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INTRODUCTION
Hyperoxia occurs when organs or cells are exposed to an 
excess supply of oxygen (O2) or higher than the normal partial 
pressure of oxygen. It is unlikely that hyperoxia had much 
impact during the evolution of vertebrates, and the effects 
of hyperoxia on the human body remain relatively unclear.1 

Over the last 50 years or so, hyperoxia has been employed 
in a wide range of clinical interventions and pathologies.2 In 
addition, hyperoxic conditions develop in the context of diving 
and hyperbaric oxygen (HBO) therapy. 

Adverse effects of oxidative stress on the central nervous 
system and the lungs are well described. Also, adverse effects 
to the eyes,3 to the DNA of isolated lymphocytes,4 and to in 
vivo DNA of leucocytes5 were described. 

While the results of the studies mentioned above are 
consistently accepted, the effect of hyperoxia on the 
autonomous nervous system is discussed controversially. On 
the one hand, hyperoxia is described to induce bradycardia by 
direct stimulation of the parasympathetic nervous system.6,7 

On the other hand, hyperoxia is described to increase vascular 
resistance,8 thereby increasing blood pressure. With an intact 
baroreceptor reflex, bradycardia will be induced.9,10

The purpose of this retrospective study was to help answer 
the question, whether hyperoxia affects the heart rate (HR) 

directly or indirectly. This was done by investigating the 
scheduled course between partial oxygen pressure (pO2), HR, 
and blood pressure.

SUBJECTS AND METHODS
Patients
Data from 23 patients (13 females) were collected during HBO 
treatment. The age of the patients ranged from 22 to 79 years. 
Included in this study were routine patients that did not suffer 
from cardiovascular problems as hypertension but underwent 
HBO treatment for other reasons, predominantly for wound 
healing problems and tinnitus. Excluded from the study were 
patients having major problems with pressure equalization. 
The trial flow chart is shown in Figure 1.

This single-arm, retrospective study was registered in the 
former study register of the University Hospital Düsseldorf (ID 
2020-05-5532) and approved by the Ethical Committee of the 
Medical Faculty of the Heinrich-Heine-University Düsseldorf 
(Study No. 2020-998) on August 18, 2020.

HBO treatment scheme
In line with the diagnoses of our patient group, the problem 
wounds scheme was employed. Thus, all patients followed the 
protocol outlined in Figure 2, i.e., they all spent 135 minutes 

Hyperoxia and the cardiovascular system: experiences 
with hyperbaric oxygen therapy
Jochen D. Schipke1, *, Thomas Muth2, Clark Pepper3, Johannes Schneppendahl4, Martin Hoffmanns4, Sven Dreyer4 
1 Research Group Experimental Surgery, University Hospital Düsseldorf, Düsseldorf, Germany 
2 Institute of Occupational, Social and Environmental Medicine, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany 
3 Department of Anesthesiology, Johanna Etienne Hospital, Neuss, Germany 
4 Department of Trauma and Hand Surgery, University Hospital Düsseldorf, Düsseldorf, Germany

*Correspondence to: Jochen D. Schipke, PhD, j.schipke@gmx.org.
orcid: 0000-0002-1747-5657 (Jochen D. Schipke)

Hyperoxia has been described to induce bradycardia by direct stimulation of the parasympathetic nervous system. Also, hyperoxia has been 
found to increase blood pressure by an elevation of vascular resistance. However, the latter effect itself would induce bradycardia by barore-
ceptor stimulation. This single-arm monocentric retrospective study aims to evaluate the correlation between these effects by investigating the 
relation between oxygen (O2) administration and heart rate over time. Data were collected from 23 patients without cardiovascular problems 
undergoing hyperbaric oxygen therapy (2.4 bar) retrospectively. During single oxygen bouts, transcutaneously measured partial pressure 
of O2 was increased. During this surge of oxygen pressure, the arterial blood pressure was increased while the heart rate was decreased. 
Respiration rate was maintained independently from breathing 100% O2 or air. During single oxygen bouts, the half-life of transcutaneously 
measured partial pressure of O2 was 5.4 ± 2.1 mmHg/s, and the half-life of heart rate was 0.45 ± 0.19 beats/min. It has been shown that hy-
perbaric oxygen therapy increases the transcutaneously measured partial pressure of O2. This increase was rather fast, followed by a rather 
slow decrease in HR. This finding does not support direct vagal activation. Heart rate is not decreased due to a direct vagal activation during 
hyperbaric oxygen therapy. Our single-arm, retrospective study has additionally confirmed that oxidative stress injures the endothelium, 
and the reduced endothelial-derived vasodilators cause vasoconstriction. As a consequence, blood pressure increases, and heart rate is then 
further decreased via the baroreceptor reflex. 

Key words: autonomic nervous system; blood pressure; endothelium; heart rate; hyperbaric oxygen therapy; oxidative stress; vascular 
resistance; wound healing

doi: 10.4103/2045-9912.337997
How to cite this article: Schipke JD, Muth T, Pepper C, Schneppendahl J, Hoffmanns M, Dreyer S. Hyperoxia and the cardiovascular system: 
experiences with hyperbaric oxygen therapy. Med Gas Res. 2022;12(4):153-157.

Abstract



Schipke et al. / Med Gas Res

Medical Gas Research ¦  December  ¦ Volume 12 ¦ Issue 4154

www.medgasres.com

in the HBO chamber. Using breathing masks, 100% oxygen 
was administered at a pressure of 2.4 bar (= 240 kPa) (three 
times 30 minutes with 10-minute air breakes). At that treat-
ment pressure, pO2 within the chamber was 0.5 bar (= 50 kPa).

Transcutaneous pO2

The transcutaneous pO2 (tcpO2) was assessed continuously 
using oximetry (TCM4, Radiometer, Copenhagen, Germany).11 
The tcpO2 electrode was attached to the supraclavicular area. 
If needed, a second electrode was attached close to the healthy 
margin of a wound. The electrodes are sensitive to only oxy-
gen that generates a current proportional to the pO2.

12 The 
electrodes were heated throughout to 44°C as hyperthermia 
creates underlying capillary vasodilatation allowing more 
oxygen diffusion.13 TcpO2 measurement is widely applied for 
the evaluation of chronic limb-threatening ischemia14 but also 
to predict responders to hyperoxia.15 The minimum pO2 value 
at the onset of 100% O2 administration was subtracted from the 
maximum O2 value before an air break. The result was divided 
by two and that value was added to the value at the onset (= 
ΔpO2). The time between the onset of O2 administration and 
the time of ΔpO2 was termed Δt. The ratio between ΔpO2 and 
Δt represents the pO2 half-life. The half-life of the HR was 
determined analogously.

Electrocardiogram and arterial blood pressure
An electrocardiogram (Haux-Life-Support, Karlsbad, Ger-
many) was assessed using three leads that were attached to the 
chest. The best signal was used to calculate HR. The tcpO2 and 
the HR are presented in the individual tracings, respectively 
(Figures 3 and 4), and the tcpO2 half-life and the HR were as-
sessed from these tracings. Finally, the arterial blood pressure 
was measured in 5-minute intervals using an inflatable cuff 
connected to a blood pressure monitor (Haux-Life-Support) 
(Figure 5). 
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Figure 1: Trial flow chart.
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Figure 2: Hyperbaric oxygen therapy scheme.

Figure 3: Time course of the transcutaneous partial oxygen pressure (pO2). 
Note: (A) Time course of the transcutaneous pO2 during an entire problem wound 
scheme session in one patient. (B) Determination of the slope of the pO2 signal by 
calculating the pO2 half-life. Horizontal arrows, Bottom: minimal pO2 at the onset of 
100% O2-breathing. Middle: mean pO2 between maximal and minimal values. Top: 
Maximum pO2 before the first air break. Δt: Time from minimal pO2 at the onset of 
100% O2 and mean increase. This variable rapidly increases after patients start 
breathing 100% oxygen via their masks.

Figure 4: Original tracing of the time course of the heart rate (HR). 
Note: (A) Time course of the HR during an entire problem wound scheme session 
in one patient. (B) Determination of the slope of the HR signal by calculating the 
HR half-life. This variable slowly decreases after patients start breathing 100% 
oxygen via their masks.

Figure 5: Representative arterial blood pressure during the wound scheme 
protocol 
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Respiration
To account for respiratory effects, the respiration rate during 
both air and O2 intervals was assessed in a blinded manner 
on three patients that kept their masks on during an air break. 

Sample size
The sample size was calculated based on expected O2-induced 
changes in the HR. If the expected HR decreases were moder-
ate (Cohen’s δ = 0.6), a power of 0.8, and a significance level 
of 0.05 were chosen, then the sample size of n = 19 resulted.16 

Statistical analysis
MicroSoft Excel 2007 (MicroSoft, Redmond, WA, USA) 
was used for calculations and creating tables and graphs. HR 
between the onset and the end of the HBO treatment was 
compared using the one-side t-test for paired samples and 
continuous variables (SPSS Statistics 24, IBM, Armonk, NY, 
USA). Differences were considered significant at the P ≤ 0.05 
level. Results are presented as mean ± standard deviation (SD). 
To assess the effect size, Cohen’s δ was calculated.

RESULTS
Transcutaneous pO2

During single oxygen bouts, tcpO2 increased from 101 ± 46 to 
1089 ± 178 mmHg, and ΔtcpO2 was equal to 5.4 ± 2.1 mmHg/s.  

Heart rate
Within a single bout of oxygen, HR decreased from 71.7 ± 
15.2 to 63.6 ± 13.5 beats/min (P < 0.05; Cohen’s d = 0.58), 
and ΔHR was equal to –0.45 ± 0.19 beat/min2, i.e., the decrease 
in HR was drastically slower than the increase in the tcpO2. 

Blood pressure
Both systolic and diastolic arterial blood pressure increased 
from 115 ± 15 to 148 ± 21 mmHg (31%) and from 62 ± 8 to 
81 ± 11 mmHg (31%), respectively during the entire HBO 
session. This entire pressure increase was not linear, but the 
pressure decreased shortly during both air breaks (n = 8).

DISCUSSION
It is the main finding of this retrospective study that tcpO2 
rapidly increases following exposure to HBO while the HR 
decreases rather slowly.

It is well established that respiration rate and HR are syn-
chronized: cardiorespiratory synchronization.17,18 It is also 
established that breathing oxygen exerts bradycardia.6,19 To 
evaluate whether or not breathing oxygen would affect the 
respiration rate and thereby the HR in this study, the breath-
ing gas (air/oxygen) was exchanged in a blinded manner in 
one of the 30-minute cycles. This maneuver was done in only 
three patients to not endanger the effects of HBO therapy. No 
obvious HR differences were found between the breathing of 
normal air compared to oxygen.

While the half-life of the increase in the tcpO2 was roughly 
5 mmHg/s rather short, the half-life of the decrease in HR 
was roughly 0.5 beats/min rather long. This means that 
tcpO2 increased 600 times faster than HR decreased. Due to 
this huge difference, hyperoxia will not directly activate the 

parasympathetic system as previously reported.19,20 It could, 
however, well be that those findings came about, after steady 
state conditions had established, i.e., sometime had elapsed 
after the onset of oxygen breathing. In case the increased vagal 
activity had been determined via indices of the HR variability,21 
it is remembered that indices of vagal activity can increase 
while HR decreases.22

It is well known that hypoxia is associated with vascular 
dilatation to secure sufficient oxygen supply. In turn, hyper-
oxia is associated with systemic vasoconstriction.23,24 More 
precisely, arterioles in the peripheral microcirculation constrict 
with higher oxygen concentrations, e.g. during normobaric or 
hyperbaric oxygenation therapy.25

As a result, perfusion is reduced in most tissues.26 This 
oxygen-induced vasoconstriction is thought to serve as a 
protective mechanism to reduce oxidative stress.24,27 Although 
that topic is beyond the aim of this study, a minor excursion 
may be permitted: The mechanisms underlying the effect of 
hyperoxia are not fully understood.28 Yet, increases in the 
contracting potential, decreases in the dilatating potential, or 
both have been suggested. One study favors the hypothesis 
that hyperoxic vasoconstriction is mediated by inhibition of 
prostaglandin synthesis.28 Others suggest that reactive oxida-
tive species are generated in the vessel wall29 and rapidly 
react with nitric oxide30,31 thereby reducing/inactivating the 
vasodilating potential.32,33

The hypothesis that the vasodilating nitric oxide potential is 
reduced is supported by data derived from scuba diving. Here, 
the pO2 levels increase with the diving depth. As a result of 
the hyperoxic condition, the vasodilator capacity was reduced 
by about 95% after a dive.34 For comparison: this value is 
comparable to patients having significant atherosclerosis.35 
Other studies,36,37 as well as this study describe a decrease in 
the flow-mediated dilatation as well,38 and yet another study 
reports significantly impaired vasodilation after diving that 
does not recover until the next dive.39 Likewise, single air 
dives were also shown to reduce arterial endothelial func-
tion.34,40 Seemingly, hyperoxia-associated formation of reactive 
oxygen species induces endothelial dysfunction41 that can be 
attenuated using antioxidants.42

Although the hyperbaric chamber was used as an experi-
mental model to investigate a physiological issue, the results 
might also have clinical importance. Since oxidative stress 
does contribute to the development of atherosclerosis,43,44 
patients that suffer from atherosclerosis should be monitored 
carefully when undergoing HBO therapy. This is of particular 
importance since atherosclerosis is a common comorbidity in 
diabetes.45 Diabetic patients frequently undergo HBO therapy 
for the treatment of diabetic foot syndrome. It is also conceiv-
able that the fitness of professional divers could be screened in 
a hyperbaric chamber to assess responses of hyperoxia toward 
blood pressure and electrocardiograms, because these divers 
will be confronted with elevated pO2 levels both using open 
or closed-circuit breathing apparatuses. 

Assessment of the blood pressure is not well tolerated by 
the patients inside the chamber. Thus, measurements were 
made only randomly in some patients. We are presenting 
pressure data from eight patients with typical reactions of the 
blood pressure towards hyperoxia. In line with the previous 
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literature,46,47 systolic and diastolic pressures increased after 
the onset of O2 breathing 

Assessment of the arterial blood pressure via the inflatable 
cuff provides a limited temporal resolution, as the pressure 
was measured at five-minute intervals. Still, as the curve shape 
was of no importance, blood pressure values at all permitted 
a sound analysis.

One might consider that our results originated from a syner-
gistic effect of hyperbaric and hyperoxic conditions. However, 
we exclude effects owing to increased pressure as it does not 
affect arterial blood pressure.48-50

We conclude that after administration of HBO, increases 
in the vascular tone lead to increases in blood pressure. In 
our patient group, blood pressure increases stimulated the 
baroreceptor reflex thereby decreasing the HR. Thus, because 
of the large differences in the temporal course between tcpO2 
and HR responses, hyperoxia will unlikely directly activate 
the parasympathetic system.
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