in vitro and in vivo [93].

In the study by Molitor et al. [94], it was observed that JAK2V617F positive M2 in
patients with PMF showed greater capacity for colony formation through the secretion of
pro-fibrotic molecules, such as CCL2, IL-8, matrix metalloproteinase-9 (MMP9), galectin
3 (LGALS3) and osteopontin (SPP1), which drive the proliferation and production of colla-
gen. Nonetheless, further research is needed regarding the role of macrophage subclasses
in different MPN phenotypes.

3.4. T Helper and Natural Killer Lymphocytes

Although lymphocytes are not well described in MPNs, these cells may also be in-
volved in immune dysregulation. T lymphocytes have a long lifespan and this possibly
contributes to greater signaling of disruptive effects in the immune system [95]. In some
PMF cases, T lymphocytes carry 3–83% of variant allele frequency of JAK2V617F, accom-
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panied by abnormalities in the karyotype, such as 13q-, 20q-, monosomy 7 and inv(3).
It is noted that these last two chromosomal alterations confer an unfavorable progno-
sis [95–98]. Just as in lymphocytes, the role of natural killer (NK) cells in MPNs has not
been widely described.

NK cells are associated with the control of tumor growth and metastasis, which
indicates that NK cell deficiency is very rare and is generally linked to lymphoproliferative
disorders [98]. However, the study by Arantes [99] demonstrated that NK cell JAK2V617F-
positive patients had lower NKCD16 + CD56dim counts compared to NK cell JAK2V617F-
negative patients, especially those with PV and PMF, which is a finding that suggests that
NK cells may be defective in MPNs. Although there have been some investigations into the
role of lymphocytes and NK cells in these hematological diseases, further research is needed
in order to elucidate their role in the evolution of these diseases and in the development of
immunothrombosis in MPNs.

4. Summary and Perspectives

The clinical approach to patients with myeloproliferative neoplasms is based on the
control of vascular complications, both arterial and venous, since these are events that result
in the main cause of morbidity and mortality due to hematological diseases. According to
recent investigations, thrombohemorrhagic complications are attributed to the presence
and high allelic frequency of JAK2V617F [100], suggesting that the presence of the JAK2
46/1 haplotype has not been related to the production of inflammatory biomarkers that can
be expressed in immunothrombosis [101]. Likewise, the link between JAK2V617F and dys-
regulations in the immune response and hemostasis is well-described and associated with
the interconnection of the JAK/STAT pathway with other intracellular signaling pathways,
such as PI3K/AKT, Ras/Raf/MAPK and NFkB, in the apoptotic process and in the produc-
tion of inflammatory molecules [59]. In addition, next-generation sequencing investigations
have described other genes involved in these signaling pathways (FLT3, GNAS, KIT, KRAS,
NF1, NRAS, PTPN11 and SH2B3), in epigenetic regulator genes (TET2, ASXL1, DNMT3A
and EZH2) and negative regulator genes of the JAK2 signaling pathway (SOCS and CBL),
since they showed a strong association with dysregulations in cytokine production and
secretion [102,103]. These could be excellent research targets in pathogenic mechanisms of
MPN, and be employed as predictors of worse clinical outcome, stratification risk or even
as leukemia transformation predictors [104].

The International Working Group—Myeloproliferative Neoplasms Research and Treat-
ment (IWG–MRT) established a prognostic algorithm for thrombotic complications in
common with BCR/ABL1 negative chronic myeloproliferative neoplasms, especially in PV
and ET, based on the variables of age (>60 years), percentage of homozygosity of JAK2V617F
and history of thrombotic events, which are factors that define the categories of low risk,
very low risk, intermediate and high risk of thrombotic and vascular complications [5].

Cytoreductive therapy in individuals with PV, ET and PMF is often scrutinized but
widely used to alleviate the clinical picture and reduce the risk of these complications. Thus,
the drug of choice in individuals with PV and ET is hydroxyurea (HU). Unfortunately,
resistance or intolerance to HU have been described in 15–20% of patients with MPN [105].
This phenomenon is a challenge in the treatment of these patients because it reduces the
therapeutic options and increases disease progression or the thrombotic risk [105]. Many
investigations regarding this have been carried out and suggest that the existence of other
molecular alterations in the kinase domain of JAK2 protein or in non-driver genes could be
the reason for the pharmacological refractory [106,107].

Ruxolitinib, a drug approved a few years ago by the FDA, is also considered an ex-
cellent pharmacological choice in patients resistant to HU in PV [108]. However, murine
models demonstrated that its pharmacological action does not present anti-leukemic ac-
tivity in vivo in the bone marrow [109], which is a finding that could suggest a possible
contribution from other deregulated cellular signaling, and is a target that would also be
interesting in the prognosis of these patients. In PMF, the treatment of choice is HU, and
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using ruxolitinib for cases refractory to HU and patients classified as high risk [109]. In
young high-risk patients with PMF, allogeneic hematopoietic stem cell transplantation is
considered. Nevertheless, the use of cytoreductive drugs for reticular fibrosis or collagen
would increase the chances of survival in these individuals; it is worth noting that PMF is
the BCR/ABL1 negative chronic myeloproliferative neoplasm with the greatest association
with leukemic transformation.

On the other hand, inhibition of platelet function in BCR/ABL1 negative chronic myelo-
proliferative neoplasms is one of the main functions, since, as previously described, platelets
play a central role in the process of immunothrombosis. Thus, the use of antiplatelet agents
reduces the rate of occurrence and recurrence of thrombo-hemorrhagic and inflammatory
events [80]. Low molecular weight heparin, aspirin and clopidogrel are the main drugs
used to control platelet activation. Although they are the most frequently used drugs in
these diseases, the use of new drugs that inhibit the expression of platelet receptors, platelet
adhesion molecules and cytokines would favor the reduction of thrombus formation and,
consequently, the development of immunothrombosis [5]. Likewise, inhibition of the ex-
pression of integrins, adhesion molecules and other membrane proteins in neutrophils,
monocytes, lymphocytes and endothelial cells constitutes a promising strategy in individu-
als with BCR/ABL1 negative chronic myeloproliferative neoplasms as treatment targets [66],
especially in those with drug resistance and categorized as high risk.

Despite the detection of microvesicles, cellular complexes and other inflammatory
markers have been comprehensively discussed in MPN, and detection of mi-RNAs is
actually considered a metabolic response marker, before, during and after lymphoma
treatment [110]. Moreover, the advance in molecular techniques leads us to the devel-
opment of noninvasive techniques, such as liquid biopsy, that could be a potential tool,
especially in non-solid cancers, for prognosis and monitoring indicators in hematologic
malignancies [111]. Currently, analyzing the circulating cell-free (cf)-DNA is proposed as
a noninvasive tool for use in the diagnosis and prognosis of hematologic malignancies,
which could be employed to differentiate between MPN subtypes, as well as to predict the
development of thrombotic complications [111,112].
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